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ABSTRACT

Malaria remains a major global health burden, causing hundreds of thousands deaths annually,

especially in sub-Saharan Africa. However, in December 2019, a novel pneumonia-like condi-

tion termed coronavirus disease 2019 (COVID-19) with several clinical, epidemiological, and

biological parallels to malaria, was reported in Wuhan, China. COVID-19 pandemic led to in-

accessibility to healthcare services due to societal measures which subsequently could increase

malaria morbidities, comorbidities with COVID-19 and mortalities. This study therefore aimed

at investigating the effects of city lockdowns and chemotherapeutic impacts on the dynamical

system of human and mosquito populations. The percentage increase in malaria mortalities as

a result of inaccessibility to healthcare services was also quantified. Firstly, the basic repro-

duction number was computed. The stability of the system is analyzed for the existence of

the disease-free and endemic equilibria points. We established that the disease-free equilibrium

point is locally asymptotically stable when the reproduction number, R0 < 1 and the disease

always dies out. For R0 > 1 the disease-free equilibrium becomes unstable and the disease

continues to persist in the population. Furthermore, the parameters most responsible for the

disease transmission in the populations with respect to R0 by sensitivity analysis showed that

deaths due to malaria increased by 10% in endemic malaria countries during lockdown (i.e year

2020 alone). This suggests that more concerted efforts are required to concurrently monitor the

two diseases. Notably, malaria and COVID-19 screening and testing of suspected or confirmed

COVID-19 patients could be done simultaneously to avoid misdiagnosis and enable easy man-

agement. Maintaining the most critical prevention activities, long-term suppression intervention

and accessibility to healthcare services for malaria during lockdowns could substantially reduce

the overall impact of the COVID-19 pandemic on malaria.

Keyword: mathematical model, Lockdown, Malaria, COVID-19, Stability
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Chapter 1
INTRODUCTION

Human beings are at constant risk of infectious diseases. No human can be exempted from

the menace of epidemic disease (Ademola and Odeniran 2016) . The continuous reports from

emerging and re-emerging infectious diseases remain a global concern. Transmission mecha-

nisms of epidemic disease can only be properly understood by developing potent prophylactic

tools for existing and emerging organisms (CDC 2019). Micro-organisms are usually the main

causes of infectious diseases, depending on their virulence and pathogenic state. The major

causal organisms causing infectious diseases are those of parasites, viruses and bacteria. The in-

fectious attribute of pathogens connotes ”transmission of organism from an infected individual

to a non-infected individual”. At this juncture, our discussion is limited to malaria, Lassa fever

and malaria-Lassa fever co-infection diseases which are the main focus of this study.

Malaria, a common parasitic disease in some parts of sub-Saharan Africa, Asia and Latin

America, is caused by the genus Plasmodium. There are several known species, however, hu-

mans are often affected through the bite of the female Anopheles mosquito vector. Global esti-

mates of malaria show 80 percent cases from Africa, and malaria is responsible for more than a

million annual death in affected developing countries(WHO, 2012; CDC, 2019). Among chil-

dren under five years of age, malaria seems to be the leading cause of mortality, with similar

incidence among pregnant women (WHO, 2012). In pregnant women, severe malaria cases

have been reported to cause maternal death, still birth, severe anaemia, congenital malforma-

tions and low birth weights (WHO, 2012; Olaniyi et al 2018). The problem of chemotherapeutic

drug resistance against the Plasmodium organism and insecticidal resistance on the mosquito
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vector has been widely reported and also linked to the growing incidence rate of malaria dis-

ease in endemic communities (CDC, 2019). Therefore, the transmission dynamics can only

be better understood by developing cogent parameters in the disease transmission coupled with

strategically analysing the control measures to stem its spread.

The emergence of coronavirus disease (COVID-19) pandemic caused by severe acute respi-

ratory syndrome coronavirus 2 (SARS-COV 2) has caused an unprecedented global societal and

public health crisis (Rothan et al. 2020). The World Health Organization (WHO) declared the

outbreak a public health emergency of international concern on 30 January 2020 and a pandemic

on 11 March 2020. This was due to the aftermath of basic reproduction number of the novel

coronavirus significantly larger than 1 (ranges from 2.24 to 3.58) (Zhao et al. 2020). While

malaria and COVID-19 can have similar presentation, common symptoms they share include

but not limited to: fever, breathing difficulties, tiredness and acute onset headache, which may

lead to misdiagnosis of malaria for COVID-19 and vice versa, particularly when clinician relies

mainly on symptoms. Malaria testing and treatment are also disturbed due to the risks faced

by health workers who provide health care services during the pandemic. Decision-makers will

need to make difficult choices to ensure that COVID-19 and other urgent, ongoing public health

problems- including malaria endemics—are addressed while minimizing

The current data showed a lower incidence of SARS-COV 2 in developing countries, al-

though the number of positive cases kept increasing on daily basis in these areas. Incidentally,

malaria disease is quite endemic in most of these developing countries especially Africa, of

which the overburdened health systems and societal measures aimed at curbing the SARS-COV

2 pandemic could have necessitated a negative impact on the control of malaria and subsequently

leading to more deaths. As of 19th August 2020, Africa COVID-19 statistics showed that there

have been 874,036 cases; 18,498 deaths and 524,557 recoveries, while global reports showed

22 million cases, 777,000 deaths and 14 million recoveries. Meanwhile, WHO malaria cases

showed that there are 228 million cases and 405,000 deaths globally in 2018, of which 94% are

from Africa (WHO 2019).
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The person-to-person transmission of COVID-19 infection led to the isolation of patients

that were administered a variety of treatments at the onset of outbreak. At present, there are no

specific antiviral drugs or vaccine against COVID-19 infection for potential therapy of humans.

The commonly adopted option was strategically using broad-spectrum antiviral drugs like Nu-

cleoside analogues and also HIV-protease inhibitors that could attenuate virus infection until

the specific antiviral becomes available (Lu et al. 2020). The treatment that have so far been

attempted showed that 75 patients were administrated existing antiviral drugs. Some of the treat-

ment options include, twice a day oral administration of 75 mg oseltamivir, 500 mg lopinavir,

500 mg ritonavir and the intravenous administration of 0·25 g ganciclovir for 3–14 days (Chen et

al.2020). Broad-spectrum antiviral remdesivir and chloroquine have been observed to be highly

effective in the control of COVID-19 infection in vitro. These antiviral compounds have been

used in human patients with a safety track record. Hence, these therapeutic agents can be consid-

ered to treat COVID-19 infection (Wang et al. 2020). However, the inclusion of chloroquine, a

known malaria drug has drawn global debates on its effectiveness against the novel coronavirus,

leading to scarcity of the drug in pharmacy especially in malaria-endemic countries.

COVID-19 intervention strategies such as city lockdown, restrictions of movements, supply

chain interruptions, closure of shops and institutions, minimal contact between healthcare ser-

vice providers and patients amongst others could have led to malaria prevention activities being

disrupted (Sherrard-Smith, et al. 2020). Malaria prevention activities include seasonal malaria

chemoprevention (SMC), mass distribution of long-lasting insecticidal nets (LLIN) and indoor

residual spraying of insecticides (IRS), most of which are distributed in gatherings in form of lo-

cal workshops, which could have been cancelled during COVID-19 lockdown rules. Restriction

of vehicular movements could have negatively impacted the accessibility to antimalaria drugs

in pharmacy for those who could afford it. Hoarding of medicines and preparations were com-

mon occurrence during the pandemic and the cost of antimalaria drugs in some countries were

unaffordable due to shortages in supply.

Therefore, this study investigated the impact of societal measures such as city lockdown
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against COVID-19 spread in malaria-endemic countries. It also estimates the proportionate in-

crease or decrease of malaria due to insufficient access to antimalaria drugs during the pandemic

and its global impact on the public health risk.

1.1 History of malaria

Here, we give a brief account of the origin, causes and transmission of malaria and Lassa fever

diseases. However, a full account of the discovery of malaria and Lassa fever diseases can be

seen in Nadezhda and David (2012) and Cox (2010) .

1.1.1 Malaria history

In 1880, a French physician, Charles Louis A. Laveran, while working in Algeria, made a land-

mark discovery of the main cause of the malaria disease that has been affecting human lives for

a long period. He discovered the presence of a parasitic protozoan Plasmodium in the blood of

humans infected with malaria and was as a result awarded the Nobel prize in 1907. In other dis-

covery, an experiment was conducted in 1897 by a British Physician, Ronald Ross, who showed

for the first time that mosquito is responsible for transmission of the Plasmodium parasite that

causes malaria in human population.

Not less than half of the world’s population, distributed across 104 countries are at risk of

malaria disease (Olaniyi et al 2018; WHO, 2019). Meanwhile, an initial report of 300 - 500

million persons have been observed to be infected annually, of which 1.5 - 2.7 million annual

deaths have been estimated (Magombedze et al, 2011; WHO, 2019). Malaria is widely spread

in tropical and subtropical regions, including Africa, Asia, Latin America, the middle East and

some parts of Europe. However the most cases and deaths occur in sub-Saharan countries of

Africa which account for 80 percent of the world’s malaria cases and 90 percent of the global

malaria deaths (WHO, 2012; CDC, 2019).

Death of an African child occurs in every 30 seconds, while global report of deaths from

malaria exceeds 2000 among the youth. (Tumwiine et al, 2007; Okosun and Makinde, 2011;
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CDC 2019). For example, in Nigeria, malaria accounts for 60 percent of outpatient visits and

30 percent of hospitalization with children under five years of age most severely affected (USE,

2011).

1.1.2 Malaria parasites and cycle

Malaria is a disease characterized by fever, pain, paroxysms of chills, headache and vomitting.

The disease is caused by protozoan parasite, known as Plasmodium. The commonest species

that infect humans are; Plasmodium vivax, P. ovale, P. falciparum, P. malariae and P. knowlesi.

The socioeconomic burden of malaria disease and its clinical signs include multi-organ failures

such as lung, brain, liver and kidney (Tumwiine et al., 2007).

The life cycle of the plasmodium parasite can be divided into two phases: sexual and asexual

phases, with the sexual phase taking place in the female anopheles mosquito and asexual phase

in the human host (Ibezim). The infection subtly begins when an infectious mosquito pierces the

human skin with its proboscis and injects parasite in the form of sporozoites into the human’s

bloodstream for blood circulation. In the process, the sporozoites enter the liver where each

sporozoites undergoes asexual multiplication stage to produce cells called merozoites. This first

asexual multiplication stage in human host is known as exoerythrocytic schizogony (Cox, 2010).

Following the rupture of the hepatocytes, merozites escape into circulatory system for asex-

ual reproduction in the red cells, a stage called erythrocytic schizogony develops (Cox, 2010).

At this stage, more merozoites are produced until the red blood cells burst and new merozoites

are released to further infect other red blood cells while some merozoites developed into ga-

metocytes (Cox, 2010). These geametocytes in the human’s bloodstream can be taken up by a

naive mosquito in the blood meal gametocytes and mature into male and female gametes in the

mosquito’s gut. Consequently, microgamete and macrogamete representing male and female ga-

metes respectively, fuse salivary gland of the mosquito vector where they can be injected when

the mosquito bites another human host to continue the cycle.
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Chapter 2
LITERATURE REVIEW

Mathematical modelling of malaria began in 1911 with Ronald Ross who discovered the role of

mosquito as an intermediate vector in the transmission of the pathogenic malaria parasite. He

introduced the first deterministic model of the form:

dIh
dt

= bβhm(1− Ih)Im − rIh

dIm
dt

= bβm(1− Im)Ih − µIm

with variable Ih representing the fraction of infectious humans and Im representing the fraction

of infectious mosquitoes; b is the mosquito biting rate; βh represents the proportion of bites that

produce infection in human; m denotes the fraction of number of mosquitoes to that of humans;

r represents human recovery rate; βm represents the proportion of bites that produce infection

in mosquito; and µ denotes per capita rate of mosquito mortality. This model revealed that

eradication of malaria could be made possible by decreasing vector (mosquitoes) biting rate and

increasing the mosquito death rate resulting to reduction of threshold parameter given

R0 =
mb2βhβm

rµ

The Ross model was modified by Macdonald (1957), his model incorporates the latency pe-

riod of parasite in mosquitoes in which the exposed class was introduced. His findings showed

that the basic reproduction number of the disease decreases with an increase in the latency pe-

riod. Macdonald’s model was further extended by Anderson and May (1991) as they introduced
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new exposed class into the human population. This improvement has further decreased the long-

term prevalence of both infected humans and mosquitoes. The basic models discussed above are

the building-ground for literature on malaria models. Since then, different factors have been in-

corporated in order to make the models epidemiologically more realistic. One such factor is the

inclusion of recovered class into the human population on the idea that continuous exposure to

reinfection could lead to acquired immunity in human. A deterministic model that incorporated

human and mosquito populations with standard incidence function was developed by Nwga and

shu (2000). Their model made an exploration of the structure in which an infectious human

recovers with temporary immunity to become a recovered human before entering the suscep-

tible compartment again. The result of their analysis revealed that there is persistence in the

disease whenever the threshold parameter R0 exceeds one and that the disease-free equilibrium

is globally asymptotically stable when R0 is below one.

Factors such as: environmental effects, mosquitoes resistance to insecticides, resistance of

some parasite strains to anti-malaria drugs and the use of optimal control methods have been

integrated into the models so as to gain more insight on the behaviour of the disease. Yang

and Ferreira (2000) used bilinear incidence function to study malaria transmission model by

incorporating socio-economic structure. Through the model analysis, they showed how the basic

reproduction number changes with global warming and local social and economic conditions.

In addition, Iddi et al (2002) used deterministic model with standard incidence function to

study the impact of infectious immigrants on vector-borne disease with direct transmission. The

research work was analyzed qualitatively, the computation of the basic reproduction number

using the next generation matrix method and the conditions for the stability of the equilibra

were determined. It was revealed through numerical simulation that hike in the number of

immigrants tends to result to an increment in the number of infected population which leads to

the persistence of the disease in the population.

Koella and Anita (2003) developed a model in order to understand the epidemiology of

anti-malaria resistance and to assess approaches to decrease resistance spread. Their analyses
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showed that resistance to treatment does not spread if the fraction of infected individuals treated

is less than a threshold value and if the drug treatment exceeds this value, then resistance to drug

eventually becomes fixed in the population.

Chitnis et al (2006) presented a malaria model that incorporated human immigration and

disease-induced death rates. This model was based on Nwga and Shu model. The basic repro-

duction number was obtained to investigate the stability of disease-free equilibrium point using

the next generation operator approach. It was further depicted through numerical examples that

backward bifurcation is possible for some positive values of disease-induced death rate.

In another development, Tumwiine et al (2007) developed a five dimensional model with

standard incidence function for the dynamics of malaria in the human hosts and vectors. In

this model, the reservoir of the susceptible human was refilled by immunity loss to the disease

and newborns. The stability of the system was analysed for the existence of disease-free and

endemic equilibra. However, it was shown that the basic reproduction number is independent of

the rate of loss of immunity.

In addition, Chitnis et al (2008) carried out a sensitivity analysis of malaria model with

human immigration factor and disease-induced death rate in order to determine the relative im-

portance of model parameters to the disease transmission and prevalence. A computation of

sensitivity indices of the basic reproduction number to parameters at the baseline values was

done. It was found out that the basic reproduction number is most sensitive to the mosquito

biting rate.

Labadin et al (2009) formulated and analysed a deterministic model with standard incidence

function. In this model, a consideration of the recovered population with and without immunity

and the impact of the different values of the average duration to build effective immunity on

infectious humans were investigated numerically. The findings of their research showed that if

the ability to build an effective immunity is fast for those who recovered from the disease, then

the number of cases could be reduced.

One of the contributory factors to the spread of malaria is proven to be the movement of
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human from one environment to another. In the light of this, Arino et al (2011) came up with

a metapopulation model for malaria where interaction between humans in rural and urban area

was investigated. They brought to the light that the basic reproduction number governed the

stability of the disease-free steady state. Also, the unrestricted movement of infected humans

could lead to the persistence of the disease in the population. Again, the class of infectious

individuals with drug resistance symptoms was incorporated in the standard incidence function

deterministic model that was formulated and analysed by Okosun and Makinde (2011). The

model was shown to exhibit backward bifurcation and by the basic reproduction number, the

existence and stability of equilibria were established. Pontryagin maximum principle was used

to obtain conditions for optimal control of the disease and their numerical results showed that

effective control of the proportion of individuals with drug resistance has a positive impact in

reducing the spread of the disease.

Magombedze et al (2011) developed an intra-host mathematical model of malaria that de-

scribed the interaction of immune system with the blood stage malaria merozoites. Optimal

control strategy was used to analysis their model. This led to a suggestion in their result that

a malarial therapy that seeks to minimize merozoites population was beneficial to patients as

this will lead to the reduction of infected red blood cells. Also, a seven-dimensional compart-

mental model of malaria that incorporated three control functions such as: the prevention of

host-vector contacts, treatment of hosts and reduction of mosquito population was studied by

Lashari et al (2012). In the analyses by the model, necessary conditions for optimal control of

malaria were obtained. The numerical simulation of the model revealed that the combination

of the control efforts has a very desirable effect on the population in reducing the number of

infected individuals.

Furthermore, Olaniyi and Obabiyi (2013) formulated a mathematical model that incorpo-

rated antibodies to curtail transmission of parasite that causes malaria in both human and mosquito;

and stability analyzed through threshold parameter. The results of their analyses showed that the

disease will not persist in the population whenever R0 is below unity. However, the system
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become unstable whenever R0 is above unity.

In a related work, a non- autonomous model that incorporated multiple control measures was

developed by Olaniyi et al (2018) to investigate the dynamics of malaria transmission in both

human and mosquito populations. With the aid of suitable Lyapunov functions, the stability of

both disease-free and endemic equilibra was established. A suggestion was made in the result

of their analysis that combination of multiple control at a time by human traveler will help to

eliminate the spread of malaria in the population.

In another development, Okosun and Makinde (2014) proposed a mathematical model for

malaria-cholera co-infection in order to investigate their synergistic relationship in the presence

of treatments. The results of their analyses revealed that malaria infection may be associated

with an increased risk of cholera. However, cholera infection is not associated with an increased

risk for malaria. A suggestion was made in the result of their analysis that to effectively control

malaria, the malaria intervention strategies by policy makers must at the same time also include

cholera control.
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Chapter 3
MODEL DEVELOPMENT AND ANALYSIS

3.1 Model development

We use the SEIRS-SEI malaria model developed by Chitnis et al. (2006, 2008).and shown in

Figure 3.1. The human population undergoes the SEIRS dynamics. Humans are born as suscep-

tible (SH) at rate ΛH . They are bitten by infected mosquitoes (IM ) at rate β and with probability

pH become exposed (EH). The incubation period lasts σ−1
H after which the exposed human

becomes infectious (IH). The infectious individuals receive treatment and become recovered

(RH) at rate γH . The recovered individuals lose their immunity and become susceptible at rate

ω. All individuals have a natural mortality rate µH ; infectious individuals have an additional

malaria induced mortality δH . Note that RH is assumed non-infectious to mosquitoes. This is

unlike chitnis 2006 and chitnis 2008. There are more deviation from chitnis 2008 - they assumed

logistic growth, immigration etc, we do not.

The mosquito population undergoes SEI dynamics. Mosquitoes are born susceptible (SM )

at rate ΛM . After biting an infectious human, they become exposed (EM ) with probability pM .

The exposed mosquitoes become infectious (IM ) at the incubation rate σM . All mosquitoes die

at rate µM ; the infectious mosquitoes die at an additional malaria induced rate δM .

3.1.1 Ordinary Differential Equation system

In summary, the model consists of the following system of nonlinear deterministic differential

equations
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Figure 3.1: Compartmental diagram of the constructed model involving the interaction of sus-
ceptible human, exposed human infected human, recovered human, susceptible mosquito, ex-
posed mosquito and infected mosquito.

dSH

dt
= ΛH − pHβSHIM + ωRH − µHSH (3.1.1)

dEH

dt
= pHβSHIM − (σH + µH)EH (3.1.2)

dIH
dt

= σHEH − γHIH − (δH + µH)IH (3.1.3)

dRH

dt
= γHIH − (ω + µH)RH (3.1.4)

dSM

dt
= ΛM − pMβSMIH − µMSM (3.1.5)

dEM

dt
= pMβSMIH − (σM + µM)EM (3.1.6)

dIM
dt

= σMEM − (δM + µM)IM (3.1.7)
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3.1.2 Modelling the effect of lockdown

We will explicitly incorporate the following effects of lockdown on the malaria transmission.

• The biting rate, β, increases in lockdown because ITNs are less available.

• The probability of malaria infection, pH , increases in lockdown because people do not

take or do not have access to antimalaria drugs.

• The recovery rate, γH , decreases because people are afraid of treatment, there are not

enough tests to properly diagnose malaria, there are not enough drugs for treatment, not

enough beds in the hospital.

We will assume that

β = β0(1−∆ITN) (3.1.8)

ρH = ρH ,0 (1−∆Drugs) (3.1.9)

γH = γH ,0 (1−∆Drugs) (3.1.10)

where ∆ITN ,∆Drugs,∈ [0, 1] is the indicator lockdown restrictions, β0, pH ,0, and γH ,0 are pre-

lockdown levels of biting rates, probability of transmission and recovery rate, and ∆P is the

effect of the lockdown on the parameter P .

3.2 Model analysis

In this section, mathematical model of malaria that incorporate inaccessibility to healthcare

service due to city lockdown and treatment time delay was analysed to obtain the equilibria of

the model and their stability. Since the model monitors changes in the human, and mosquito

populations, the variables and the parameters are assumed to be non-negative for all t ≥ 0.

Therefore, equations (3.1.1)-(3.1.7) is analysed in a suitable feasible region D of biological

interest. The biologically feasible region Ω of the malaria model (3.1.1 - 3.1.7) is positively

invariant.
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Proof. Adding the mode equations (3.1.1)-(3.1.4) together we obtain

dNH

dt
= ΛH − µHNH − δHIH

dNH

dt
≤ ΛH − µHNH

dNH

dt
+ µHNH ≤ ΛH (3.2.1)

Similarly, adding the model equations (3.1.5)-(3.1.7) together

dNM

dt
= ΛM − µMNM − δMIM

dNM

dt
≤ ΛM − µMNM

dNM

dt
+ µMNM ≤ ΛM (3.2.2)

Solving the differential equations (3.2.1) and (3.2.2) one after the other we have: Take the

integrating factor

e
∫
µHdt = eµH t

eµH t

[
dNH

dt
+ µHNH

]
≤ ΛHe

µH t

d

dt

(
NH(t)e

µH t
)
= ΛHe

µH t

∫ t

0

d

dt

(
(NH(s)e

µH(s)
)
=

∫ t

0

ΛHe
µHs

NH(t)e
µH t ≤ NH(0) +

ΛH

µH

eµH t − ΛH

µH
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so that

NH(t) ≤ NH(0)e
−µH t +

ΛH

µH

− ΛH

µH

e−µH t

this implies that

NH(t) ≤
ΛH

µH

(
1− e−µH t

)
+NH(0)e

−µH t (3.2.2)

Similarly from equation (3.2.2)

e
∫
µMdt = eµM t

eµM t

[
dNM

dt
+ µMNM

]
≤ ΛMeµM t

d

dt

(
NM(t)eµM t

)
= ΛMeµM t∫ t

0

d

dt

(
(NM(s)eµM (s)

)
=

∫ t

0

ΛMeµHs

NM(t)eµM t ≤ NM(0) +
ΛM

µM

eµM t − ΛM

µM

so that

NM(t) ≤ NM(0)e−µM t +
ΛM

µM

− ΛM

µM

e−µM t

this implies that

NM(t) ≤ ΛM

µM

(
1− e−µM t

)
+NM(0)e−µM t (3.2.3)

Taking the limit of equations (3.2.3) and (3.2.4) as t → ∞ gives

NH(t) ≤
ΛH

µH

; NM(t) ≤ ΛM

µM

Thus the following feasible region

Ω = {SH , EH , IH , RH , SM , EM , IM ,∈ R7
+ : NH(t) ≤

ΛH

µH

, NM(t) ≤ ΛM

µM

}

Next, the existence of steady-state solutions (equilibrium points) of the autonomous model

is determined is investigated.

3.2.1 Malaria-free equilibrium

The malaria-free equilibrium of the model (3.1.1)-(3.1.7), denoted by M0 is given by

M0 = (S∗
H , E

∗
H , I

∗
H , R

∗
H , S

∗
M , E∗

M , I∗M) =

(
ΛH

µH

, 0, 0, 0,
Λm

µM

, 0, 0

)
(3.2.4)
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The local stability of M0 will be shown using the approach and notations in ( Van den Driessche

and J.Watmough, 2002). It can be deduced from model (3.1.1)- (3.1.7) that

d

dt



EH(t)

IH(t)

EM(t)

IM(t)


=



pHβSHIH

0

pMβSMIM

0


−



(σH + µH)EH

−σHEH + (γH + δH + µH)IH

(σM + µM)EM

−σMEM + (δM + µM)IM


from which the matrix F of new infection terms and matrix V of the transition terms are given,

respectively, by

F =



0 0 0 PHβλH

µH

0 0 0 0

0 PMβλM

µM
0 0

0 0 0 0



V =



σH + µH 0 0 0

−σH (γH + δH + µH) 0 0

0 0 σM + µM 0

0 0 −σM δM + µM


(3.2.5)

V −1 =



1
σH+µH

0 0 0

σH

(σH+µH)(γH+δH+µH)
1

(γH+δH+µH)
0 0

0 0 1
σM+µM

0

0 0 σM

(σM+µM )(δM+µM )
1

δM+µM



FV −1 =



0 0 ρHβσMλH

µH(δM+µM )(σm+µM )
ρHβλH

µH(δM+µM )

0 0 0 0

ρMβσHλM

µM (γH+δH+µH)(σH+µH)
ρMβλH

µM (γH+δH+µH)
0 0

0 0 0 0
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Therefore, the basic reproduction number of the model (3.1.1)-(3.1.7), denoted by R0 = ρ(FV −1),

where ρ is the spectral radius of the product FV −1 , is obtained by

R0 =

√
ρHρMβ2σHσMλMλH

µH(σH + µH)(γH + δH + µH)(σM + µM)(δM + µM)µM

(3.2.6)

The following result is established by standard technique (see Theorem 2 of Van den Driessche

and Watmough, 2002).

Lemma 1: The malaria-free equilibrium,M0, of the model (3.1.1)-(3.1.7) is locally asymptoti-

cally stable in Ω if R0 < 1 and unstable if R0 > 1.

The basic reproduction number,R0, is a measure of the spread potential of malaria in a pop-

ulation governed by the model (3.1.1)-(3.1.7). The implication of Lemma 1, from epidemio-

logical viewpoint, is that the spread of malaria can be effectively controlled in the population

when R0 < 1, if the initial sizes of the sub-populations of the model (3.1.1)-(3.1.7) are in the

basin of attraction of the malaria-free equilibrium M0. It can be noted, following (Egonmwan

and Okuonghae, 2019), that the partial derivative of the basic reproduction number,R0, given by

(3.2.7) with respect to the treatment rate, γH when there is no lockdown and no diversion of the

resources that would otherwise be used to fight malaria towards COVID-19. Then we have

∂R0

∂γH
= −

( (
ρHρMβ2σHσMλM(µH(σH + µH)µM(σM + µM)(δM + µM)(δH + µH)

)
2µH(σH + µH)µM(σM + µM(δM + µM)(γH + δH + µH)(γH + δH + µH)

)− 1
2

< 0

(3.2.7)

It follows from(3.2.8) that increase in the human treatment rate γH when there is no lockdown

and no diversion of the resources that would otherwise be used to fight malaria towards COVID-

19 can lead to the reduction of the basic reproduction number R0 below unity, which in turn

reduces the burden of malaria transmission in the population.
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3.2.2 Malaria-present equilibrium

Here, we set the first derivative to zero and then solve the resulting solutions we have:

σMEM − (δM + µM)IM = 0

I∗M =
σME∗

M

δM + µM

ρMβSMIH − (σM + µM)EM = 0

E∗
M =

ρMβS∗
MI∗H

σM + µM

ΛM − ρMβSMIH − µMSM = 0

ΛM = SM(ρMβIH + µM)

S∗
M =

ΛM

ρMβMI∗H + µM

I∗M =
σM

δM + µM

× ρMβS∗
MI∗H

σM + µM

=
σMρMβSMI∗H

(δM + µM)(σM + µM)

I∗M =
σMρMβI∗H

(δM + µM)(σM + µM)
× ΛM

ρMβMI∗H + µM

I∗M =
ΛMσMρMβI∗H

(δM + µM)(σM + µM)(ρMβMI∗H + µM)

γHIH − (ω + µH)RH

R∗
H =

γHI
∗
H

ω + µH
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σHEH − (γH + δH + µH)IH = 0

σHE
∗
H = (γH + δH + µH)IH

E∗
H =

(γH + δH + µH)I
∗
H

σH

ρHβSHIM − (σH + µH)EH = 0

ρHβSHIM = (σH + µH)E
∗
H

S∗
H =

(σH + µH)E
∗
H

ρHβI∗M

S∗
H =

(σH + µH)

ρHβH

× E∗
H

IM

S∗
H =

σH + µH

ρHβH

×(γH + δH + µH)I
∗
H

σH

× 1

ΛMσMρMβI∗H
× 1

(δM + µM)(σM + µM)(ρHβI∗H + µH)

S∗
H =

σH + µH

ρHβH

× (γH + δH + µH)I
∗
H(δM + µM)(σM + µM)(ρHβI

∗
H + µM)

σH(ΛMσMρMβI∗H)
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S∗
H =

ΛH(ρHβI
∗
H + µM)

µMµHR2
0

ΛH − ρHβSHIM + ωRH − µHSH = 0

ΛH − (ρHβSHIM + µM)SH + ωRH = 0

ΛH−
ΛH(βρMIH + µM)

µHµMR2
0

[
ρHβ

(
ΛMσMρMIH

(δM + µM)(σM + µM)(ρMβMIH + µM)

)
+µM

]
+
ωγHIH
ω + µH

= 0

(3.2.8)

ΛH − ΛH(βρMIH + µM)

µHµMR2
0

[
ρHβ

2ρMΛMσMIH
(σM + µM)(σM + µM)

+ µH(βρMIH + µM)

]
+

ωγHIH
ω + µH

= 0

(3.2.9)

ΛH × µHµMR2
0

ΛH

− ΛH

µHµMR2
0

× µHµMR2
0

ΛH

[
ρHβ

2ρMΛMσMIM
(δM + µM)(σM + µM) + µHβMρMIH + µHµM

]
(3.2.10)

+
µMµHR

2
0ωγHIH

ΛH(ω + µH)
= 0 (3.2.11)

µHµMR2
0−

ρHρMβ2ΛMσMIH
(δM + µM)(σM + µM)

−µHβMρMIH −µHµM +
µMµHR

2
0ωγHIH

ΛH(ω + µH)
= 0 (3.2.12)

µHµM(R2
0−1) = IH

[
ρHρMλMσMβ2ΛH(ω + µH) + µHβρMλH(δM + µM)(σM + µM)(ω + µH)

(δM + µM)(σM + µM)ΛH(ω + µH)

]
(3.2.13)

−µMµHR
2
0γH(δM + µM)(σM + µM)

σM + µM

(σM + µM)ΛH(ω + µH)

I∗H =
µMµHΛH(ω + µH)(R

2
0 − 1)

G+ µHβρMΛH(δM + µM)(σM + µM)(ω + µH)− µHµMR2
0ωγH(δM + µM)(σM + µM)

(3.2.14)
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Where

G = pHpMΛMσMβ2ΛH(ω + µH)

I∗H =
µMµHΛH(ω + µH)(R

2
0 − 1)

K
(3.2.15)

Where

K = ρHρMΛMσMβ2ΛH(ω + µH) + µHβρMλH(δM + µM)(σM + µM)(ω + µH)

− µHµMR2
0ωγH(δM + µM)(σM + µM)

In summary, we have the following results

Let πp = (S∗
h, E

∗
h, I

∗
h, R

∗
h, S

∗
m, E

∗
m, I

∗
m) represents the malaria-present equilibrium of the model

(3.1.1)-(3.1.7). At steady states, let λ∗
H = pHβI

∗
M be the force of infection for humans and

λ∗
M = pMβI∗H be the force of infection for mosquitoes. Then, solving the system (1.1)-(1.7) at

the steady states yields

I∗M =
ΛMσMλ∗

M

(δM + µM)(σM + µM)(λ∗
M + µM)

(3.2.16)

E∗
M =

λ∗
MΛM

(σM + µM)(λ∗
M + µM)

(3.2.17)

S∗
M =

ΛM

λ∗
M + µM

(3.2.18)

E∗
H =

(γH + δH + µH)I
∗
H

σH

(3.2.19)

R∗
H =

γHI
∗
H

ω + µH

(3.2.20)

S∗
H =

ΛH(λ
∗
M + µM)

µMµHR2
0

(3.2.21)

I∗H =
µHµMΛH(ω + µH)(δM + µM)(σM + µM)(R2

0 − 1)

K
(3.2.22)

where K is given by

pHpMΛMΛHσMβ2(ω + µH) + µHβpMΛH(δM + µM)(σM + µM)(ω + µH)

− µHµMωγHR
2
0(δM + µM)(σM + µM)

we need to show that K > 0

R2
0 =

ρHρMβ2σHλHσMλM

µH(σH + µH)(γH + δH + µH)µM(σM + µM)(δM + µM)
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From K,

⇒ ρHρMλMλHσMβ2(ω + µM)

−µHµMωγH(δM + µM)(δM + µM)×
[

ρHρMβ2σHλHσMλM

µH(σH + µH)(γH + δH + µH)µM(δM + µM)

]

⇒ ρHρMλHλMβ2

[
σM

(
(ω+µH)−

µHµMωγH(δM + µM)(δM + µM)σH

µMµH(σH + µH)(γH + δH + µH)(σM + µM)(δM + µM)

)]

⇒ ρHρMλHλMβ2σM

[
(ω + µM)− ωγHσH

(σH + µH)(γH + δH + µH)

]

(ω + µM)− ωγHσH

σH + µH

(γH + δH + µH) =
(ω + µM)(σH + µH)(γH + σH + µH)− ωγHσH

(σH + µH)(γH + σH + µH)

(3.2.23)

= ω(σH + µH)(γH + σH + µH) + µM(σH + µH)(γH + δH + µH)− ωγHσH (3.2.24)

= (ωσH + ωµH)(γH + δH + µH) + µM(σH + µH)(γH + δH + µH)− ωγHσH (3.2.25)

= ωσHγH(γH + δH + µH) + ωµH(γH + δH + µH) + µM(σH + µH)(γH + δH + µH)− ωγHσH

(3.2.26)

= ωσHγH +ωσH(δH +µH)+ωµH(γH + δH +µH)+µM(σH +µH)(γH + δH +µH)−ωγHσH

(3.2.27)

hence

K > 0

i.e K is positive

Remark 1: From this, one sees that model (3.1.1)-(3.1.7) has no positive solution when R0 < 1.
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Table 3.1: Parameters description and values.

Symbol Meaning Value Source
ΛH Human birth rate 31/1000 people/year Chitnis et al. 2008
µH Natural human death rate 1/65 years−1 Olaniyi et al. 2018
σH Malaria incubation rate in humans 1

13 Okosun et al. 2014
δH Malaria related death 0.05 day−1 Chitnis et al. 2008
γH Recovery rate of malaria infected individual 0.048 Estimated
ω Malaria immunity waning rate 1

(60×356)day
−1 Chitnis et al. 2008

ΛM Mosquitoes birth rate∗ 0.091 Estimated
µM Natural death rate of mosquitoes 0.143 Chitnis et al. 2008
σM Malaria incubation rate in mosquitoes 0.056 Chitnis et al. 2008
δM Disease-induced death rate of mosquitoes 0.01 Chitnis et al. 2008
∆ITN Shortfall of ITNs due to lockdown effects variable WHO 2020
∆drugs Shortfall of malaria drugsdue to lockdown effects variable WHO 2020
β0 Baseline biting rate (pre-COVID19) 0.3 per day Estimated
β Actual biting rate β0(1−∆ITN Assumed
pH Probability of human getting infected 0.33 day−1 Estimated
pM Probability of mosquitoes getting infected 0.092 Estimated

However, a unique endemic equilibrium exists when R0 > 1. This complete the proof.
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Table 3.2: Sensitivity indices for the number of malaria deaths.

Parameter Sensitivity index
ΛH 1.062
δH 0.721
l 0.348
∆γH 0.275
β0 0.083
pM 0.062
ΛM 0.058
∆β 0.042
∆pH 0.031
pH,0 0.031
σM 0.028
σH 0.009
ω 0.008
δM -0.008
µH -0.234
µM -0.322
γH,0 -1.098

3.2.3 Numerical simulations

In order to understand the overall picture of the disease behaviour, next we provide numerical

simulations of each of the formulated models using a MATLAB software package and parameter

values in Table 1

3.2.4 Sensitivity analysis

The sensitivity of the outcomes (incidence rates and malaria caused death rates) on different

parameter values is displayed in Figure 3.3 and Tables 3.2-3.4. We followed Arriola and Hyman

(2009) and calculated υv
p , the normalized forward sensitivity index of a variable v to a parameter

p, by

Υv
p =

∂v

∂p
× p

v
.

The sensitivity index υv
p = −0.5 p means that a 1% increase of a parameter value p will result in

the 0.5% decrease of the variable v.
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Table 3.3: Sensitivity indices for the incidence rates.

Parameter Sensitivity index
µM 2.245
ΛH 1.062
µH 0.966
σH 0.877
γH,0 0.859
σM 0.307
δH 0.212
β0 0.083
pM 0.062
ΛM 0.058
δM 0.057
∆β 0.042
∆pH 0.031
pH,0 0.031
ω 0.008
l -0.142
∆γH -0.215

Table 3.4: Sensitivity indices for the reproduction number.

Parameter Sensitivity index
l 0.828
β0 0.666
ΛH 0.499
pM 0.499
ΛM 0.465
∆β 0.333
∆pH 0.250
pH,0 0.250
∆γH 0.245
σM 0.220
ω 0.000
δM -0.065
δH -0.245
σH -0.433
γH,0 -0.978
µH -1.114
µM -2.564
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Figure 3.2: Behaviour of the malaria model when R0 < 1
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Figure 3.3: Graphical representation of the sensitivity indices for the incidence rate (left),
malaria deaths (center) and R0 (right). The numerical values are shown in Tables 2-4

Figure 3.4: The effects of lockdown on malaria related deaths (left), malaria incidence rate
(center) and R0 (right).
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Figure 3.5: An Illustration for country specific results of mortalities. Pre covid mortalities
downloaded from 2019 World Malaria Report are used
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Chapter 4
DISCUSSION OF RESULTS AND CONCLUSION

4.1 Discussion of results

COVID-19 pandemic has led countries institutionalise several measures to contain the virus.

Some of these measures have dire consequences on the socioeconomic, public health and po-

litical atmosphere. From sensitivity analysis, with high burdens of malaria, inaccessibility to

healthcare services or scarcity of antimalarial medicines during COVID-19 pandemic could

cause an increase in deaths due to malaria of up to 10% in 12 months compared with peri-

ods of no COVID-19 pandemic from our sensitivity analysis. Moreover, since both COVID-19

and malaria have similar symptomatic presentations, several persons have exhausted antimalaria

drugs in their possession due to media confusion on whether or not to use antimalaria drugs to

combat the virus without proper diagnosis as a result of lockdown. Self-isolation of suspected

COVID-19 cases, a major preventive measure to curb the spread of the virus was adopted by

several countries, might further reduce malaria diagnosis and lead to more deaths (Sherrard-

Smith et al. 2020). In regions with Plasmodium falciparum malaria burden, COVID-19 societal

measures could cause an additional number of life lost due to limitations to healthcare services.

The logistical, financial and subnational timing of LLIN campaigns disruptions in Africa dur-

ing COVID-19 pandemic could have substantial effects on malaria morbidities and mortalities.

Hence, the local stability of the model revealed that R0 > 1. Therefore, maintaining continu-

ity of services is essential, while recovery programmes should be of high priority to reduce the

broader health impact of the COVID-19 pandemic. This indirect impact of the pandemic might

be largely avoided through maintenance of core programme elements and recovery campaigns.

29



For malaria, preventive measures must be prioritised, ensuring prophylactic treatments, such as

mass drug distribution or seasonal malaria chemoprevention during lockdowns.

The results of this study underscore the extraordinarily difficult decisions facing policy mak-

ers. Well managed, long-term suppression interventions could avert the most deaths through

avoiding a COVID-19 pandemic; however, if the interventions are not well-managed, they could

lead to an increase in malaria deaths and other diseases over five years. An intense but short pe-

riod of suppression intervention could generate a valuable delay in the pandemic that provides

the opportunity to increase hospital capacity and engineer reductions in contacts. Yet, if such

changes were not possible, then the impact of the pandemic would simply be compounded by the

disruptions incurred during the initial period of intervention. Furthermore, Our analysis revealed

that ignoring the risk of COVID19 deaths by easing lockdown for continuation of some services,

such as long-lasting insecticidal net distribution, access to health care services would not exceed

the benefit that might be gained in reducing malaria deaths and other diseases. However, malaria

diagnosis needs to be coupled to the COVID-19 screening and testing of suspected or confirmed

COVID-19 patients to reduce the burden of COVID-19 pandemic and also to avoid misdiagno-

sis and enable easy management. The disruptions (inaccessibility to healthcare services due to

lockdowns) impact and the extent to which other disease apart from malaria (e.g. HIV/AIDS,

tuberculosis) programmes would be disrupted on population health could have significant effect

on the general population in developing countries.

Another factor that could diminish capability during the periods of highest demand is health-

care staff shortages due to COVID-19 illness. Disruptions to supply chains have not yet occurred

on a large scale, although it is a threat given the reliance on international trade routes that could

be affected by economic factors and travel restrictions. It is of note that this type of effect has

been observed before (Plucinski et al. 2015)-for example, during the Ebola epidemic in Guinea

in 2014, more additional people died from malaria that year due to fewer malaria treatments

being administered than died from Ebola (Plucinski et al. 2015). Estimating the impact of some

types of disruption on population health, especially over longer time periods, is restricted by the

30



paucity of data on relevant mechanisms because such disruptions have not previously occurred

on the scale being considered here. Therefore, the longer term effects will be more uncertain

than the short-term effects. We also do not consider how the increased stress of the health

system could continue after the COVID-19 pandemic, when programmes must be reinstituted

and demand increases due to new infections acquired during the pandemic. We also do not

consider how long-term global changes will affect disease programmes, such as the effect of a

global recession, permanent changes to the global medical supply chain, or drug development

pipelines. These effects could be profound and dwarf the effects considered here, but it is not

currently possible to gauge the full extent of these global changes.

The coordinated and measurable way in which inaccessibility to healthcare services due to

societal measures (e.g. city lockdown) represented for malaria showed the importance of this

model. In addition, data on disease and health system impact were culminated and enabled

projections to be made and updated as the pandemic evolves. However, this analysis was limited

to the impact of COVID-19 pandemic that led to inaccessibility to healthcare service due to

lockdowns on malaria.

4.2 Conclusion

In this study, we considered autonomous SEIRS-SEI malaria models transmission that incor-

porates inaccessibility to healthcare services due to city lockdown and scarcity of antimalar-

ial medicines during COVID-19 pandemic. The basic reproduction number of the autonomous

model was computed to investigate the existence of the disease-free and endemic equilibra when

R0 < 1 and R0 > 1. The parameters most responsible for the disease transmission in the pop-

ulations were examined with respect to R0 by sensitivity analysis.The effects of inaccessibility

to healthcare services due to lockdown, long-lasting insecticidal net and spraying on different

groups of human and mosquito populations showed its negative effect on the control plans and

associated public health risk with an increasing number of deaths. It was concluded that main-

taining the most critical prophylactic activities, such as long-term suppression intervention and
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accessibility to healthcare services for malaria during lockdown could substantially reduce the

overall impact of the COVID-19 pandemic on malaria.
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