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ABSTRACT
This study shows the analysis of physical variables for MHD flow through a vertical deformable 

layer. The bounding vertical plates y=0 and y= h is sustained at different constant temperature T 0

and T w respectively. The movement of the fluid and solid deformation are considered in the 

porous medium. Also, equations governing the velocity of the fluid and displacement of the solid

are derived in the vertical deformable porous medium. Substantial results are obtained for the 

various values of parameters such as Gash of no Gr , magnetic parameters, heat source α , drag 

coefficient δ , volume fraction of the fluid in porous layer. The Adomian decomposition scheme 

was also implemented using the software package known as MATHEMATICA. The results 

obtained from using the MATHEMATICA package were explained using graphical method. The

results obtained shows that the drag coefficient increases as the displacement increases and that 

as the displacement increases the heat source also increases.
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CHAPTER ONE

INTRODUCTION

1.0 Background of Study

In physics, viscous flow across a porous media has a number of interesting applications.

The majority of the research focused on flow through rigid (undeformable) porous media.

The theory of deformable porous media comes in handy in these situations to ensure a thorough 

knowledge of the physical simulations (Terzaghi., 1925), was among the first to investigate fluid 

flow through deformable porous materials, and (Biot et al., 1962), proposed a model for 

deformation mechanics and acoustic propagation of fluid flow in porous layers. 

In the inclined deformable porous lay er, Gopi Krishna et al.  created an entropy production on 

viscous fluid. (Sreenadh et al., 2016), observed free convection flow of a Jeffrey fluid through a 

vertical deformable porous stratum and MHD free surface flow of a Jeffrey fluid over a 

deformable porous layer. (Sreenadh et al., 2016) looked at viscous fluid flow in a deformable 

porous media in an inclined channel.

Furthermore, too much energy is squandered or dissipated in the form of heat during the energy 

producing process. Entropy formation in a couple stress fluid moving through a porous channel 

with slip at the isothermal walls has been studied by a number of scientists. One of the key parts 

of fluid dynamics is magnetohydrodynamics (MHD). (Kareem et al., 2016).

1.1 Statement of the Problem

The purpose of this study is to investigate the effects of physical variables and magnetic 

parameters on a fluid flowing through a deformable layer with a width of h. The flow is 

subjected to some boundary conditions is forced through a porous medium by pressure gradient. 

therefore, in this study, the use of Adomian decomposition method will be employed to solve the

governing equations of the flow.
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1.2 Aims and Objective of the Study

  The aim of this study is to analyze the effects of physical variables on the fluid flowing through a 
deformable layer with a width of h. 

The objectives of this project are to:

 Rescale the model equations (obtain dimensionless equations).

 Rewrite the equation of motion to conform with Adomian decomposition algorithm.

 Use mathematical package to implement the Adomian decomposition algorithm to obtain

the entropy generation rate.

1.3 Significance of the Study

We hope that this research work will be of great help to many industries and thermal engineering

processes involving in non-Newtonian fluids.

1.4 Project Outline

Chapter two contains the literature of the problem, where some properties of fluid and the 

classifications of fluid flow are reviewed. The Adomian decomposition methods are applied to 

obtain the solution to the governing equations, will be explained in this project. Discussion and 

the result of the experiment will be presented in chapter four and conclusion and 

recommendations in chapter five.

3



CHAPTER TWO

2.0 INTRODUCTION

The main differential  equations  in  fluid mechanics  or fluid dynamics  will  be gotten using a

fundamental physical principle in this chapter. Some certain definitions of fluid properties and

classifications will be discussed in order to aid our comprehension of some fundamental fluid

concepts.  The  principle  of  conservation  of  mass  (continuity  equation),  the  principle  of

conservation of linear momentum (Newtons second law), and the principle of conservation of

energy are examples of conservation principles (first law of thermodynamics). In order to apply

the above listed principles to fluid mechanics or fluid dynamics, small piece of fluid is typically

visualized. this does not alter as the fluid flows from one end to another within its volume. The

continuum hypothesis foundation is a particle or parcel, which is a small fraction of the fluid. this

chapter also looks at various works done by other researchers and scholars in relation to the

research study.

2.1 Fluid

Fluid mechanics is a branch of physics that studies fluid mechanics and forces acting on them. It

can be used in a number of different fields. In our daily lives, fluid plays a crucial function.

Solid, liquid, and gases are the three basic types of matter. Liquid and gases, on the other hand,

appear to have several features that distinguish them from one another.

2.2.0 Fluid Properties

Fluids  have  a  number  of  physical  features  that  are  particularly  relevant.  Density,  pressure,

temperature and viscosity are among them. Each of these characteristics will be discussed one

after the other.

2.2.1 Density (ρ)

A substance`s density is defined as its mass per unit volume, or the ratio of mass to volume.

Other ways to express density include relative density and mass density.
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Mass density = ρ =
mass
volume

Where ρ is the density, m is the mass, v is the volume?

Mass density; Dimension: ML−3 unit = kg / m3

Relative density: SG = 
ρ

ρwater
 

Relative density: Dimension: ML−2T−2 unit = N/m3.

2.2.2 Pressure (p) 

It is a continuous physical force exerted by a fluid per unit area at a perpendicular point.

Pressure;     

           P = 
Force
Area

Various  units  are  used  to  express  pressure:  SI  unit  in  pascal,  SI  base units:  N/m2,  kg/ms2.

Dimension = ML−1T−2.

2.2.3 Viscosity

Is a measure of the internal friction of a fluid. It is also a quantity expressing the magnitude of

internal friction in a fluid; as measured by the force per unit area resisting uniform flow. This

friction becomes apparent when a layer of fluid is made to move in relation to another layer.

                    F = μA
U
y

Where f is identified as the force, μ is the viscosity of the fluid, A is the area of each plate and 
U
y

is the rate of shear deformation. Other examples of viscosity are described in this study, they

include; Kinematic viscosity and Dynamic viscosity.
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Kinematic viscosity is the ratio between the dynamic viscosity and mass density. Also, kinematic

viscosity is the measure of the internal resistance when the fluid is in motion.

                               V = 
μ
ρ

The v is known as the kinematic viscosity, and ρ is the mass density, μis the dynamic viscosity.

The kinematic viscosity SI unit is in s/m2 (square meter per second).

Dynamic  viscosity  is  the  tangential  force  per  unit  area  required  to  move  the  fluid  in  one

horizontal plane with respect to another plane.

                                  μ = 
τ
γ

 

Dynamic viscosity = shear stress / shear rate

The μ is the dynamic viscosity, the τ  is known as the shear stress and the γ  is the shear rate.

2.2.4 Temperature (T) 

Is a system`s degree of hotness and coolness. It can also relate to a substance`s measurement or

the  transmission  of  heat  energy  from  one  system  to  another.  There  are  three  significant

temperature  scales:  Celsius,  Fahrenheit,  and  Kelvin.  Temperature  can  also  be  expressed  in

centigrade (℃ ) where the freezing point and boiling point of a fluid mostly water is taken from

(0℃ ) and (100℃ ). The SI unit of temperature is expressed in kelvin.

2.3.0 Classifications of Fluid Flow

2.3.1 Laminar Flow

Laminar flow is categorized by fluid particles or parcel following smooth path in layers, with

each layer moving smoothly past the adjacent layers with little or no mixing. At low velocities,

the fluid tends to flow without lateral mixing and adjacent layers slide past one another. There

are  no  cross  currents  perpendicular  to  the  direction  of  flow,  nor  eddies  or  swirls  of  fluids.
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Laminar flow is a flow in which the motion of the particles of fluid is very orderly with particles

or parcel close to a solid surface moving in straight line parallel to that surface. Laminar flow is a

flow regime characterized by high momentum diffusion and low momentum convection. Also,

laminar flow transpires when the fluid flows in infinitesimal parallel layers with no disturbance

between them. Turbulence flow is the flow in which the fluid particles move in a disorderly way,

the eddies formation takes place which is accountable for energy loss. A process whereby fluid

experiences irregular fluctuations, or mixing, in contrast to laminar flow.

2.3.2 Steady Flow

Is a flow in which the amount of fluid flowing per second through any section is constant. Also,

it is a flow in which the conditions (velocity, pressure and cross-section) may vary from point to

point but do not change with time.

2.3.3 Unsteady Flow

Is a process in which the velocity of a flowing fluid at a specific point change with time. This

flow shows  temporal  increase  and  decrease  in  velocity  with  time  which  is  often  related  to

passage of discrete event.

2.3.4 Compressible and Incompressible Flow

Incompressible flow is a flow with variation of density due to pressure changes is negligible or

infinitesimal. All fluid at constant temperature is incompressible. While compressible flow is a

flow that experiences a notable variation in density with trending pressure. They are fluid with

variable densities.

2.3.5 Continuum Hypothesis 

When working with fluids, we tend to overlook the fact that fluids are made up of millions of

molecules or atoms randomly moving in a relatively tiny area.
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The continuum hypothesis opines that we can associate with any kind of volume of fluid, no

matter how small (but should be greater than zero) those macroscopic properties e.g., density,

velocity, temperature etc. that we can always associate with the large fluid.

2.3.6 Viscous Flow and Inviscid Flow 

Viscous flow is defined as a type of fluid flow in which there is a constant stable motion of the

particles, the motion at a fixed point always remains constant. A viscous flow is also called a

streamline flow, laminar flow or steady flow. It also opposes the motion of a portion of fluid

relative to another. While an inviscid flow is a flow in which the viscosity is the fluid is equal

zero.

2.3.7 Conservation of Mass (Continuity Equations) 

Conservation of mass states the mass of a system does not alter when moving from one point to

another. We can relate the mass of a system to the density of the fluid.

Conservation of mass can be expressed as follows;

                                   
∂ ρ
∂t

 +∇ . (ρv )=0                                  …………. (2.1)

                         Or 

                                              
Dρ
Dt

 +ρ (∇ .V )=0                ------------------ (2.2)

These  are  conservative  and  non-conservative  forms  of  mass  conservation.  Where  V  is  the

velocity vector, ρ isthe density ,∇ is the divergence , t is the time. Conservative forms of equations

are derived with the applications of physical principles to a fluid element in a given space in

which non-conservative forms can be produced by investigating fluid elements passing through

the flow field.

         
Dρ
Dt

 = 
∂ ρ
∂t

 + ρ(∇ .V)                                            ……………. (2.3)
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The relationship between the two equations can expressed using the following general equation

that  connect  spatial  and material  descriptions  of fluid flow. Therefore,  let  A be the material

derivative or acceleration vectors

                                                  
DA
Dt

 = 
∂ A
∂ t

 + A(∇ .V)               ………… (2.4)

The material derivative of the property (the moving element in the flow fluid) at the L.H.S of the

equation, whereas the partial time derivative appears at the R.H.S (the fluid element in a foxed

space) the conservative derivation of A is the final term.    

 

2.3.8 Conservation of Linear Momentum 

Conservation of momentum states that the time rate of change of momentum of a system of

particles is equivalent to the sum of external forces acting on that body. Conservation of linear

momentum is also recognized as Navier stokes equation.      

d
dt

 ∫ ρudv  = ∫ ρgdv + ∫Tds         …………………………..      2.5

Where g is the body force per unit mass and T is the surface force per unit surface area bounding

V. but if the volume is small enough, the integrands can be taken out of the integral.

d
dt

 ∫ ρvdv =
d
dt
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                                                       CHAPTER THREE

                                                       METHODOLOGY

3.0 INTRODUCTION

This chapter describes the model and the methodology used in this project. the method of 

solution for Magnetohydrodynamic (MHD) fluid flow.  The equations obtained from the model 

are usually dimensional.  In order to reverse the dimensionality in the equations, the equations 

are rescaled into dimensionless form. After changing the dimensional equations to dimensionless

forms, we applied the Adomian decomposition method to obtain the recursive schemes that were

solved using the mathematical symbolic package. 

3.1 The Formulation of the Mathematical Model

In this project, we considered a channel with two boundary plates. The channel is a vertical 

deformable porous channel that allows the flow of fluid vertically. In this channel, the plates are 

parallel to the vertical axis which is labeled x-axis. The horizontal axis is perpendicular to the 

vertical axis   and is labeled y- axis.  The width of the channel is h. Also, there is a force that 

pushes up the fluid along the porous medium and the force is produced by the pressure gradient

∂ p
∂ x

  and with the application of magnetic field of strength B0 perpendicularly to the plate. Fig 1 

shows the geometry of the model. According to Sreenadh et al (2018), three dimensional 

equations are necessary to describe the model. They are the momentum balance equation, the 

energy balance equation and the local entropy generation rate equation. The three equations were

re-written in dimensionless forms, starting from the first as follows:
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3.2 Dimensionless Forms of the Equations

The momentum balance equation is given as;

μ
d2u'

∂ y2
  -(1-φ) 

∂ p '

∂ x '
 +¿ Kv'  = 0                                                                                                      3.1

 Where μ is lame constant, K is drag coefficient, φ is volume fraction of the fluid and x and y are

the dimensionless cartesian coordinates and( x ' y ' )  are the cartesian coordinate.         

   

Let u = 
u' μ
μ f U

 ,y = y
'

h
 , v = y

'

U
                                        

   3.2

Where μf  is the coefficient of viscosity, U is the average velocity of the fluid in the porous 

channel, v is the velocity at which the fluid moves in the channel, u is the solid displacement and

h is the width of the channel.

d

d y '   = 
d
dy

 × 
d

d y '  

d
dy

 × 
1
h

 = 
1
h

 
d
dy

                                                                             3

This implies that:
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d2

d y ' 2   = 
1

h2
 
d2

d y2
                                                               

μ[
1

h2
 
d2

d y2
 ( 
uU μ f

μ
 )] – (1 -φ) 

∂ p '

d x'
+¿ KvU = 0                    3.4

U μ f d
2u

h2d y2
 -(1 – φ ¿ 

∂ p '

∂ x '  KvU = 0                                          

h2

U μ f

 [ 
U μ f

h2
 
d2u
d y2

 ] – 
h2

U μ f

 [ (1 – φ) 
∂ p '

∂ x '  ] +¿ 
h2

U μ f

 [ KvU] = 0    3.5

d2u
d y2

 -
h2

U μ f

 (1 – φ ) 
∂ p '

∂ x '  
+h2KvU
U μ f

 = 0    

d2u
d y2

 -
h2

U μ f

 (1 - φ ¿ 
∂ p '

∂ x '  +¿ 
h2Kv
μf

  = 0                                  3.6

We rewrite the above equation as;

d2u
d y2

  -( 1-φ ¿ ∂

∂ x'
 ( 
h2 p2

U μf
¿+ h2KV

μf
 = 0                             3.7

We then define the dimensionless x quantity as;

X = x
'

h
        then, 

dx

d x '  ¿
1
h

         

But 
d

d x '
= d
dx

×
dx

d x '

d

d x '
 = 
1
h

 
d
dx

Using this in equation (3.7) we have

d2u
d y2

  - (1- φ¿¿ 
d
dx (h

2 p '

U μ f
)¿+ h2 KV

μ f
 = 0

d2u
d y2

 – (1 -φ ¿ d
dx ( h p'

U μ f
)+ h2KV

μ f

=0                                                 3.8
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Let p = 
h p'

U μ f
 , where p is the dimensionless pressure.

d2u
d y2

 – (1- φ¿ dp
dx

 +δv = 0 

Where δ  = 
h2K
μf

 . we again rewrite the above equation as;

d2u
d y2

 – (1- φ¿ P+δv=0 ,                                                         3.8

where P = 
dp
dx

 .

The next to be written in dimensionless form is the energy balance equation. The energy balance 

equation is given as;

2μa
∂2v
∂ y '2

 - φ
∂ p
∂x

 – Kv'- σ B0 v
' + gρβ(T-T 0) = 0                     3.9

Where μa is the apparent viscosity of the fluid in porous material, ρ is density of the fluid, g is 

acceleration due to gravity, B0 is the magnetic field strength perpendicular to the plate, K 0is 

thermal conductivity, T is the field temperature, T w  is the wall temperature at y = h , T 0 is the 

wall temperature at y = 0, P is the pressure gradient, M is the magnetic parameter, Q0 is the heat 

source, Gr is the grashof number, δ  is viscous drag, θ is the temperature  and η is the ratio of 

bulk fluid viscosity to apparent fluid viscosity in porous layer.

Then, we define some basic variables as follows;

Let v = v
'

U

Which is given as v'= Uv

Y = y
'

h
       and this become 

y ' = hy                                                                            3.10
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d

d y '  = 
d
dy

 ×
dy

d y '                                                                   3.11

From equation (3.11),

d

d y '  = 
d
dy

 ×
1
h

 

Which can be written as;

d

d y '  = 
1
h

 
d
dy

                                                                           3.12

Then, we substitute for the dimensionless variables and differentiate the coefficients.

2μaU
h2

 
d2 v
d y2

 -
φ
h

 d p'

dX
 – Kuv - σ B0Uv + gρβ ¿ = 0

d2 v
d y2

 - φ
d
dx

(
h p '

2μaU
) - 

h2Kv
2μa

 - 
h2σ B0v

2μa

 + 
h2gρβ (T w−TO)θ

2μaU
 =0.                 3.13

Let μf=2μa, P =
hp1

μ f U

This can also be written as 

d2V
d y2

- φ
dp
dx

 - 
h2K
μf

V -
h2θ β0

2V
μ f

 +h2 gρβ ¿¿ =0                              3.14

Let δ=h2K
μf

, m = 
h2σ β0V

2

μ f

 + Gr=
gβ (T w−T 0)Ph2

μ fU

This can also be written as;

d2V
d y2

−φ
dp
dx

−δV−MV +Grθ=0                                                 3.15

This can also be written as; 

d2V
d y2

−φP−(δ+M )V +Grθ=0,         3.16
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where P=
dp
dx

Re-writing Eqn (3.16),

d2V
d y2

−(δ+M )V−φP+Grθ=0        3.17                                       

For η= 
μ f

2μa
 ,

We can write

d2V
d y2

−(δ+M )ηV−(φη)P+ηGrθ=0.                                             3.18

Also, we write the local entropy generation rate equation as follows

K 0
∂2T
∂ y '2

 +Q0 = 0               3.19   

We also define some basic variables here which are;   

θ=
T−T 0
T w−T 0

 , this can also be written as

T- T 0 = (T w−T 0¿θ                   

T = (T w−¿¿ T 0 )θ+T 0            

Then,   y = y
'

h

Which can also be written as;

d

d y '
=1
h

d
dy      this is equal to

d2

dy '
= 1
h2

d2

d y2
                                                                                      3.20

Substitute Eqn (3.20) into (3.19) we have;
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K 0

h2
d2

d y2
¿- T 0)θ+T 0 ] + Q0 = 0                                                3.21

Re writing Eqn (3.21) we have;

K 0

h2
¿-T 0)θ+

d2

d y2
T0] + Q0 = 0                                              3.22

K 0

h2
 (T w - T 0) 

d2

d y2
θ+Q0 = 0                                                               3.23

We can also re write Eqn (3.23) as;

d2θ
d y2

 + 
h2Q0

K0¿¿¿
 = 0                                                                                 3.24

Let α  = 
h2Q0

K 0¿¿¿
 = 0

Then we have;

d2θ
d y2

 +α=0                                                                                        3.25

Equations (3.8), (3.18) and (3.25) are the dimensionless form of the equation

d2u
d y2

  −(1−φ ) p+δv=0                                                      3.8

d2 v
d y2

−(δ+M )ηv−¿η) p + ηGrθ=0                                       3.18

d2θ
d y2

+β=0                                                                                 3.25

The three equations (3.8, 3.18, 3.25) are the dimensionless forms of equations (3.1, 3.9, 3.19) 

respectively.

The boundary conditions are;
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                                                      At y = 0: u = 0, v = 0, θ = 0

                                                       At y = 1: u = 0, v = 0, θ= 1.

3.2 Adomian Decomposition Method. (ADM)

in this section, the three dimensionless equations, that is, eqns (3.8, 3.18 and 3.25) were cast in 

recursive scheme using the Adomian decomposition method (ADM). The following are the 

procedure taken to achieve the recursive schemes for the dimensionless equations.

3.3 Recursive scheme for solid displacement.

d2u( y)
d y2

−(1−φ) p+δv( y )=0                                                       3.8

Making the term with the highest order of differential coefficient the subject of the equation,

d2u( y)
d y2

=(1−φ) p−δv ( y)

The adomian decomposition method (ADM) is a direct method. It does not involve intermediate 

processes such as linearization or perfusation, which may modify or change the behavior of the 

equation. The method decomposes the unknown function in eqn (3.8) giving a series of terms. 

This series is written as;

u(y) = ∑
n=0

∞

un ( y );n≥0.                                                                         3.26

Equivalently,

u(y) = u0+u1+u2+..…… ..+u∞ 

The terms in the series, that is, u0 , u1 ,u2 ,……. are obtained recursively. This means u0( y ) is 

needed to obtain u1( y ) and the latter is needed to obtain u2 ( y ) , etc. To obtain the recursive 

scheme, we rewrite eqn (3.8) in operator forms.

Therefore,

                     Lu(y) = (1−φ¿ P−δv( y )                                                         3.27
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Where L = 
d2

d y2

The differential operator 
d2

d y2
 is invertible. The inverse of L therefore, is the integral operator,

∬ (.)dydy or L−1. 

Applying L−1 to eqn (3.27), we have;

L−1[Lu(y)] = L−1[ (1−φ )P−δv ( y )]                                                        3.28

Let Lu(y) = (.)

Therefore,

                         
d2

d y2
u ( y )=(.)

Then we have;

d
dy

u ( y)= d
dy

u ( y )¿ y=0+∫
0

y

(.)dy

U(y) = u(y)¿ y=0+∫
0

y
du( y)
dy

dy ¿ y=0+∬
0

y

(.)dydy

Therefore,

                 ∬
0

y

(.)dydy=u ( y )−u(0)−∫
0

y
du(0)
dy

dy                                      3.29

Substituting eqn(3.29) into eqn(3.28) we have;

U(y) – u (0) - ∫
0

y
du(0)
dy

dy=L−1[ (1−φ )P−δV ( y )] 

From the boundary conditions, u (0) = 0.

This implies that; 
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U(y) = ∫
0

y
du(0)
dy

dy+L−1[(1−φ )P−δv ( y )]                                             3.30

Let 
du(0)
dy

=¿ f   

Therefore, we have;

∫
0

y
du(0)
dy

dy=∫
0

y

fdy=fy 

Rewriting eqn (3.30), we have;

U(y) = fy + L−1[ (1−φ )P−δv ( y )]                                            3.31

The expected series solutions for u(y) and v(y) are;

U(y) = ∑
n=0

∞

un( y), v(y) = ∑
n=0

∞

un( y)                                              3.32

Putting eqn (3.32) in eqn (3.31) we have;

∑
0

∞

un ( y )=fy+L−1[(1−φ )P−δ∑
0

∞

vn ( y )]

u0+u1+u2+…=fy+L−1(1−φ )P−δ L−1 ¿ ……..]

For the recursive scheme, we have:

u0 ( y)=fy+L−1¿) P                                                               3.33

Which is equal to;

Fy + ∫
0

y

¿¿

Fy + ∫
0

y

(1−φ )Pydy

Fy + 
1
2

(1−φ )P y2 
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Where;

U k +1 ( y )=−δ L−1vk ( y) ;k ≥0                                                          3.34

Clearly, for the recursive solution by (ADM)

u0 ( y)=fy+ 1
2

 (1 −φ ¿ P y2 

u1 ( y )=−δ∫
0

y

∫
0

y

v0 ( y )dydy 

u2 ( y )=−δ∫
0

y

∫
0

y

v1 ( y )dydy 

u3 ( y )=−δ∫
0

y

∫
0

y

v2 ( y )dydy .

U(y) = u0+u1+u2+u3+¿…….                                                 3.35

Eqn(3.33) and eqn(3.34) gives the recursive scheme for u(y). for v(y).

Then, we solve for the second dimensionless equation i.e eqn(3.18) using ADM.

d2 v ( y)
d y2

−(δ+M )ηv−φηP +¿ηGrθ=0                                           3.18

Like before, we make the term with highest order of differential coefficient the subject of the 

equation. This gives

d2 v ( y)
d y2

=(δ+M )ηv +φηP - ηGrθ                                                     3.36

Writing eqn(3.36) in operator form we have;

Lv(y) = ¿)ηv +φηP - ηGrθ  

Multiplying both sides by L−1,

L−1 Lv ( y )=L−1¿ηv + φηP - ηGrθ]                                       3.37

Let L(v) = (.)
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d2 v ( y)
dy

=
dv ( y )
dy

¿y=0+∫
0

y

( .)dy

V(y) = v(y)¿ y=0+∫
0

y
dv ( y )
dy

¿y=0+∫
0

y

∫
0

y

( .)dydy   

Using this in eqn(3.37), 

V(y) = v (0) + ∫
0

y

jdy+L−1 ¿¿ δ+M ¿ηv+φηP −¿ηGrθ ¿

Where j is equal to 

dv ( y )
dy

¿y=0 

This means;

V(y) = jy + L−1 (δ+M )ηv+L−1¿ηP)−L−1(ηGrθ) 

Therefore;

V(y) = jy + L−1 ¿ηP) +L−1 ¿ηv - ηGrθ

To obtain the recursive scheme for v(y), 

v0 ( y )= jy+L−1¿ηP)

This implies that;

v0 ( y )= jy+∫
0

y

∫
0

y

φηPydy

Gives:

jy+∫
0

y

φηPydy

therefore, we have:
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v0 ( y )= jy+ 1
2
φηPy2                                                        3.38

vk+1 ( y )=L−1¿ +M ¿ηvk−¿ηGrθk ¿ ;k ≥0                 3.39

More clearly,

v0= jy+ 1
2
φηPy2

v1=L−1¿ηv0−¿ηGrθ1¿

v2=L−1¿ηv1−ηG rθ1 etc.

V(y) = v0+v1+v2+¿ …………

For the energy balance equation,

d2θ
d y2

+β=0                                                                                   3.25

d2θ
d y2

=β                                                                                        3.40

θ ( y)=∑
n=0

∞

θn ( y ); n≥0                                                           3.41

Then, 

Lθ ( y)=β

Multiply both sides by L−1

L−1 Lθ ( y )=−L−1(β)                                                                      3.42

Let L (θ ¿=(.)

Then,
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d2θ( y)
d y2

=( .) 

dθ( y )
dy

=
dθ( y )
dy

¿y=0+∫
0

y

( .)dy

θ ( y)=θ ( y )¿ y=0+∫
0

y
dθ ( y)
dy

¿ y=0+∫
0

y

∫
0

y

( .)dydy

∫
0

y

∫
0

y

(.)dydy=θ ( y )−θ (0)−∫
0

y
dθ(0)
dy

dy                                          3.43

Substitute eqn(3.42) into( 3.41)

θ ( y)−θ ( y )¿ y=0−∫
0

y
dθ( y )
dy

¿y=0dy=−L−1 β         

θ ( y)=θ (0)+∫
0

y
dθ( y )
dy

dy−L−1β            

From the boundary conditions, 

When y = 0,  θ=0        

Also, let 
dθ(0)
dy

=q

This implies 

∫
0

y
dθ(0)
dy

dy=∫
0

y

qdy=qy 

Therefore, 

θ ( y)=qy−L−1 β 

qy−∫
0

y

∫
0

y

βdydy  
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qy−1
2
β y2 

θ ( y)=∑
0

∞

θn( y ) 

θ0 ( y)=qy−1
2
β y2                                                                                     3.44

Therefore,

θ1 ( y )=θ0( y) 

 In conclusion, the recursive scheme for the dimensionless model equations were obtained in 

Eqns (3.33-3.34), (3. 38-3.39) and (3.41-3.44). We have used the mathematical symbolic 

package to simplify the recursive equation, and to output the results. The results were displayed 

in graphical forms and discussed in chapter four.
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.0 INTRODUCTION 

Natural convection effects on conducting steady flow through a vertical deformable porous layer 

were investigated in this study. Analytically, the fluid velocity, solid displacement, and 

temperature distribution were determined. The properties of various physical parameters, such as

the volume fraction of the fluidφ , Grashof number, Gr, drag δ , Magnetic parameter M, heat 

sourceα   and the ratio of the bulk fluid viscosity η on the solid displacement, fluid velocity, 

temperature and entropy generation were solved and discussed graphically in this chapter using 

software package called MATHEMATICA.

The following graphs representing the displacement profile of different parameters which 

includes Viscous drag, heat source, Gr Grashof number, volume fraction of fluid, magnetic 

parameters and temperature.

4.1 Displacement profile with respect to viscous drag( δ  )
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4.2 Displacement profile with respect to δ(viscous drag).

4.3 Displacement profile with respect to Gr(Grashof number).
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4.4 Displacement profile with respect to α  (heat source).

4.5 Displacement profile with respect to volume fraction of the fluid¿).
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4.6 Displacement profile with respect to (magnetic parameters) M.

4.7. Temperature profile with respect heat source (α).

The plots above show the displacement at different parameters, 

For the plot of Viscous drag, Gr Grashof number, volume fraction of fluid and magnetic 

parameters as the displacement increases the values of each parameters decreases.

For the viscous drag displacement with respect to viscous drag as displacement increases viscous

drag reduces from 2.5 to 1.
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For the Garshof number displacement against Grashof number, as displacement increases 

Grashof number decreases from 4 to 1.

For Volume fraction of fluid displacement with respect to volume fraction of the fluid, as 

displacement increases volume fraction of the fluid decreases from 0.8 to 0.2.

For the Magnetic parameters’ displacement against Magnetic parameters, as displacement 

increases, magnetic parameters reduce from 4 to 1.

While for the Heat sources as displacement increases the heat sources also increases

For heat source displacement against Heat source, as displacement increases Heat source 

increases from 1 to 4.

For heat source temperature against heat source, increase in temperature increase in heat source 

from 1 to 4.

The following graphs representing the velocity profile of different parameters which includes 

heat source, Gr Grashof number, volume fraction of fluid, magnetic, temperature and bulk fluid.

4.8 Velocity profile with respect to Gr( Grashof number).
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4.9. Velocity profile with respect to heat source( α).

4.10 velocity profile with respect to volume fraction of the fluid¿).
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4.11 Velocity profile with respect to (magnetic parameters) M.

4.1 Velocity profile with respect to Bulk fluid viscosity ratio(η).

For the velocity graphs some parameters increased when there is an increase in Velocity this 

includes heat source and bulk fluid viscosity ratio while some parameters decreased when there 

is an increase in velocity which are Grashof number, volume fraction of the liquid and the 

magnetic parameters.

Velocity against Grashof number, as velocity increases Grashof number decreases from 4 to 1.

Velocity profile against heat source, velocity increase heat source increases from 1 to 4.
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Velocity with respect to volume fraction of the liquid, as velocity increases the volume fraction 

of the liquid decreases from 0.8 to 0.2.

Velocity profile with respect to Magnetic parameters, as velocity increases magnetic parameters 

decreases from 4 to 1.

Velocity profile with respect to bulk fluid viscosity ratio, as velocity increases the bulk fluid 

viscosity ratio increases from 0.3 to 1.
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CHAPTER FIVE

CONCLUSION

5.0 SUMMARY

This  project  analyzed  the effect  of  entropy generation  on the  MHD flow through a vertical

deformable porous layer. Furthermore, the expressions for the fluid velocity, solid displacement

and temperature distribution were obtained analytically. Some useful observations were made

and summarized as follows;

1. As the porosity of the two plates of the layer increases, the fluid velocity also increases as

there is less solid to obstruct the flow consequently, causing the displacement of the solid 

to diminish since there is less drag on the solid properties.

2. The skin friction at (y = 0 and y = 1) shows different behavior with respect to volume 

fraction of the fluid φ and magnetic field M.

In this study, we were able to analyzed and plot the graph of each parameters with the aid

of mathematical package.

5.1 Recommendation

This  research  should  aid  the  starting  point  for  any  theoretical,  numerical  and  experimental

studies to further understand MHD fluid flow. Further studies on the deformable porous layer

should continue to enhance good understanding of MHD flow. 
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