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Abstract
In this paper, we prove some fixed points properties and demiclosedness principle for mean nonex-
pansive mapping in uniformly convex hyperbolic spaces. We further propose an iterative scheme
for approximating a common fixed point of two mean nonexpansive mappings and establish some
strong and △-convergence theorems for these mappings in uniformly convex hyperbolic spaces. The
results obtained in this paper extend and generalize corresponding results in uniformly convex Ba-
nach spaces, CAT(0) spaces and other related results in literature.
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1. Introduction

Let (X, d) be a metric space and C be a nonempty closed and convex subset of X. A mapping
T : C → C is said to be

(i) nonexpansive if
d(Tx, Ty) ≤ d(x, y), ∀x, y ∈ C,

(ii) Suzuki-generalized nonexpanpansive (or said to satisfy condition (C)) if
1

2
d(x, Tx) ≤ d(x, y) =⇒ d(Tx, Ty) ≤ d(x, y), ∀x, y ∈ C,
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(iii) mean nonexpansive if

d(Tx, Ty) ≤ ad(x, y) + bd(x, Ty), ∀x, y ∈ C, a, b ≥ 0, a+ b ≤ 1.

For more details on Suzuki-type and contraction-type mappings, see [26, 27, 28, 29].
Remarks:

(1) It is worth mentioning that nonexpansive mappings are Suzuki-generalized nonexpansive map-
pings. However, Suzuki [38] gave an example of a Suzuki-generalized nonexpansive mapping
which is not nonexpansive.

(2) We also mention that every nonexpansive mapping is a mean nonexpansive mapping. However,
we give the following example to show that there exists a mean nonexpansive mapping which
is not a nonexpansive mapping.

Example 1.1. Let T : [0, 1] → [0, 1] be defined by

Tx =


1
4
, if x ∈ [0, 1

2
],

1
8
, if x ∈ (1

2
, 1),

0, if x = 1.

Then, T is a mean nonexpansive mapping with a = b = 1
2
.

Proof . Case 1: Let x ∈ [0, 1] and y ∈ (1
2
, 1), then we have that 1

2
− Ty < y − Ty, which implies

that
1
2

(
1
2
− 1

8

)
< 1

2
|y − Ty|.

So that

|Tx− Ty| ≤ 1

8
<

1

2

(
1

2
− 1

8

)
<

1

2
|y − Ty| ≤ 1

2
|x− y|+ 1

2
|x− Ty|.

Case 2: Let x ∈ [0, 1] and y = 1, then by similar argument as in Case 1, we obtain

|Tx− Ty| ≤ 1

4
<

1

2
|y − Ty| ≤ 1

2
|x− y|+ 1

2
|x− Ty|.

Case 3: Let x ∈ (1
2
, 1) and y ∈ [0, 1

2
], then we have that 1− (1

2
+ 1

4
) < 2x− (y + Ty), which implies

1
8
< 1

2
|2x− (y − Ty)|.

So that

|Tx− Ty| = 1

8
<

1

2
|2x− (y + Ty)| ≤ 1

2
|x− y|+ 1

2
|x− Ty|.

Case 4: Let x = 1 and y ∈ [0, 1
2
], then by similar argument as in Case 3, we obtain

|Tx− Ty| = 1

4
<

1

2
|2x− (y + Ty)| ≤ 1

2
|x− y|+ 1

2
|x− Ty|.

For the cases where x, y ∈ [0, 1
2
], x, y ∈ (1

2
, 1) and x = y = 1, we have that |Tx − Ty| = 0. Thus,

we conclude that T is mean nonexpansive with a = b = 1
2
. However, we see clearly that T is

not continuous. Therefore, T cannot be nonexpansive. For more examples of mean nonexpansive
mappings, see [30, 49, 48]. □
Although it was shown in [30] that increasing mean nonexpansive mappings are Suzuki-generalized
nonexpansive mappings. Nakprasit [30] gave an example of a mean nonexpansive mapping which
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is not a Suzuki-generalized nonexpansive mapping. The class of mean nonexpansive mappings was
first introduced by Zhang [47], who proved that a mean nonexpansive mapping has a fixed point in
a weakly compact convex subset C (with normal structure) of a Banach space. Since then, several
authors have studied mean nonexpansive mappings in Banach spaces. For example, Zuo [49] studied
some fixed point theorems for mean nonexpansive mappings in Banach spaces and proved that under
certain conditions, a mean nonexpansive mapping has a fixed point in C, where C is a nonempty,
closed and convex subset of a Banach space. Furthermore, he proved that if T is a mean nonexpansive
mapping and {xn} is a sequence in C, then the sequence {xn − Txn} converges strongly to 0. For
other extensive studies on mean nonexpansive mappings in Banach spaces, see [16, 35, 45, 46] and the
references therein. Recently, mean nonexpansive mappings was introduced and studied in CAT(0)
by Zhou and Cui [48] using the following Ishikawa iteration: For x1 ∈ C, {tn}, {sn} ⊂ [0, 1], define
{xn} iteratively by{

yn = (1− sn)xn ⊕ snTxn,

xn+1 = (1− tn)xn ⊕ tnTyn, n = 1, 2, . . . .
(1.1)

They proved both strong and ∆-convergence theorems for the sequence {xn} generated by the above
algorithm. For recent results on approximating fixed points of nonlinear mappings in CAT(0) space,
see [6, 8, 31, 32].
Beside the nonlinear mappings involved in the study of fixed point theory, the role played by the
spaces involved is also very important. Several fixed point results and iterative algorithms for ap-
proximating the fixed points of nonlinear mappings in Hilbert and Banach spaces have been obtained
in literature, for example, see [2, 3, 4, 5, 12, 13, 18, 19, 33, 34, 39, 40, 41, 42, 43]. It is easier working
with Banach space due to its convex structures. However, metric space do not naturally enjoy this
structure. Therefore the need to introduce convex structures to it arises. The concept of convex
metric space was first introduced by Takahashi [44] who studied the fixed points for nonexpansive
mappings in the setting of convex metric spaces. Since then, several attempts have been made to
introduce different convex structures on metric spaces. An example of a metric space with a convex
structure is the hyperbolic space. Different convex structures have been introduced on hyperbolic
spaces resulting to different definitions of hyperbolic spaces (see [14, 22, 36]). Although the class
of hyperbolic spaces defined by Kohlenbach [22] is slightly restrictive than the class of hyperbolic
spaces introduced in [14], it is however, more general than the class of hyperbolic spaces introduced
in [36]. Moreover, it is well-known that Banach spaces and CAT(0) spaces are examples of hyperbolic
spaces introduced in [22]. Some other examples of this class of hyperbolic spaces includes Hadamard
manifords, Hilbert ball with the hyperbolic metric, Catesian products of Hilbert balls and R-trees,
see [7, 14, 11, 15, 22, 36].
It is worth mentioning that, as far as we know, no work has been done on fixed point problems for
mean nonexpansive mappings in hyperbolic spaces. Therefore, it is necessary to extend results on
fixed point problems for mean nonexpansive mappings from uniformly convex Banach spaces and
CAT(0) spaces to uniformly convex hyperbolic spaces, since the class of uniformly convex hyperbolic
spaces generalizes the class of uniformly convex Banach spaces as well as CAT(0) spaces.
Motivated by all these facts, we study some fixed points properties and demiclosedness principle for
mean nonexpansive mappings in uniformly convex hyperbolic space introduced in [22], and establish
both strong and ∆-convergence theorems for approximating a common fixed point of two mean
nonexpansive mappings using the iterative scheme introduced by Abbas and Nazir [1].



234 Ezeora, Izuchukwu, Mebawondu, Mewomo

2. Preliminaries

Throughout this paper, our study is in hyperbolic space introduced by Kohlenbach [22].

Definition 2.1. A hyperbolic space (X, d,W ) is a metric space (X, d) together with a convex map-
ping W : X2 × [0, 1] → X satisfying

1. d(u,W (x, y, α)) ≤ (1− α)d(u, x) + αd(u, y),

2. d(W (x, y, α),W (x, y, β)) = |α− β|d(x, y),
3. W (x, y, α) = W (y, x, 1− α),

4. d(W (x, z, α),W (y, w, α)) ≤ (1− α)d(x, y) + αd(z, w), for all w, x, y, z ∈ X and α, β ∈ [0, 1].

Example 2.2. [37] Let X be a real Banach space which is equipped with norm ||.||. Define the
function
d : X2 → [0,∞) by

d(x, y) = ||x− y||.
Then, we have that (X, d,W ) is a hyperbolic space with mapping W : X2 × [0, 1] → X defined by
W (x, y, α) = (1− α)x+ αy.

Definition 2.3. [37] Let X be a hyperbolic space with a mapping W : X2 × [0, 1] → X.

(i) A nonempty subset C of X is said to be convex if W (x, y, α) ∈ C for all x, y ∈ C and α ∈ [0, 1].
(ii) X is said to be uniformly convex if for any r > 0 and ϵ ∈ (0, 2], there exists a δ ∈ (0, 1] such

that for all x, y, z ∈ X

d(W (x, y,
1

2
), z) ≤ (1− δ)r,

provided d(x, z) ≤ r, d(y, z) ≤ r and d(x, y) ≥ ϵr.

(iii) A mapping η : (0,∞) × (0, 2] → (0, 1] which provides such a δ = η(r, ϵ) for a given r > 0
and ϵ ∈ (0, 2], is known as a modulus of uniform convexity of X. The mapping η is said to be
monotone, if it decreases with r (for a fixed ϵ).

Definition 2.4. Let C be a nonempty subset of a metric space X and {xn} be any bounded sequence
in C. For x ∈ X, consider a continuous functional r(·, {xn}) : X → [0,∞) defined by

r(x, {xn}) = lim sup
n→∞

d(xn, x).

The asymptotic radius r(C, {xn}) of {xn} with respect to C is given by

r(C, {xn}) = inf{r(x, {xn}) : x ∈ C}.

A point x ∈ C is said to be an asymptotic center of the sequence {xn} with respect to C ⊆ X if

r(x, {xn}) = inf{r(y, {xn}) : y ∈ C}.

The set of all asymptotic centers of {xn} with respect to C is denoted by A(C, {xn}). If the asymptotic
radius and the asymptotic center are taken with respect to X, then they are simply denoted by r({xn})
and A({xn}) respectively.
It is well-known that in uniformly convex Banach spaces and CAT(0) spaces, bounded sequences have
unique asymptotic center with respect to closed and convex subsets.
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Definition 2.5. [23]. A sequence {xn} in X is said to be △-converge to x ∈ X, if x is the unique
asymptotic center of {xnk} for every subsequence {xnk} of {xn}. In this case, we write △- lim

n→∞
xn = x.

Remark 2.6. [24]. We note that △-convergence coincides with the usually weak convergence known
in Banach spaces with the usual Opial property.

Lemma 2.7 ([25]). Let X be a complete uniformly convex hyperbolic space with monotone modulus
of uniform convexity η. Then every bounded sequence {xn} in X has a unique asymptotic center with
respect to any nonempty closed convex subset C of X.

Lemma 2.8 ([9]). Let X be a complete uniformly convex hyperbolic space with monotone modulus
of uniform convexity η and let {xn} be a bounded sequence in X with A({xn}) = {x}. Suppose {xnk}
is any subsequence of {xn} with A({xnk}) = {x1} and {d(xn, x1)} converges, then x = x1.

Lemma 2.9 ([20]). Let (X, d,W ) be a complete uniformly convex hyperbolic space with monotone
modulus of uniform convexity η. Let x∗ ∈ X and {tn} be a sequence in [a, b] for some a, b ∈ (0, 1).
If {xn} and {yn} are sequences in X such that lim supn→∞ d(xn, x

∗) ≤ c, lim supn→∞ d(yn, x
∗) ≤ c

and limn→∞ d(W (xn, yn, tn), x
∗) = c, for some c > 0. Then limn→∞ d(xn, yn) = 0.

Definition 2.10. Let C be a nonempty subset of a hyperbolic space X and {xn} be a sequence in
X. Then {xn} is called a Fejér monotone sequence with respect to C if for all x ∈ C and n ∈ N,

d(xn+1, x) ≤ d(xn, x).

Proposition 2.11. [17] Let {xn} be a sequence in X and C be a nonempty subset of X. Suppose
that T : C → C is any nonlinear mapping and the sequence {xn} is Fejer monotone with respect to
C, then we have the following:

(i) {xn} is bounded.
(ii) The sequence {d(xn, x

∗)} is decreasing and converges for all x∗ ∈ F (T ).

(iii) limn→∞ d(xn, F (T )) exists.

3. Main Results

3.1. Fixed Points Properties and Demiclosedness Principle
Theorem 3.1. Let C be a nonempty closed and convex subset of a hyperbolic space X. Let T : C → C
be a mean nonexpansive mapping with b < 1 and F (T ) ̸= ∅, then F (T ) is closed and convex.

Proof . We first show that F (T ) is closed. Let {xn} be a sequence in F (T ) such that {xn} converges
to some y ∈ C. We show that y ∈ F (T ) as follows:
Observe that

d(xn, T y) = d(Txn, T y) ≤ ad(xn, y) + bd(xn, T y)

=⇒ d(xn, T y)− bd(xn, T y) ≤ ad(xn, y)

=⇒ d(xn, T y) ≤
a

1− b
d(xn, y)

=⇒ d(xn, T y) ≤ d(xn, y).
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Since lim
n→∞

d(xn, y) = 0, then by sandwich theorem, we obtain

lim
n→∞

d(xn, T y) = 0.

By the uniqueness of limit, we have that
Ty = y.

Hence, F (T ) is closed.
Next, we show that F (T ) is convex. Let x, y ∈ F (T ) and α ∈ [0, 1]. Then, we have

d(x, T (W (x, y, α))) = d(Tx, T (W (x, y, α))) ≤ ad(x,W (x, y, α)) + bd(x, T (W (x, y, α))),

which implies d(x, T (W (x, y, α))) ≤ a

1− b
d(x,W (x, y, α))

≤ d(x,W (x, y, α)) (3.1)

Using similar argument, we have

d(y, T (W (x, y, α))) ≤ d(y,W (x, y, α)). (3.2)

Using (3.1) and (3.2), we have

d(x, y) ≤ d(x, T (W (x, y, α))) + d(T (W (x, y, α)), y)

≤ d(x,W (x, y, α)) + d(W (x, y, α), y) (3.3)
≤ (1− α)d(x, x) + αd(x, y) + (1− α)d(x, y) + αd(y, y)

≤ d(x, y).

Hence, we conclude that (3.1) and (3.2) are d(x, T (W (x, y, α))) = d(x,W (x, y, α)) and d(y, T (W (x, y, α))) =
d(y,W (x, y, α)) respectively. Because if d(x, T (W (x, y, α))) < d(x,W (x, y, α)) or d(y, T (W (x, y, α))) <
d(y,W (x, y, α)), then the inequality in (3.3) becomes strictly less than, which therefore gives us a
contradiction, that is, d(x, y) < d(x, y). Hence, we have that

T (W (x, y, α)) = W (x, y, α) ∀x, y ∈ F (T ) and α ∈ [0, 1].

Thus, W (x, y, α) ∈ F (T ), which implies that F (T ) is convex. □
Corollary 3.2. Let C be a nonempty closed and convex subset of a hyperbolic space X. Let T : C → C
be a nonexpansive mapping and F (T ) ̸= ∅, then F (T ) is closed and convex.

We now establish the demiclosedness principle for mean nonexpansive mappings in hyperbolic spaces.

Theorem 3.3. Let C be a nonempty closed and convex subset of complete uniformly convex hyperbolic
space X with monotone modulus of convexity η. Let T : C → C be mean nonexpansive mapping with
b < 1 and {xn} be a bounded sequence in C such that limn→∞ d(xn, Txn) = 0 and ∆−limn→∞ xn = x∗.
Then x∗ ∈ F (T ).

Proof . Since {xn} is a bounded sequence in C, we have from Lemma 2.7 that {xn} has a unique
asymptotic center in C. Also, since ∆− limn→∞ xn = x∗, we have that A({xn}) = {x∗}.
Now,

d(xn, Tx
∗) ≤ d(xn, Txn) + d(Txn, Tx

∗)

≤ d(xn, Txn) + ad(xn, x
∗) + bd(xn, Tx

∗)

which implies d(xn, Tx
∗) ≤ 1

1− b
[d(xn, Txn) + ad(xn, x

∗)].
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Taking lim supn→∞ of both sides, we have

r(Tx∗, {xn}) = lim sup
n→∞

d(xn, Tx
∗) ≤ 1

1− b
lim sup
n→∞

[d(xn, Txn) + ad(xn, x
∗)] ≤ lim sup

n→∞
d(xn, x

∗) = r(x∗, {xn}).

By the uniqueness of the asymptotic center of {xn}, we have Tx∗ = x∗. Hence, x∗ ∈ F (T ). □

Corollary 3.4. Let C be a nonempty closed and convex subset of complete uniformly convex hyper-
bolic space X with monotone modulus of convexity η. Let T : C → C be nonexpansive mapping with
b < 1 and {xn} be a bounded sequence in C such that limn→∞ d(xn, Txn) = 0 and ∆−limn→∞ xn = x∗.
Then x∗ ∈ F (T ).

3.2. Strong and ∆-Convergence Theorems
In [1], Abbas and Nazir introduced a three step iteration and showed that its rate of convergence
is comparatively faster than some existing iteration processes (see [1] for more details). We now
propose this iteration process in the frame work of hyperbolic spaces for approximating a common
fixed point of two mean nonexpansive mappings.
Let C be a nonempty closed and convex subset of a complete uniformly convex hyperbolic space X
and T, S : C → C be two mean nonexpansive mappings. For x1 ∈ C, we construct the sequence
{xn} as follows:


zn = W (xn, Sxn, γn),

yn = W (Sxn, T zn, βn),

xn+1 = W (Tyn, T zn, αn), n ∈ N,
(3.4)

where {αn}, {βn} and {γn} are sequences in (0, 1).
For the rest of this paper, we denote the set of common fixed points of T and S by Γ, that is,
Γ := F (T ) ∩ F (S). Thus, using Algorithm 3.4, we state and prove strong and ∆-convergence
theorems for approximating an element in Γ. We begin with the following lemmas.

Lemma 3.5. Let C be a nonempty closed and convex subset of a hyperbolic space X. Let S, T : C → C
be two mean nonexpansive mappings. Suppose Γ ̸= ∅ and the sequence {xn} is defined by (3.4), then

(i) limn→∞ d(xn, x
∗) exists for each x∗ ∈ Γ.

(ii) limn→∞ d(xn,Γ) exists.

Proof . Let x∗ ∈ Γ, then from (3.4), we have

d(zn, x
∗) = d(W (xn, Sxn, γn), x

∗)

≤ (1− γn)d(xn, x
∗) + γn(Sxn, x

∗)

≤ (1− γn)d(xn, x
∗) + γn[ad(xn, x

∗) + bd(xn, x
∗)]

= [1− γn + aγn + bγn]d(xn, x
∗)

≤ d(xn, x
∗). (3.5)
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Using (3.4) and (3.5), we have

d(yn, x
∗) = d(W (Sxn, T zn, βn), x

∗)

≤ (1− βn)d(Sxn, x
∗) + βn(Tzn, x

∗)

≤ (1− βn)[ad(xn, x
∗) + bd(xn, x

∗)] + βn[ad(zn, x
∗) + bd(zn, x

∗)]

≤ (1− βn)[ad(xn, x
∗) + bd(xn, x

∗)] + βn[ad(xn, x
∗) + bd(xn, x

∗)]

= [a+ b]d(xn, x
∗)

≤ d(xn, x
∗). (3.6)

Also, using (3.4), (3.5) and (3.6), we have

d(xn+1, x
∗) = d(W (Tyn, T zn, αn), x

∗)

≤ (1− αn)d((Tyn, x
∗) + αnd(Tzn, x

∗)

≤ (1− αn)[ad(yn, x
∗) + bd(yn, x

∗)] + αn[ad(zn, x
∗) + bd(zn, x

∗)]

≤ (1− αn)[ad(xn, x
∗) + bd(xn, x

∗)] + αn[ad(xn, x
∗) + bd(xn, x

∗)]

= [a+ b]d(xn, x
∗)

≤ d(xn, x
∗). (3.7)

Inequality (3.7) implies that {xn} is Fejér monotone with respect to Γ. Thus, by Proposition 2.11,
we have that {xn} is bounded, limn→∞ d(xn, x

∗) exists for all x∗ ∈ Γ and limn→∞ d(xn,Γ) exists. □

Lemma 3.6. Let C be a nonempty closed and convex subset of a complete uniformly convex hyperbolic
space X with monotone modulus of uniform convexity η. Let T, S : C → C be two mean nonexpansive
mappings. Suppose Γ ̸= ∅ and the sequence {xn} is defined by (3.4), then limn→∞ d(xn, Sxn) =
limn→∞ d(xn, T yn) = limn→∞ d(xn, T zn) = limn→∞ d(zn, T zn) = 0.

Proof . From Lemma 3.5, we have that limn→∞ d(xn, x
∗) exists for each x∗ ∈ Γ. Suppose that

limn→∞ d(xn, x
∗) = c. If we take c = 0, then we are done. So, we consider the case where c > 0. It is

clear from (3.5) that

d(zn, x
∗) ≤ d(xn, x

∗), n ∈ N. (3.8)

Thus, taking lim supn→∞ of both sides of (3.8), we have

lim sup
n→∞

d(zn, x
∗) ≤ c. (3.9)

By the definition of T , we get

d(Tzn, x
∗) ≤ ad(zn, x

∗) + bd(zn, x
∗)

= [a+ b]d(zn, x
∗),

taking lim supn→∞ of both sides, we have

lim sup
n→∞

d(Tzn, x
∗) ≤ c. (3.10)

Also from (3.6), we have

d(yn, x
∗) ≤ d(xn, x

∗),
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taking lim supn→∞ of both sides, we have

lim sup
n→∞

d(yn, x
∗) ≤ c. (3.11)

More so,

d(Tyn, x
∗) ≤ ad(yn, x

∗) + bd(yn, Tx
∗)

≤ d(yn, x
∗),

taking lim supn→∞ of both sides and using (3.11), we have

lim sup
n→∞

d(Tyn, x
∗) ≤ c. (3.12)

From (3.4), we have that

d(xn+1, x
∗) = d(W (Tyn, T zn, αn), x

∗),

which implies

lim
n→∞

d(W (Tyn, T zn, αn), x
∗) = c. (3.13)

Then by Lemma 2.9, we have

lim
n→∞

d(Tyn, T zn) = 0. (3.14)

Again, from the definition of S, we have

d(Sxn, x
∗) ≤ ad(xn, x

∗) + bd(xn, x
∗)

= [a+ b]d(xn, x
∗)

≤ d(xn, x
∗),

taking lim supn→∞ of both sides, we have

lim sup
n→∞

d(Sxn, x
∗) ≤ c.

Now,

d(xn+1, x
∗) = d(W (Tyn, T zn, αn), x

∗)

≤ (1− αn)d(Tyn, x
∗) + αnd(Tzn, x

∗)

≤ (1− αn)d(Tyn, x
∗) + αn[d(Tzn, T yn) + d(Tyn, x

∗)]

= d(Tyn, x
∗) + αnd(Tzn, T yn)

≤ ad(yn, x
∗) + bd(yn, x

∗) + αnd(Tzn, T yn)

= [a+ b]d(yn, x
∗) + αnd(Tzn, T yn)

≤ d(yn, x
∗) + αnd(Tzn, T yn),

taking lim infn→∞ of both sides and using (3.14), we have

c ≤ lim inf
n→∞

d(yn, x
∗). (3.15)



240 Ezeora, Izuchukwu, Mebawondu, Mewomo

It then follows from (3.11) and (3.15) that

lim
n→∞

d(yn, x
∗) = c. (3.16)

So that

lim
n→∞

d(W (Sxn, T zn, βn), x
∗) = c.

Thus, using Lemma 2.9, we have

lim
n→∞

d(Sxn, T zn) = 0. (3.17)

Furthermore, using (3.17) and (3.14), we have

lim
n→∞

d(Sxn, T yn) ≤ lim
n→∞

d(Sxn, T zn) + lim
n→∞

d(Tzn, T yn) = 0. (3.18)

Also,

d(yn, x
∗) = d(W (Sxn, T zn, βn), x

∗)

≤ (1− βn)d(Sxn, x
∗) + βnd(Tzn, x

∗)

≤ (1− βn)[d(Sxn, T zn) + d(Tzn, x
∗)] + βnd(Tzn, x

∗)

= (1− βn)d(Sxn, T zn) + d(Tzn, x
∗)

≤ (1− βn)d(Sxn, T zn) + ad(zn, x
∗) + b(zn, x

∗)

= (1− βn)d(Sxn, T zn) + (a+ b)d(zn, x
∗)

≤ (1− βn)d(Sxn, T zn) + d(zn, x
∗),

taking lim infn→∞ of both sides and using (3.16) and (3.17), we have

c ≤ lim inf
n→∞

d(zn, x
∗). (3.19)

From (3.9) and (3.19), we have

lim
n→∞

d(zn, x
∗) = c

That is,
lim
n→∞

d(W (xn, Sxn, γn), x
∗) = c.

Then using Lemma 2.9, we have that

lim
n→∞

d(xn, Sxn) = 0. (3.20)

Also, we have
d(xn, T zn) ≤ d(xn, Sxn) + d(Sxn, T zn),

which implies from (3.20) and (3.17) that

lim
n→∞

d(xn, T zn) = 0. (3.21)

Again,
d(xn, T yn) ≤ d(xn, T zn) + d(Tzn, T yn),
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which implies from (3.14) and (3.21) that

lim
n→∞

d(xn, T yn) = 0. (3.22)

From (3.20), we obtain

d(zn, xn) = d(W (xn, Sxn, γn), xn)

≤ γnd(Sxn, xn) → 0, as n → ∞. (3.23)

Also, from (3.21) and (3.23), we obtain

lim
n→∞

d(zn, T zn) ≤ lim
n→∞

d(zn, xn) + lim
n→∞

d(xn, T zn) → 0, as n → ∞. (3.24)

That is

lim
n→∞

d(zn, T zn) = 0.

Hence, the proof is complete. □

Theorem 3.7. Let C be a nonempty closed and convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η. Let S, T : C → C be two mean
nonexpansive mappings such that b < 1. Suppose that Γ ̸= ∅ and the sequence {xn} is defined by
(3.4), then {xn} △-converges to a common fixed point of T and S.

Proof . Let W∆(xn) := ∪A({un}), where the union is taken over all subsequences {un} of {xn}. We
now show that W∆(xn) ⊂ Γ and that W∆(xn) contains exactly one point.
Let u ∈ W∆(xn), then there exists a subsequence {un} of {xn} such that A({un}) = {u}, since {un}
is bounded by Lemma 3.5. This implies from Lemma 2.7 that we can find a subsequence {vn} of {un}
such that ∆ − limn→∞ vn = v, for some v ∈ C. By Lemma 3.6, we have that limn→∞ d(vn, T vn) =
limn→∞ d(vn, Svn) = 0, which together with Theorem 3.3 gives that v ∈ Γ. Therefore, d(un, v)
converges and by Lemma 2.8, we have that v = u ∈ Γ. Hence, W∆(xn) ⊂ Γ.
Next, we show that W∆(xn) contains exactly one point. Let A({xn}) = {x} and {un} be arbitrary
subsequence of {xn} such that A({un}) = {u}. Then by Lemma 3.5, we have that d(xn, u) converges,
since u ∈ Γ. Thus, by Lemma 2.8, we have that u = x ∈ Γ. Hence, W∆(xn) = {x}. Therefore, {xn}
△-converges to a common fixed point of T and S. □

Theorem 3.8. Suppose that the assumptions in Theorem 3.7 holds, then the sequence {xn} defined
by (3.4) converges strongly to x∗ ∈ Γ if and only if lim infn→∞ d(xn,Γ) = 0, where d(xn,Γ) =
inf{d(xn, x

∗) : x∗ ∈ Γ}.

Proof . Suppose that the sequence {xn} converges strongly to x∗ ∈ Γ. Then limn→∞ d(xn, x
∗) = 0 and

since 0 ≤ d(xn,Γ) ≤ d(xn, x
∗), it follows that limn→∞ d(xn,Γ) = 0. Therefore, lim infn→∞ d(xn,Γ) =

0.
Conversely, suppose that lim infn→∞ d(xn,Γ) = 0. Then, from Lemma 3.5, we obtain that limn→∞ d(xn,Γ) =
0. Suppose that {xnk

} is any arbitrary subsequence of {xn} and {pk} is a sequence in Γ such that
for all n ≥ 1,

d(xnk
, pk) ≤

1

2k
.

From (3.7), it obtain that
d(xnk+1, pk) <

1

2k
,
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which implies

d(pk+1, pk) ≤ d(pk+1, xnk+1) + d(xnk+1, pk)

<
1

2k+1
+

1

2k

<
1

2k−1
.

This shows that {pk} is a Cauchy sequence in Γ. Also, by Theorem 3.1, we have that Γ is a closed
subset of X. Thus, {pk} is a convergent sequence in Γ. Let limn→∞ pk = x∗, then x∗ ∈ Γ, and we
have

d(xnk, x
∗) ≤ d(xnk, pk) + d(pk, x

∗) → 0 as n → ∞,

which implies limn→∞ d(xnk
, x∗) = 0. Since limn→∞ d(xn, x

∗) exists, then we conclude that the
sequence {xn} converges strongly to x∗ ∈ Γ. Hence, the proof is complete. □
By setting S = T in Algorithm 3.4, we obtain the following corollaries.

Corollary 3.9. Let C be a nonempty closed and convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η. Let T : C → C be a mean
nonexpansive mapping such that b < 1. Suppose that F (T ) ̸= ∅ and the sequence {xn} is defined by

zn = W (xn, Sxn, γn),

yn = W (Sxn, T zn, βn),

xn+1 = W (Tyn, T zn, αn), n ∈ N,
(3.25)

where {αn}, {βn} and {γn} are sequences in (0, 1).
Then {xn} △-converges to a fixed point of T .

Corollary 3.10. Suppose that the assumptions in Corollary 3.9 holds, then the sequence {xn} de-
fined by (3.25) converges strongly to x∗ ∈ F (T ) if and only if lim infn→∞ d(xn, F (T )) = 0, where
d(xn, F (T )) = inf{d(xn, x

∗) : x∗ ∈ F (T )}.

In view of Remark (2), we have the following corollaries.

Corollary 3.11. Let C be a nonempty closed and convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η. Let S, T : C → C be two
nonexpansive mappings such that b < 1. Suppose that Γ ̸= ∅ and the sequence {xn} is defined by
(3.4), then {xn} △-converges to a common fixed point of T and S.

Corollary 3.12. Suppose that the assumptions in corollary 3.11 holds, then the sequence {xn}
defined by (3.4) converges strongly to x∗ ∈ Γ if and only if lim infn→∞ d(xn,Γ) = 0, where d(xn,Γ) =
inf{d(xn, x

∗) : x∗ ∈ Γ}.

Remarks:
(i) It follows from Corollaries 3.11 and 3.12, that the results presented in this paper extend cor-

responding results from the class of nonexpansive mappings to the more general class of mean
nonexpansive mappings in hyperbolic spaces.

(ii) Our results extend and complement corresponding results in Banach vector spaces and CAT(0)
spaces, since both spaces are examples of the hyperbolic space considered in this paper.

Conflict of Interest: The authors declare that there is no conflict of interests.
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