
i

ONLINE STUDENT EXEAT SYSTEM (OSES)

AYOKHAI, JOSHUA OKHAI

15010301007

BEING A PROJECT SUBMITTED IN THE DEPARTMENT OF COMPUTER SCIENCE

AND MATHEMATICS, COLLEGE OF BASIC AND APPLIED SCIENCES

IN PARTIAL FUFILLMENT OF THE REQUIREMENTS FOR THE

AWARD OF DEGREE OF BACHELOR OF SCIENCE

MOUNTAIN TOP UNIVERSITY, IBAFO,

OGUN STATE, NIGERIA

2019

ii

CERTIFICATION

This Project titled, ONLINE STUDENT EXEAT SYSTEM (OSES), prepared and

submitted by AYOKHAI, JOSHUA OKHAI in partial fulfilment of the requirements for

the degree of BACHELOR OF SCIENCE (Computer Science), is hereby accepted

(Signature and Date)

Dr (Mrs.) O. O. Olaniyan

Supervisor

(Signature and Date)

 Dr I. O. Akinyemi

Head of Department

Accepted as partial fulfilment of the requirements for the degree of BACHELOR OF

SCIENCE (Computer Science)

 (Signature and Date)

Prof. A. I. Akinwande

Dean, College of Basic and Applied Sciences

iii

DEDICATION

This project is dedicated to God Almighty the giver of life and wisdom.

iv

ACKNOWLEDGEMENT

I would like to acknowledge the sustaining power of the Almighty God for wisdom and

understanding.

I would also like to acknowledge the Dean of the College of Basic and Applied Sciences Professor

A. I. Akinwande for his leadership and support, my Head of Department Dr I. O. Akinyemi, for

his support and guidance throughout my programme and the effort of my supervisor Dr. (Mrs.) O.

O. Olaniyan for taking the pains out of no time to attend to me.

I acknowledge the effort of all the academic and non-academic staff of the Department of

Computer Science and Mathematics for making my stay a worthwhile one Dr M. O. Oyetunji, Mr

O. J. Falana, Dr. (Mrs.) O. O. Olaniyan Dr. O. B. Alaba, Dr P. A. Idowu, Dr O. A. Ojesanmi, Dr

F. A. Kasali, Dr F. O. Oladeji, Mr. M. O. Okone, Mrs O. Taiwo and Mr. O. A. Taiwo.

Finally, I would like to appreciate my parents and my siblings for their love, support and care, and

my friends for being there for me. I say God bless you richly.

v

ABSTRACT

This project is an online exeat system developed for the Mountain Top University. The basic

problems facing exeat application and processing is that there is no system or database that keep

the record of the exeat taken by students. Also, the process is time consuming and sometimes

tedious, thus, there is a need to design and implement an exeat system. The aim of this project is

to create a database that stores the information about the exeats of students and develop an online

student exeat system for the use of Student Affairs Division of Mountain Top University.

This project is implemented using the Rapid Application Development Model for system

development. The problems facing the current system were analyzed and the following need were

identified which needed to be met. In prototyping, several versions of this solution were made.

During testing, the application’s implementation was checked to see if all the designs and ideas

are viable and to better adjust and fine-tune designs and features in the project.

This project was finally completed and implemented by the use of C sharp an. Microsoft Visual

Studio and Microsoft SQL server, and was run on a local server.

This project was done to develop an online student exeat system for the Mountain Top University

for the purpose of exeat application and management. The recommendation would be the

implementation and adaptation of this project onto their current system in order to improve the

management and information processing of their institution.

KEYWORDS: Exeat System, Exeat Processing, Exeat, Student Affairs, Web Application

vi

TABLE OF CONTENT

Content Page

Title Page i

Certification ii

Dedication iii

Acknowledgement iv

Abstract v

Table Of Content vi

List Of Figures ix

List Of Tables x

CHAPTER ONE: INTRODUCTION

1.1 Background to Study 1

1.2 Statement to the Problem 2

1.3 Aim and Objectives of the Study 2

1.4 Scope of the Study 2

1.5 Significance of the Study 3

1.6 Definition of Terms 3

 1.7 Organization of Subsequent Chapters 4

CHAPTER TWO: REVIEW OF LITERATURE

 2.0 Introduction 5

2.1 Overview of Exeat System 5

2.2 The Exeat System 5

2.3 Need for Exeat System 6

2.4 Automating the Exeat Process 6

2.5 Review of Relevant Literature 6

vii

Content Page

2.6 Limitation of the Existing System 8

CHAPTER THREE: METHODOLOGY

3.0 Introduction 9

3.1 Analysis of the Existing System 10

3.2 Justification of the New System 12

3.3 Methodology 13

3.3.1 C-sharp Programming Language 13

3.3.2 ASP .NET Web Application (with MVC) 13

3.3.3 Microsoft SQL Server Express 2017 13

3.3.4 Standard Query Language (SQL) 13

3.4 Categories of Design 14

3.4.1 Interface Design 14

3.4.2 Output Design 15

3.4.3 Database Design 16

3.4.4 Database UML 19

3.5.1 System Modules 20

3.5.2 Use Case Diagrams 20

3.5.3 System Flowchart 23

CHAPTER FOUR: DATA ANALYSIS, RESULTS AND DISCUSSION OF

FINDINGS

4.0 Introduction 25

4.1 Choice of programming language and technology 25

4.1.1 C-sharp Programming Language 25

4.1.1.1 Features 26

viii

Content Page

4.2.1 SQL 26

4.2.2 Visual Studio 2017 IDE 27

4.2.4 Microsoft SQL Server 27

4.2.5 ASP .NET Technology 28

4.3 The System Main Menu Implementation 28

4.4 System Testing 29

4.5 Test data 30

4.6 Snapshots of the System 30

CHAPTER FIVE: SUMMARY, CONCLUSION AND

RECOMMENDATION

5.0 Introduction 38

5.1 Summary 38

5.2 Finding and Discussion 38

5.3 Recommendation 39

5.4 Conclusion 39

References 40

Appendices 42

ix

LIST OF FIGURES

Figure Page

Figure 3.1. Rapid Application Development Life Cycle (KissFlow, 2019). 9

Figure 3.5.4.1 UML diagram illustrating the Database relations for the Online Student Exeat

System. 18

Figure 3.6.2.1 Use case diagram illustrating the Student User Processes 20

Figure 3.6.2.2 Use case diagram illustrating the Head of Department (H.O.D.) User Processes. 21

Figure 3.6.2.3 Use case diagram illustrating the Dean of Student Affairs (D.S.A.) / Vice

Chancellor (V.C.) User Processes. 21

Figure 3.6.2.4 Use case diagram illustrating Administrator User Processes. 22

Figure 3.6.3.1 Flowchart illustrating the Student Exeat Application Process. 23

Figure 3.6.3.2 Showing the Final Approval Process and Exeat Printing Process. 24

Figure 4.6.1 Home Page with Menu for Non-User. 30

Figure 4.6.2 Login Page for any user. 31

Figure 4.6.3 Home Page for Logged in Admin. 32

Figure 4.6.4 Index Page for Hall of Residence (Admin). 32

Figure 4.6.5 Index Page for Types of Exeats (Admin). 33

Figure 4.6.6 Add Exeat Type Page (Admin). 33

Figure 4.6.7 Add Department Page (Admin). 34

Figure 4.6.8 Index Page for Department (Admin). 34

Figure 4.6.9 Index Page for Students (Admin). 35

Figure 4.6.10 Create Exeat Page (Student). 35

Figure 4.6.11 Add Department Page (Admin). 36

Figure 4.6.12 Register New User Page. 36

Figure 4.6.13 All Exeat (Exeat Index) Page (Admin, Students, H.O.D., D.S.A., V.C.). 37

x

LIST OF TABLES

Table Page

Table 3.5.3.1 Exeat Model Design 15

Table 3.5.3.2 Exeat Type Model Design 15

Table 3.4.3.3 Student Model Design 16

Table 3.4.3.4 Hall of Residence Type Model Design 16

Table 3.4.3.5 Programme Model Design 16

Table 3.4.3.6 AspNetUsers Model Design 17

Table 3.4.3.7 User Type Model Design 17

Table 3.4.3.8 AspNetUserClaims Model Design 17

Table 4.3.1 Home Navigation Table. 29

1

CHAPTER ONE

INTRODUCTION

1.1 Background to the Study

The word ‘exeat’ is a general term used commonly to portray a period of absence from a Centre

of learning either for a day, or parts of a day for appointments, or other reasons in privately owned

academic environment or setting (Frischholz & Dieckmann, 2000). The current surge in computer

technology and its various and diverse applications in every aspect of society causes creative,

effective and confident use of Information and Communication Technology (ICT) an essential and

required skill for everyday living. ICT capability encompasses not only the mastery of technical

skills and techniques, it also facilitates the understanding of these skills in learning, everyday life

and employment. ICT capabilities are fundamental to participation and engagement in modern

society (Dutta, 2009). The idea of exeat is also used in certain learning institutions to describe a

note needed to take leave from the college or university either for whole days or sections of a day

for meetings, interviews, open days and other fixtures. The concern of access control is to

determine permitted activity of valid users, arbitrating any attempt by a user to access a resource

in the system. Several ways and techniques have been introduced to limit access to different fields

of human activities (Omidiora, Olabiyisi, Arulogun, Oyeleye, & Adegbola, 2009), but little has

been achieved about the exeat processing system in the private scholarly domain, such as the

Mountain Top University. The current manual file processing approach to exeat has been found to

be inert and in need of overhaul because it is not secure and can easily be duplicated or faked and

does not provide a proper and reliable student monitoring.

Today, growth in academics can be of various concerns. Academics today is made possible by

many structures and systems put in place to help simplify and achieve the goal of teaching and

research. One of these structures that cannot be overlooked is that of inter-personal relationships

between the students, the staff (whether academic or non-academic) and the management of the

academy of learning institution. Another issue we which must also not fail to notice is that of exeat

application and processing. For effective education to be rendered, there are some issues in the

academic environment that have to be properly addressed; a particular instance is the issue of the

exeat processing system in the university. These issues have thus created problems which inhibit

2

academic furtherance in various aspects if academic growth and advancement. To support this

proposed approach, this project identifies a range of options that can be used to manage and resolve

exeat application and processing. This thus includes, at a point where the opportunity presents

itself, the essential need for an administrator to appropriate every effort to resolve potential or

actual academic complaints as thoroughly as possible, hence, the need for this project.

1.1 Statement of the Problem

Design and implementation of the Online Student Exeat System is a web-based application that is

well needed in our modern society, and would solve some of the problems students face in the

university environment. The basic problems facing exeat application and processing is that there

is no system or database that keep the record of the exeat taken by students, as such no adequate

security measure is provided. Also, the process is time consuming and sometimes tedious.

Therefore, there is a need to design and implement an exeat system that would help monitor and

keep records of students that take exeat to leave the school for one reason or the other.

1.2 Aim and Objectives of the Study

The aim of this project is to design and implement an online student exeat system for the use of

Student Affairs Division of Mountain Top University, Ogun State. The specific objectives are to:

i. create a database that stores the information about the exeats of students

ii. develop an online student exeat system for the use of Student Affairs Division of

Mountain Top University.

1.3 Scope of the Study

This study is focused on the design and implementation of an online exeat system majorly for the

use of Student Affairs Division (SAD) of Mountain Top University, Ibafo, Ogun State. This system

would be used by the SAD to store exeat records of students and number of times the students

request for permission to leave the school premises.

3

1.4 Significance of the Study

This study would be of better benefit to Mountain Top University than the existing or current

system in place which is manualy oriented. This is as a result of a proper database that has an

effective and efficient way to store and manage the records of students. The system would easy to

use by the students at the time of application for exeat anytime and from anywhere. Nevertheless,

the Staff and Management can equally respond to student exeat by approving or declining the

exeat.

The study would also be significant to other institutions who also make room for exeat giving to

their students while on school campus. The developed application would be useful to other

researcher who would find the codes of this system useful as it would save time and cost of coding.

1.5 Definition of Terms

Academic: relating to schools, colleges and universities, or connected with studying and thinking,

not with practical skills.

College: Any place for specialized education after the age of 16 where people study or train to get

knowledge and/or skills.

Lecturer: Someone who teaches at a college or university.

Procedure: An established or correct method of doing something.

Registration: The process of enrolling at a college or university, choosing courses, and paying

fees at the beginning of an academic term.

Staff: the group of people who work for an organization.

Tedious: Boring because of being long, monotonous, or repetitive.

4

1.6 Organization of Subsequent Chapters

The chapters proceeding this chapter entail:

Chapter two - which gives a literature review on past and existing projects in the same are of exeat

systems and their management, the exeat system, its need and its importance.

Chapter three – gives an explanation of the systems development, modules and methodologies, as

well as the technologies involved.

Chapter four – gives an explanation of the completed system and the outputs.

Chapter five – this gives a summary of the entire project and well recommendations regarding it.

5

CHAPTER TWO

LITERATURE REVIEW

2.0 Introduction

An exeat typically means a written slip or piece of paper, authorizing permission for a particular

student to leave a school or college for a period of absence from a centre of learning either for

entire day, or parts of a day for appointments, interviews or other stated reasons from a privately-

owned academic environment. This section cover and overview of the exeat system, the need for

an exeat system and a review of relevant literatures and material that give insight on the subject.

2.1 Overview of Exeat System

The notion of exeat is used commonly for the description of a period of absenteeism from a centre

or institution of learning. It is also used at certain colleges to define a mandatory note to take

absence from the institution or school for either an entire day, or parts of a day for appointments,

interviews, open days and other fixtures or schedules (Frischholz & Dieckmann, 2000). Access

control or movement control is concerned with identifying allowed activities of authorized users,

facilitating every attempt by a user to access a resource in the system. Several measures and

methods have been put in place to control access to various paradigms of human activities

(Omidiora, 2009), but little has been done with regards to exeat monitoring system in the privately-

owned academic institution known as in the Mountain Top University Ibafo, Nigeria. The current

paper-based file processing system approach to exeat has been found to be inefficient because it

can be very slow and time consuming and does not provide a reliable student monitoring and

management solution.

2.2 The Exeat System

The term exeat usually denotes a written slip or piece of paper, authorizing permission for a

particular student to leave a school or college for a period of absence from a centre of learning

either for entire day, or parts of a day for appointments, interviews or other stated reasons from a

privately-owned academic environment. The current method of monitoring student’s movement is

stressful and brings difficulty to the university management process in checking and safeguarding

students’ exit/entry into the halls of residence.

6

2.3 Need for Exeat System

Because of the ever-present challenges faced in the simple problem of filing and managing exeats,

and keeping track of students on and off campus, an automated and computerized solution must

be put in place to address the challenges faced. In the article ‘Anytime anywhere-remote

monitoring of attendance system based on RFID using GSM network’ the writers established that

digital systems can basically solve the problems in the traditional system and thus increase the

efficiency of equipment management and maintenance (Singhal & Gujral 2012).

2.4 Automating the Exeat Process

The automation of the exeat system is a feat that has been attempted over the past few years by

different researches for simplification and ease of management. The principals involved in the

automation of the exeat system very closely mirrors that of the leave management system. Projects

like the Students Exeat Monitoring System Using Fingerprint Biometric Authentication and

Mobile Short Message Service (Olaniyi, 2012) and Leave Master (Leave Master, 2014) are similar

examples of systems with attempts to simplify the process and improve its efficiency. The

automation of the exeat system would be done with the use of various computer technologies like

computer programming and use of the internet and computer hardware.

2.5 Review of Relevant Literature

In 2014, an article on the design and implementation of an electronic exeat system was released in

the International Journal of Scientific and Engineering Research. The project encompassed several

principles in the overall design of an exeat and gave in-dept insight on the exeat application and

approval process in use in the institution of its application. The author consequently proposed that

the system would ‘ensure that unauthorized exits are prevented by the use of biometric

verification’ and took several measures to put that in place. In the same article, by Onuiri, et al.,

(2014) it was outlined that the system would require all students being registered biometrically,

which was the main base for security for the project. The was designed to also generate an

approximation of the total number of students on and off campus, at every given point in time by

implementing the following:

i. providing an efficient and more effective method of exeat processing/scheduling.

ii. defining a secured method of authorizing exit of individuals.

7

iii. confirming that students’ residence and exeat details would be registered, to exit

campus.

The above system was built with the particular needs of its case institution in mind and factors

particular to that institution were addressed.

Another material of interest that of Olaniyi, Omotosho, Oluwatosin, Adegoke & Akinmukomi

(2012). The project ‘Students Exeat Monitoring System Using Fingerprint Biometric

Authentication and Mobile Short Message Service’ was done with the area of SMS (Short Message

Service) technology as its main basis for communication among parties. The infrastructural model

for the system applied similar technologies like: Microsoft Visual Studio (.Net Framework), C-

sharp programming language, SQL programming language and Microsoft SQL Server 2005 for its

software development needs and other external infrastructures like: finger print scanner, database

server, SMS gateway and a biometric authentication framework for the complete implementation

and success of the project. The project was designed to signal a parent or guardian when their child

or ward was scheduled to leave the institution premises by locating the details of the student

through their fingerprint biometric data and then sending the details of the exeat application or

schedule to the parent or guardian through the use of and SMS. The system was automated by the

use of these technologies and was tested using actual students’ data in a typical university setting.

The system could in turn manage students who were out of school premises because it kept track

of those that had left and those who came back from their exeat were required to scan for a second

time, signalling their arrival back on the university campus.

Other projects or solutions which performed similar tasks to this exeat system are:

i. Leave and Absence Management System (LAMS) – Durham University: is an online

system for recording leave and absence of staffs in Durham University throughout all

departments. The system just like this project was created to replace the previous and

outdated paper-based system in use at the university. The system takes record leave of

absence for staffs in their categories according to their designations and provides

management information for proper staff management. The system helps process of

leave scheduling, making it more efficient and economical for both staff and

management respectively (Leave Master, 2014).

ii. Leave Master Software: this software solution is used for application of employee leave

across different organizations. It shortens process time and streamlines the entire leave

8

application and management process, eradicates the costly blunders and monitors all

categories of employee leave and absenteeism including holidays, training and sick

days and produces reports highlighting absence trends and patterns (Online Leave

Management System, 2019).

iii. Boarding School Students Monitoring System (E-ID) Using Radio Frequency

Identification: the application of RFID Matrix Card system as a monitoring system was

to improve school management and monitor interest group movement. The system used

main component of passive RFID system, database management system and wireless

networking (Kadir, Wahab & Kanafiah, 2009).

iv. An SMS and RFID-Based Notification System of Lipa City Colleges, Lipa City,

Batangas, Philippines: the researchers of this project conducted this system

development study which helped the school to solve the problem in monitoring the

students' whereabouts. It was aimed to design a system that would exploit the use of

SMS module and RFID technology and also develop a system which will guarantee the

privacy and security of information saved in a database (Mojares, Litan & Mojares,

2013).

2.6 Limitation of the Existing System

Below are stated key limitations to the current existing system in place in the University.

i. Lack of fitting security and upkeep of the complaint record in the system without proper

cloud storage and record keeping.

ii. Having a manual system may lead file loss of damage while the application is in transit

or even in storage. There is a lot of paper work resulting in slow data processing.

iii. Because the applications and files are only stored in paper, it is susceptible to damage

and destruction by fire, water or any accident that may occur in the work place and no

replacement record will be available. There is no system or database set up to screen

transfer of complaint submitted on paper or as verbal representation.

iv. Time Consuming and very tedious.

v. All information is not placed separately thus, relevant data cannot be extracted from it.

Thus, it is difficult to find records of past transactions due manual file management

system.

9

CHAPTER THREE

METHODOLOGY

3.0 Introduction

This project is implemented using the Rapid Application Development Model for system

development. This model breaks down the development process into several phases (KissFlow,

2019).

1. Define the requirements

2. Prototype

3. Receive Feedback

4. Finalize Software

Figure 3.1. Rapid Application Development Life Cycle (KissFlow, 2019).

10

1. Define the requirements – the problems facing the current system were analyzed and the

following need were identified which needed to be met. The requirements of this system

include:

i. An online implementation of a faster viable system to replace the current outdated

one.

ii. A system which can monitor students who are out of school and those who have

returned.

iii. A system which can allow for exeat application from anywhere and at any time.

iv. A system which exeat applications can be addressed irrespective of time and

location.

v. A system that would reduce the processing time for exeat applications.

2. Prototype – these are several versions of this solution. This involves multiple rounds of

dummy projects to test features and factors in the project and to determine the best possible

approach and method or attack to the problem at hand.

3. Receive Feedback – this is the information gotten from testing the applications

implementation to see if all the designs and ideas are viable and to better adjust and fine-

tune designs and features in the project.

4. Finalize Software – this is the point of project finalization and completion. The project is

now ready to be launched and implemented to solve its designated problems.

3.1 Analysis of the Existing System

The Mountain Top University has a very simple but rather stressful. The exeat application is done

manually on paper at the student affairs office.

When the Student Applies for the Exeat himself or in person, the process is as follows:

Step One: Form collection and form filling at the student affairs. At this initial phase, the student

appears at the student affairs office and asks for an exeat form. The form is then filled with the

necessary information i.e., Date of Exit, Date of Arrival, Full Name with Matriculation Number,

College, Department, Hall of Residence, Room Number, Purpose (Official/Unofficial), Reason for

Exeat and Student Signature with Date.

11

Step Two: The student takes the form back to their department in order to get a signature of

approval from his/her Head of Department (HOD) or acting Head of Department (Ag. HOD) who

if need be comment and endorse the exeat scheduling.

Step Three: The exeat form is then returned to the student affairs office for the Dean of Student

Affairs to append his/her signature.

Step Four: The exeat form is then forwarded to the Office of the Vice Chancellor (V.C.), where

the V.C. would then append his/her signature if he/she sees the reason tangible and acceptable.

The Exeat is then returned to the student affairs office where the student would then pick it up for

use.

The entire process would take a minimum of two days (2 days) at best with consecutive follow-up

to be approved and returned to the student for use. This process is very tedious and time wasting.

A copy of the exeat form is then retained by the student affairs office and filed in their records,

leaving them with only a physical copy and no digital evidence for the exeat. If the information is

ever to be retrieved, it would take some time as there would have to be a lot o sorting in order to

locate the only copy or evidence of the exeat.

The system in use in this case study is the outdated manual File Processing System (FPS) wherein

exeats are made by writing them down twice, then the student carries it around to the different

offices in order to get it sign and as such may not meet any of the principal officers on-seat at

arrival and thus the exeat is delayed. This system is an unnecessary waste of paper and resources

when it could be done from anywhere on an online mobile platform. This system is time wasting,

inefficient and slow. With this system, the students are eased of the stress of running around to

find staff, and the entire process can happen faster, from anywhere, and not waste any stationary

resource. The at the end of the cycle of the current system, the student checks back in at the student

affairs and the process is complete. This new system will all the entire event to be tracked and

monitored accurately and efficiently, with every action and decision properly documented and

stored appropriately with excellent record keeping and ease of referencing.

12

3.2 Justification of the New System

The proposed system will serve to accomplish certain objectives and thus bring solutions to the

problems identified in the current existing system and in this project. This newly proposed online

system will achieve:

1. A secure and accurate upkeep of the exeat record in the system with proper cloud storage

and record keeping.

2. A system and database set up to catalogue exeats submitted on paper or as verbal

representation

3. Time saving and stress-free exeat application and processing.

4. Properly structured information from which relevant data can be mined and processed for

study and data mining.

5. Less paper work resulting in faster data processing and efficient use of resources.

6. Ease of record location and record tracking.

3.3 Methodology

This project is programmed and implemented with the use and aid of the Microsoft Visual Studios

2017 alongside Microsoft SQL Server 2017.

3.3.1 C-sharp Programming Language

A developed by the company Microsoft, it is on this programming language that most of this entire

is mostly built upon. It basically is the back-bone of this project and essentially most of the coding

done is in this language.

3.3.2 ASP .NET Web Application (with MVC)

.NET is a developer platform that consists of instruments, programming languages and libraries to

build a wide variety of apps. The base platform offers parts for all kinds of applications. This will

enable user login systems with personal accounts that provide adequate security and privacy for

user information and safeguard data stored in the Online Student Exeat System with individual

authentication implemented. The Model View Controller (MVC) also makes the application

compartmentalized for easy debugging, maintenance, upgrades and adding special features. The

13

MVC categories the web application into the model (in which the database models are defined,

alongside the relationships and structures), the View (where all views and forms are set and defined

with their functions and benefits) and at last the Controller (which determines the interaction and

communication between the Model and View and facilitates the interaction between the entire

application and the SQL support database to send data queries to the Microsoft SQL server

database).

3.3.3 Microsoft SQL Server Express 2017

The SQL Server implemented in this Web application for storing all the data involved in tables,

their formatting, schema and values for convenient access, manipulation and storage.

3.3.4 Standard Query Language (SQL)

This is a programming language implemented to facilitate the transmission of data and queries

between the C-sharp code of the front-end of the application and the Microsoft SQL server. It is

one of the most popular query languages in use today and is implemented all over the world

because of its robust and extensive vocabulary.

3.4 Categories of Design

The planning and architecture of this project are thoroughly broken down, and subdivided into

several categories. This decomposition is necessary in order to have a full grasp of the processes

involved and measures taken to ensure its success. The design categories are divided as such:

i. Input Design - designs and plans with regard to user input and queries.

ii. Output Design - designs and plans with regard to the application output and feedback.

iii. Database Design - designs and plans with regards to database schema, architecture and

overall inter-relation.

3.4.1 Interface Design

This encompasses the designs for all the interfaces utilized in the application. These interfaces are

divided into different groups as there will be different types of users with different needs, functions

and responsibilities. The types of user are:

14

1. Student User – this user is the student. This user has interfaces for:

i. Login – containing two texts boxes for username and password and a login

button.

ii. Dashboard - containing list of all actions.

iii. Exeat Application

iv. List of Exeats applied for

v. Print Exeat

2. Departmental User – this user is the Head of Department. This user has interfaces for:

i. Login – containing two texts boxes for username and password and a login

button.

ii. Dashboard - containing list of all actions.

iii. Exeat Approval

iv. List of Exeats Pending and Approved

3. Student Affairs/Vice Chancellor User – this user is a Student Affairs officer or the

Vice-Chancellor. This user has interfaces for:

i. Login – containing two texts boxes for username and password and a login

button

ii. Dashboard - containing list of all actions.

iii. Exeat Approval

iv. List of Exeats Pending and Approved

3.4.2 Output Design

This encompasses the designs for all the output for the system. This output is limited to the exeat

completed exeat form to be printed by the student upon approval of the exeat application. It is to

contain information regarding:

i. The student’s name

ii. Department

iii. Matriculation Number

iv. Department

15

v. College/Faculty

vi. Name of Head of Department and Date of Approval

vii. Name of Student Affairs Officer who approved the Exeat and date of approval or the

Vice Chancellors name and date of approval.

3.5.3 Database Design

1. Exeat Model Design

Exeat necessity Data

Type

Id Auto

Gen.

string (PK)

official Required bool

Title Required

Body Required

Depart Required

Arrive Required

ExeatType Required

HODStatus

int

SAStatus

Type_Name required bool

user_matric_no required string (FK)

Table 3.5.3.1 Exeat Model Design

The above text is the design of the Exeat Model without Departmental and Student Affairs/Vice

Chancellor’s Approval. It shows the Id as the Primary Key and user_matric_no as a foreign key

for the Student Model and Exeat Type Models respectively.

2. Exeat Type Model Design

Exeat Type necessity Data

Type

Name required string PK

Table 3.5.3.2 Exeat Type Model Design

16

3. Student Model Design

Student necessity Data Type

matric_no Auto

Gen.

string PK

first_name required string

last_name Auto

Gen.

string

othername required string

room_no required int

HallofReside required string FK

Programme required string FK

HType_Name required date

Type_Name optional date

user_id Required int FK

Table 3.4.3.3 Student Model Design

4. Hall of Residence Model Design

HALL OF

RESIDENCE

necessity Data

Type

length

Name required string PK

Table 3.4.3.4 Hall of Residence Type Model Design

5. Programme Model Design

Programme necessity Data

Type

length

Name required string PK

Table 3.4.3.5 Programme Model Design

17

6. AspNetUsers Model Design

AspNetUsers necessity Data

Type

Id required string PK

Email required string

EmailConfirmed required string

PasswordHash required string

SecurityStamp string

PhoneNumber int

PhoneNumberConfirmed string

TwoFactorEnabled string

LockoutEndDateUtc

LockoutEabled

AccessFailedCount

UserName required

Table 3.4.3.6 AspNetUsers Model Design

7. AspNetRoles Model Design

AspNetRoles necessity Data

Type

Id required string PK

Name required string

Table 3.4.3.7 User Type Model Design

8. AspNetUserClaims Model Design

USER TYPE necessity Data Type

Id required string PK

UserId required string

ClaimType stringstring

ClaimValue

Table 3.4.3.8 AspNetUserClaims Model Design

18

3.5.4 Database UML

Figure 3.5.4.1 UML diagram illustrating the Database relations for the Online Student Exeat

System.

19

3.6.1 System Modules

Login/Authentication Module: in this module, whichever user logs in will be logged into their own

profile with their profile type. In this case, the username and password used for authentication will

be supplied and when the system confirms its accuracy, the user is logged in.

Edit Password Module: This is available to the user at any time when logging in with the default

password allocated by the system, or when his/her password is restored to the default password by

the administrator upon the user’s request.

Exeat Application Module: This allows a student to either schedule for a long-term exeat or short-

term exeat.

All Exeats Module: Depending on the user type, it displays all the exeats the user has interacted

with, that is, in the case of a student, all exeats allied for (whether past, pending or approved) either

students may also view personal exeat history on the web application.

Logout Module: The user after exeat processing is expected to log out here.

Dashboard Interface: This application being a web application will be accessed through the

internet. All users of this interface as regards will have it tailored to their user type. Its modules

generic modules include: the login module, the edit password module, all exeats module, search

module. Others as per user type include: for the student user – exeat application module, exeat

printing module; for the Heads of Departments, Student Affairs Officer and Vice Chancellor –

approve exeats. The view and process exeat module, the search module and the logout module:

Reset Password Module: Here, the administrator may reset to default his/her password or the

password of a user as requested.

Register a Student Module: This module is for the registration of students as required. The student

table would be populated from the school’s record of students registered that semester on campus,

thus, this module is present for likelihoods in the occurrence of hall of residence change or in case

of an error in terms of student’s hall as registered in the school’s database.

Exeats Processing Module: This module is the heart of this interface. The Head of

Department/Dean of Students Affairs or the Vice Chancellor may view and sort exeats at his/her

convenience to make it easier to analyse exeats and authenticate. All exeats irrespective of type

20

may be viewed based on date or type. Also, all short exeats may be distinguished from the long

exeats as well as official and unofficial exeats; all pending exeats may also be differentiated from

permitted exeats or denied exeats and so on. The exeats may be viewed as a table or singularly

with more details as would be seen in the user guide below. As each exeat is viewed an exeat

history of that student under view for that semester is shown. Changes are also all automatically

saved.

Search Module: this allows Head of Department/Dean of Students Affairs or the Vice Chancellor

to search for exeat records, based on name or matriculation number.

Logout Module: After carrying out exeat application/authorization, every user is expected to

logout here.

3.6.2 Use Case Diagrams

The use case diagrams depicted below show the different types of user and their interaction with

the system showing the relationship between the users.

Figure 3.6.2.1 Use case diagram illustrating the Student User Processes

21

Figure 3.6.2.2 Use case diagram illustrating the Head of Department (H.O.D.) User Processes

Figure 3.6.2.3 Use case diagram illustrating the Dean of Student Affairs (D.S.A.) / Vice Chancellor

(V.C.) User Processes

22

Figure 3.6.2.4 Use case diagram illustrating Administrator User Processes

23

3.6.3 System Flowchart

Figure 3.6.3.1 Flowchart illustrating the Student Exeat Application Process

24

Figure 3.6.3.2 Showing the Final Approval Process and Exeat Printing Process.

This involves the Student Module, Department Module and Student Affairs and Vice Chancellor

Approval Phase.

25

CHAPTER FOUR

DATA ANALYSIS, RESULTS AND DISCUSSION OF FINDINGS

4.0 Introduction

This chapter comprises of information pertaining to the resulting solution produced from the earlier

stated technology involved in the implementation of the project and takes an in-dept look on their

characteristics.

4.1 Choice of programming language and technology

The selected technologies and programming languages implemented are as follows.

4.1.1 C-sharp Programming Language

C# is a modern, general-purpose, object-oriented programming language developed by Microsoft

and approved by European Computer Manufacturers Association (ECMA) and International

Standards Organization (ISO).

C# was developed by Anders Hejlsberg and his team during the development of .Net Framework.

C# is designed for Common Language Infrastructure (CLI), which comprises of the executable

code and the runtime environment which allows implementation of various high-level languages

(H.L.L.) on diverse computer architectures and platforms.

The following reasons make C# a widely used professional language −

• Produces efficient programs.

• Can be compiled on a variety of computer platforms.

• Component oriented.

• Easy to learn.

• Part of .Net Framework.

• Modern, general-purpose programming language

• Object oriented.

26

• Structured language.

4.1.1.1 Features

C-sharp constructs closely follow conventional high-level languages (H.L.L) just like C++ and

C, being an object-oriented programming language. It has strong similarities with Java, it has

many strong programming features that make it endearing to a number of programmers

worldwide.

Important features of C-sharp include but are not limited to Boolean Conditions, Automatic

Garbage Collection, Standard Library, Assembly Versioning, Properties and Events, Delegates

and Events Management, Easy-to-use Generics, Indexers, Conditional Compilation, Simple

Multithreading, LINQ and Lambda Expressions and also Integration with Windows.

4.2.2 SQL

SQL is Structured Query Language, which is a computer language created for manipulating,

storing and retrieving data stored/archived in a relational database.

SQL is a language to operate databases; it includes database creation, deletion, fetching rows,

modifying rows, etc. SQL is an ANSI (American National Standards Institute) standard language,

but many versions of the SQL language exist and are in use.

Relational Database System has SQL as its standard language. All the Relational Database

Management Systems (RDMS) like MySQL, MS Access, Oracle, Sybase, Informix, Postgres and

SQL Server use SQL as their standard database language.

SQL is widely popular because it offers the following advantages −

• Allows users to access data in the relational database management systems.

• Allows users to describe the data.

• Allows users to define the data in a database and manipulate that data.

• Allows to embed within other languages using SQL modules, libraries & pre-compilers.

• Allows users to create and drop databases and tables.

27

• Allows users to create view, stored procedure, functions in a database.

• Allows users to set permissions on tables, procedures and views.

4.2.1 Visual Studio 2017 IDE

Microsoft Visual Studio is an integrated development environment (IDE) from Microsoft. It is

used to develop computer programs, as well as websites, web apps, web services and mobile apps.

Visual Studio uses Microsoft software development platforms such as Windows API, Windows

Forms, Windows Presentation Foundation, Windows Store and Microsoft Silverlight. It can

produce both native code and managed code.

Visual Studio includes a code editor supporting IntelliSense (the code completion component) as

well as code refactoring. The integrated debugger works both as a source-level debugger and a

machine-level debugger. Other built-in tools include a code profiler, forms designer for

building GUI applications, web designer, class designer, and database schema designer. It accepts

plug-ins that enhance the functionality at almost every level—including adding support for source

control systems (like Subversion and Git) and adding new toolsets like editors and visual designers

for domain-specific languages or toolsets for other aspects of the software development

lifecycle (like the Team Foundation Server client: Team Explorer).

Visual Studio supports 36 different programming languages and allows the code editor and

debugger to support (to varying degrees) nearly any programming language, provided a language-

specific service exists. Built-in languages include C, C++, C++/CLI, Visual Basic .NET, -

sharp, F-sharp, JavaScript, TypeScript, XML, XSLT, HTML, and CSS. Support for other

languages such as Python, Ruby, Node.js, and M among others is available via plug-

ins. Java (and J#) were supported in the past.

4.2.2 Microsoft SQL Server

The Microsoft SQL Server created by Microsoft, is a relational database management system

(RDBMS) that supports a wide variety of transaction processing, business intelligence and

analytics applications in corporate IT environments. Microsoft SQL Server is one of the three

market-leading database technologies, along with Oracle Database and IBM.

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Web_site
https://en.wikipedia.org/wiki/Web_app
https://en.wikipedia.org/wiki/Web_service
https://en.wikipedia.org/wiki/Mobile_app
https://en.wikipedia.org/wiki/Windows_API
https://en.wikipedia.org/wiki/Windows_Forms
https://en.wikipedia.org/wiki/Windows_Forms
https://en.wikipedia.org/wiki/Windows_Presentation_Foundation
https://en.wikipedia.org/wiki/Windows_Store
https://en.wikipedia.org/wiki/Microsoft_Silverlight
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Managed_code
https://en.wikipedia.org/wiki/Code_editor
https://en.wikipedia.org/wiki/IntelliSense
https://en.wikipedia.org/wiki/Code_completion
https://en.wikipedia.org/wiki/Code_refactoring
https://en.wikipedia.org/wiki/Microsoft_Visual_Studio_Debugger
https://en.wikipedia.org/wiki/Profiling_(computer_programming)
https://en.wikipedia.org/wiki/GUI
https://en.wikipedia.org/wiki/Web_designer
https://en.wikipedia.org/wiki/Class_(computing)
https://en.wikipedia.org/wiki/Database_schema
https://en.wikipedia.org/wiki/Source_control
https://en.wikipedia.org/wiki/Source_control
https://en.wikipedia.org/wiki/Subversion_(software)
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Software_development_lifecycle
https://en.wikipedia.org/wiki/Software_development_lifecycle
https://en.wikipedia.org/wiki/Team_Foundation_Server
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/C%2B%2B/CLI
https://en.wikipedia.org/wiki/Visual_Basic_.NET
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/F_Sharp_(programming_language)
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/TypeScript
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/XSLT
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/MUMPS
https://en.wikipedia.org/wiki/Plug-in_(computing)
https://en.wikipedia.org/wiki/Plug-in_(computing)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/J_Sharp

28

Like other RDBMS software, Microsoft SQL Server is built on top of SQL, a standardized

programming language that database administrators (DBAs) and other IT professionals use to

manage databases and query the data they contain. SQL Server is tied to Transact-SQL (T-SQL),

an implementation of SQL from Microsoft that adds a set of proprietary programming extensions

to the standard language.

Microsoft also bundles a variety of data management, business intelligence (BI) and analytics tools

with SQL Server. In addition to the R Services and now Machine Learning Services technology

that first appeared in SQL Server 2016, the data analysis offerings include SQL Server Analysis

Services, an analytical engine that processes data for use in BI and data visualization applications,

and SQL Server Reporting Services, which supports the creation and delivery of BI reports.

On the data management side, Microsoft SQL Server includes SQL Server Integration Services,

SQL Server Data Quality Services and SQL Server Master Data Services. Also bundled with the

DBMS are two sets of tools for DBAs and developers: SQL Server Data Tools, for use in

developing databases, and SQL Server Management Studio, for use in deploying, monitoring and

managing databases.

4.2.3 ASP .NET Technology

.NET is a developer platform that consists of instruments, programming languages and libraries to

build a wide variety of apps. The base platform offers parts for all kinds of applications. Additional

frameworks like ASP.NET extend. NET with parts to create particular kinds of applications.

4.3 The System Main Menu Implementation

The system was designed to have a Home Page, which serves as the Dashboard and has a menu of

options which the user can choose in order to perform an action. Some of the pages only appear

for role specific users, others are generic for access to anyone. Below is a table showing the links

in the main menu, its navigation, their controller, links and role:

https://searchdatamanagement.techtarget.com/definition/RDBMS-relational-database-management-system
https://searchsqlserver.techtarget.com/definition/SQL
https://searchsqlserver.techtarget.com/definition/database-administrator
https://searchsqlserver.techtarget.com/definition/T-SQL
https://searchbusinessanalytics.techtarget.com/definition/business-intelligence-BI
https://searchenterpriseai.techtarget.com/definition/machine-learning-ML
https://searchsqlserver.techtarget.com/definition/Microsoft-SQL-Server-Management-Studio-SSMS

29

 Navigation Controller Link Role

1 Home HomeController /Home

2 About HomeController /About

3 Contact HomeController /Contact

4 Exeats ExeatController /Exeats Admin, Student,

HOD, DSA, VC

5 Hall of Residence HallofResideController /HallofResides Admin

6 Exeat Type ExeatTypeController /ExeatTypes Admin

7 Department DepartmentController /Departments Admin

8 Students StudentController /Students Admin, User

9 Login AccountController /Account/Login

Table 4.3.1 Home Navigation Table.

4.4 System Testing

This is the main control measure used in the creation of software to guarantee service quality. The

fundamental role is to identify software errors and guarantee that all requirements are adequately

met. The computer software will then be performed and debugged after the coding stage. This

means that the testing must not only reveal mistakes that were introduced during coding, but also

mistakes that were implemented during the earlier stage. The objective of testing is therefore to

uncover the program specifications, design and coding mistakes.

Objectives of testing

All objectives to this are clear and definite.

i. Executing the program with the intent of finding errors or problem at compilation.

ii. Using sample or dummy data in check data entry points and for functionality or faults.

iii. Testing the application module by module, allowing problems and faults to be pin pointed

and located at the specific point where they may arise.

30

After counter to the commonly held view than a successful test is one in which no errors are found.

In fact, our objective is to design tests that a systematically uncover different classes of errors and

do so with a minimum amount of time and effort.

4.5 Test data

The test data used in the testing of this project is fictional and only valid for tests. All information

is random and not real: the previewed exeat application cases a fictional, only generated for the

testing phase of the project.

4.6 Snapshots of the System

Figure 4.6.1 Home Page with Menu for Non-User.

31

Figure 4.6.2 Login Page for any user.

32

Figure 4.6.3 Home Page for Logged in Admin.

Figure 4.6.4 Index Page for Hall of Residence (Admin)

33

Figure 4.6.5 Index Page for Types of Exeats (Admin)

Figure 4.6.6 Add Exeat Type Page (Admin)

34

Figure 4.6.7 Add Department Page (Admin)

Figure 4.6.8 Index Page for Department (Admin)

35

Figure 4.6.9 Index Page for Students (Admin)

Figure 4.6.10 Create Exeat Page (Student)

36

Figure 4.6.11 Add Department Page (Admin)

Figure 4.6.12 Register New User Page.

37

Figure 4.6.13 All Exeat (Exeat Index) Page (Admin, Students, H.O.D., D.S.A., V.C.).

38

CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.0 Introduction

This chapter consists of a comprehensive summary of the entire right up, findings in regard to the

background study and implementation, suggestions for further work and lastly, a recommendation

regarding the use and application of the solution produced in the course of this project.

5.1 Summary

A working system was developed with the Microsoft ASP .NET using Entity Framework and

Bootstrap (for the frontend), and with use of Visual Studio 2017 and Microsoft SQL Server 2014.

The project was implemented to have four categories of users:

i. Student

ii. Admin

iii. H.O.D.

iv. DSA/VC (Dean of Student Affairs or Vice Chancellor as the case may be).

The user types were designated different privileges in terms of access to data and queries. The

Student user was allowed the login access and exeat creation and deletion and the ability to print

his/her exeat, the Heads of Departments, Dean of Student Affairs and Vice Chancellor were given

access to exeat records of their respective departments and access to all existing exeats

respectively. Lastly, the administrator has complete control over the entire system and can add

users and modify any user data existing on the system and can print any record within the system.

5.2 Limitation of Study

This project was completely implemented and completed, however, certain limitations were

identified and caused major difficulties and delays. They are:

i. Scarcity of previous work

ii. Lack of privileges to access proper student data and scheme

iii. Lack of previously filed information for exeats

39

5.3 Recommendation

A strong recommendation to the management of the Mountain Top University and any other

tertiary institution utilizing the exeat system for student movement, would be the implementation

and adaptation of this project onto their current system in order to improve the management and

information processing of their institution.

5.4 Conclusion

The aim of this project was to develop an online student exeat system for the Mountain Top

University for the purpose of exeat application and management. The project was to implement it

with the use of technologies like the Microsoft Visual Studio 2017, Microsoft SQL Server 2014,

Entity Framework, C sharp programming language and SQL. The process of exeat application was

thus simplified and converted into a web application solution (OSES) and implemented.

40

References

Dutta, S. (2009). Global information technology report 2008-2009.

Frischholz, R. W., & Dieckmann, U. J. C. (2000). BiolD: a multimodal biometric identification

system. 33(2), 64-68.

Kadir, H. B. A., Wahab, M. H. A., & Kanafiah, S. N. A. B. M. (2009). Boarding School Students

Monitoring Systems (E-ID) Using Radio Frequency Identification. Journal of Social Sciences,

5(3), 206-211.

KissFlow. Rapid Application Development Life Cycle. (2018) Retrieved from

https://kissflow.com/rad/rapid-application-development/

Leave Master. (2014). Retrieved from http://www.leavemaster.com/.

Mojares, P. V., Litan, G. A. T., & Mojares, J. G. (2013). INOTIFIED: AN SMS AND RFID-

BASED NOTIFICATION SYSTEM OF LIPA CITY COLLEGES, LIPA CITY, BATANGAS,

PHILIPPINES. Journal of Applied Global Research, 6(18).

Olaniyi, O.M, Omotosho. A, Oluwatosin E.A, Adegoke M.A & Akinmukomi, T (2012). Students

Exeat Monitoring System Using Fingerprint Biometric Authentication and Mobile Short Message

Service. The Don International Journal of ICT and Youth Development (2012). 2(1), 76-85.

Omidiora, E., Olabiyisi, S., Arulogun, O., Oyeleye, C., & Adegbola, A. J. A. P., Obafemi

Awolowo University. Ile-Ife. Nigeria. (2009). A Prototype of An Access Control System For a

Computer Laboratory Scheduling. 114-120.

Onuiri, E. E., Odukoya, A., Yadeka, C. & Nzei, M (2014). Design and Implementation of an

Electronic Exeat System. International Journal of Scientific and Engineering Research. 5(4).

41

Online Leave Management System (2019): Retrieved from http://www.planmyleave.com June

17th 2019.

Rapid Application Development Life Cycle. Retrieved from https://kissflow.com/rad/rapid-

application-development/ on the 17th June 2019.

Singhal, Z., & Gujral, R. K. (2012). Anytime anywhere-remote monitoring of attendance system

based on RFID using GSM network. International Journal of Computer Applications, 39(3), 37-

41.

42

APPENDICES

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

namespace OSES.Models.OSES
{
 public class Exeat
 {
 public int Id { get; set; }
 public bool official { get; set; }
 public string Title { get; set; }
 public string Body { get; set; }
 public string Depart { get; set; }
 public string Arrive { get; set; }

 public Student user { get; set; }

 public string ExeatType { get; set; }
 public ExeatType Type { get; set; }

 public bool HODStatus { get; set; }
 public bool SAStatus { get; set; }
 }

}

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.Linq;
using System.Web;

namespace OSES.Models.OSES
{
 public class Student
 {
 [Key]
 public int matric_no { get; set; }
 public string first_name { get; set; }
 public string last_name { get; set; }
 public string othername { get; set; }
 public int room_no { get; set; }

 public string HallofReside { get; set; }
 public HallofReside HType { get; set; }

 public string Programme { get; set; }
 public Programme Type { get; set; }

 public RegisterViewModel user { get; set; }

 public List<Exeat> Exeat { get; set; }
 }

43

}

using System.Data.Entity;
using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.EntityFramework;

namespace OSES.Models
{
 // You can add profile data for the user by adding more properties to your
ApplicationUser class, please visit https://go.microsoft.com/fwlink/?LinkID=317594 to
learn more.
 public class ApplicationUser : IdentityUser
 {
 public async Task<ClaimsIdentity>
GenerateUserIdentityAsync(UserManager<ApplicationUser> manager)
 {
 // Note the authenticationType must match the one defined in
CookieAuthenticationOptions.AuthenticationType
 var userIdentity = await manager.CreateIdentityAsync(this,
DefaultAuthenticationTypes.ApplicationCookie);
 // Add custom user claims here
 return userIdentity;
 }
 }

 public class ApplicationDbContext : IdentityDbContext<ApplicationUser>
 {
 public ApplicationDbContext()
 : base("DefaultConnection", throwIfV1Schema: false)
 {
 }

 public static ApplicationDbContext Create()
 {
 return new ApplicationDbContext();
 }
 }
}

using OSES.Models.OSES;
using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace OSES.Models
{
 public class ExternalLoginConfirmationViewModel
 {
 [Required]
 [Display(Name = "Email")]
 public string Email { get; set; }
 }

 public class ExternalLoginListViewModel
 {

44

 public string ReturnUrl { get; set; }
 }

 public class SendCodeViewModel
 {
 public string SelectedProvider { get; set; }
 public ICollection<System.Web.Mvc.SelectListItem> Providers { get; set; }
 public string ReturnUrl { get; set; }
 public bool RememberMe { get; set; }
 }

 public class VerifyCodeViewModel
 {
 [Required]
 public string Provider { get; set; }

 [Required]
 [Display(Name = "Code")]
 public string Code { get; set; }
 public string ReturnUrl { get; set; }

 [Display(Name = "Remember this browser?")]
 public bool RememberBrowser { get; set; }

 public bool RememberMe { get; set; }
 }

 public class ForgotViewModel
 {
 [Required]
 [Display(Name = "Email")]
 public string Email { get; set; }
 }

 public class LoginViewModel
 {
 [Required]
 [Display(Name = "Email")]
 [EmailAddress]
 public string Email { get; set; }

 [Required]
 [DataType(DataType.Password)]
 [Display(Name = "Password")]
 public string Password { get; set; }

 [Display(Name = "Remember me?")]
 public bool RememberMe { get; set; }
 }

 public class RegisterViewModel
 {
 [DatabaseGenerated(DatabaseGeneratedOption.Identity)]
 [Key]
 [Required]
 public string Id { get; set; }

 [Required]

45

 [EmailAddress]
 [Display(Name = "Email")]
 public string Email { get; set; }

 [Required]
 //[StringLength(100, ErrorMessage = "The {0} must be at least {2} characters
long.", MinimumLength = 6)]
 [DataType(DataType.Password)]
 [Display(Name = "Password")]
 public string Password { get; set; }

 [DataType(DataType.Password)]
 [Display(Name = "Confirm password")]
 [Compare("Password", ErrorMessage = "The password and confirmation password do
not match.")]
 public string ConfirmPassword { get; set; }

 public IList<Student> Students { get; set; }
 }

 public class ResetPasswordViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email")]
 public string Email { get; set; }

 [Required]
 //[StringLength(100, ErrorMessage = "The {0} must be at least {2} characters
long.", MinimumLength = 6)]
 [DataType(DataType.Password)]
 [Display(Name = "Password")]
 public string Password { get; set; }

 [DataType(DataType.Password)]
 [Display(Name = "Confirm password")]
 [Compare("Password", ErrorMessage = "The password and confirmation password do
not match.")]
 public string ConfirmPassword { get; set; }

 public string Code { get; set; }
 }

 public class ForgotPasswordViewModel
 {
 [Required]
 [EmailAddress]
 [Display(Name = "Email")]
 public string Email { get; set; }
 }
}
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using Microsoft.AspNet.Identity;
using Microsoft.Owin.Security;

namespace OSES.Models
{

46

 public class IndexViewModel
 {
 public bool HasPassword { get; set; }
 public IList<UserLoginInfo> Logins { get; set; }
 public string PhoneNumber { get; set; }
 public bool TwoFactor { get; set; }
 public bool BrowserRemembered { get; set; }
 }

 public class ManageLoginsViewModel
 {
 public IList<UserLoginInfo> CurrentLogins { get; set; }
 public IList<AuthenticationDescription> OtherLogins { get; set; }
 }

 public class FactorViewModel
 {
 public string Purpose { get; set; }
 }

 public class SetPasswordViewModel
 {
 [Required]
 //[StringLength(100, ErrorMessage = "The {0} must be at least {2} characters
long.", MinimumLength = 6)]
 [DataType(DataType.Password)]
 [Display(Name = "New password")]
 public string NewPassword { get; set; }

 [DataType(DataType.Password)]
 [Display(Name = "Confirm new password")]
 [Compare("NewPassword", ErrorMessage = "The new password and confirmation
password do not match.")]
 public string ConfirmPassword { get; set; }
 }

 public class ChangePasswordViewModel
 {
 [Required]
 [DataType(DataType.Password)]
 [Display(Name = "Current password")]
 public string OldPassword { get; set; }

 [Required]
 //[StringLength(100, ErrorMessage = "The {0} must be at least {2} characters
long.", MinimumLength = 6)]
 [DataType(DataType.Password)]
 [Display(Name = "New password")]
 public string NewPassword { get; set; }

 [DataType(DataType.Password)]
 [Display(Name = "Confirm new password")]
 [Compare("NewPassword", ErrorMessage = "The new password and confirmation
password do not match.")]
 public string ConfirmPassword { get; set; }
 }

 public class AddPhoneNumberViewModel

47

 {
 [Required]
 [Phone]
 [Display(Name = "Phone Number")]
 public string Number { get; set; }
 }

 public class VerifyPhoneNumberViewModel
 {
 [Required]
 [Display(Name = "Code")]
 public string Code { get; set; }

 [Required]
 [Phone]
 [Display(Name = "Phone Number")]
 public string PhoneNumber { get; set; }
 }

 public class ConfigureTwoFactorViewModel
 {
 public string SelectedProvider { get; set; }
 public ICollection<System.Web.Mvc.SelectListItem> Providers { get; set; }
 }
}

<?xml version="1.0" encoding="utf-8"?>
<!--
 For more information on how to configure your ASP.NET application, please visit
 https://go.microsoft.com/fwlink/?LinkId=301880
 -->
<configuration>
 <configSections>
 <!-- For more information on Entity Framework configuration, visit
http://go.microsoft.com/fwlink/?LinkID=237468 -->
 <section name="entityFramework"
type="System.Data.Entity.Internal.ConfigFile.EntityFrameworkSection, EntityFramework,
Version=6.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
requirePermission="false" />
 </configSections>
 <connectionStrings>
 <add name="DefaultConnection" connectionString="Data
Source=(LocalDb)\MSSQLLocalDB;AttachDbFilename=|DataDirectory|\OSES.mdf;Initial
Catalog=OSES;Integrated Security=True"
 providerName="System.Data.SqlClient" />
 </connectionStrings>
 <appSettings>
 <add key="webpages:Version" value="3.0.0.0" />
 <add key="webpages:Enabled" value="false" />
 <add key="ClientValidationEnabled" value="true" />
 <add key="UnobtrusiveJavaScriptEnabled" value="true" />
 </appSettings>
 <system.web>
 <authentication mode="None" />
 <compilation debug="true" targetFramework="4.5.2" />
 <httpRuntime targetFramework="4.5.2" />
 <httpModules>

48

 <add name="ApplicationInsightsWebTracking"
type="Microsoft.ApplicationInsights.Web.ApplicationInsightsHttpModule, Microsoft.AI.Web"
/>
 </httpModules>
 </system.web>
 <system.webServer>
 <modules>
 <remove name="FormsAuthentication" />
 <remove name="ApplicationInsightsWebTracking" />
 <add name="ApplicationInsightsWebTracking"
type="Microsoft.ApplicationInsights.Web.ApplicationInsightsHttpModule, Microsoft.AI.Web"
preCondition="managedHandler" />
 </modules>
 <validation validateIntegratedModeConfiguration="false" />
 </system.webServer>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="Microsoft.Owin.Security"
publicKeyToken="31bf3856ad364e35" />
 <bindingRedirect oldVersion="1.0.0.0-3.0.1.0" newVersion="3.0.1.0" />
 </dependentAssembly>
 <dependentAssembly>
 <assemblyIdentity name="Microsoft.Owin.Security.OAuth"
publicKeyToken="31bf3856ad364e35" />
 <bindingRedirect oldVersion="1.0.0.0-3.0.1.0" newVersion="3.0.1.0" />
 </dependentAssembly>
 <dependentAssembly>
 <assemblyIdentity name="Microsoft.Owin.Security.Cookies"
publicKeyToken="31bf3856ad364e35" />
 <bindingRedirect oldVersion="1.0.0.0-3.0.1.0" newVersion="3.0.1.0" />
 </dependentAssembly>
 <dependentAssembly>
 <assemblyIdentity name="Microsoft.Owin" publicKeyToken="31bf3856ad364e35" />
 <bindingRedirect oldVersion="1.0.0.0-3.0.1.0" newVersion="3.0.1.0" />
 </dependentAssembly>
 <dependentAssembly>
 <assemblyIdentity name="Newtonsoft.Json" culture="neutral"
publicKeyToken="30ad4fe6b2a6aeed" />
 <bindingRedirect oldVersion="0.0.0.0-6.0.0.0" newVersion="6.0.0.0" />
 </dependentAssembly>
 <dependentAssembly>
 <assemblyIdentity name="System.Web.Optimization"
publicKeyToken="31bf3856ad364e35" />
 <bindingRedirect oldVersion="1.0.0.0-1.1.0.0" newVersion="1.1.0.0" />
 </dependentAssembly>
 <dependentAssembly>
 <assemblyIdentity name="WebGrease" publicKeyToken="31bf3856ad364e35" />
 <bindingRedirect oldVersion="0.0.0.0-1.5.2.14234" newVersion="1.5.2.14234" />
 </dependentAssembly>
 <dependentAssembly>
 <assemblyIdentity name="System.Web.Helpers" publicKeyToken="31bf3856ad364e35" />
 <bindingRedirect oldVersion="1.0.0.0-3.0.0.0" newVersion="3.0.0.0" />
 </dependentAssembly>
 <dependentAssembly>
 <assemblyIdentity name="System.Web.Mvc" publicKeyToken="31bf3856ad364e35" />
 <bindingRedirect oldVersion="1.0.0.0-5.2.3.0" newVersion="5.2.3.0" />
 </dependentAssembly>

49

 <dependentAssembly>
 <assemblyIdentity name="System.Web.WebPages" publicKeyToken="31bf3856ad364e35" />
 <bindingRedirect oldVersion="1.0.0.0-3.0.0.0" newVersion="3.0.0.0" />
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
 <entityFramework>
 <defaultConnectionFactory
type="System.Data.Entity.Infrastructure.LocalDbConnectionFactory, EntityFramework">
 <parameters>
 <parameter value="mssqllocaldb" />
 </parameters>
 </defaultConnectionFactory>
 <providers>
 <provider invariantName="System.Data.SqlClient"
type="System.Data.Entity.SqlServer.SqlProviderServices, EntityFramework.SqlServer" />
 </providers>
 </entityFramework>
 <system.codedom>
 <compilers>
 <compiler language="c#;cs;csharp" extension=".cs"
type="Microsoft.CodeDom.Providers.DotNetCompilerPlatform.CSharpCodeProvider,
Microsoft.CodeDom.Providers.DotNetCompilerPlatform, Version=1.0.3.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" warningLevel="4" compilerOptions="/langversion:6
/nowarn:1659;1699;1701" />
 <compiler language="vb;vbs;visualbasic;vbscript" extension=".vb"
type="Microsoft.CodeDom.Providers.DotNetCompilerPlatform.VBCodeProvider,
Microsoft.CodeDom.Providers.DotNetCompilerPlatform, Version=1.0.3.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" warningLevel="4" compilerOptions="/langversion:14
/nowarn:41008 /define:_MYTYPE=\"Web\" /optionInfer+" />
 </compilers>
 </system.codedom>
</configuration>

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>@ViewBag.Title - OSES</title>
 @Styles.Render("~/Content/css")
 @Scripts.Render("~/bundles/modernizr")

</head>
<body>
 <div class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse" data-
target=".navbar-collapse">

 </button>
 @Html.ActionLink("OSES", "Index", "Home", new { area = "" }, new { @class
= "navbar-brand" })
 </div>
 <div class="navbar-collapse collapse">

50

 <ul class="nav navbar-nav">
 @Html.ActionLink("Home", "Index", "Home")
 @Html.ActionLink("About", "About", "Home")
 @Html.ActionLink("Contact", "Contact", "Home")
 @if (User.IsInRole("User")|| User.IsInRole("HOD")||
User.IsInRole("VC")|| User.IsInRole("Admin"))
 {
 @Html.ActionLink("Exeats", "Index", "Exeats")
 }
 @if (User.IsInRole("Admin"))
 {
 @Html.ActionLink("Hall of Residence", "Index",
"HallofResides")
 @Html.ActionLink("Exeat Types", "Index", "ExeatTypes")
 @Html.ActionLink("Departments", "Index", "Programmes")
 @Html.ActionLink("Students", "Index", "Students")
 }

 @if (User.IsInRole("User"))
 {
 @Html.ActionLink("Students", "Index", "Students")
 }

 @Html.Partial("_LoginPartial")
 </div>
 </div>
 </div>
 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer>
 <p>© @DateTime.Now.Year - Online Student Exeat System</p>
 </footer>
 </div>

 @Scripts.Render("~/bundles/jquery")
 @Scripts.Render("~/bundles/bootstrap")
 @RenderSection("scripts", required: false)
</body>
</html>

@model OSES.Models.OSES.Exeat

@{
 ViewBag.Title = "Create";
}

<h2>Create</h2>

@using (Html.BeginForm())
{
 @Html.AntiForgeryToken()

 <div class="form-horizontal">
 <h4>Exeat</h4>
 <hr />

51

 @Html.ValidationSummary(true, "", new { @class = "text-danger" })
 <div class="form-group">
 @Html.LabelFor(model => model.official, htmlAttributes: new { @class =
"control-label col-md-2" })
 <div class="col-md-10">
 <div class="checkbox">
 @Html.EditorFor(model => model.official)
 @Html.ValidationMessageFor(model => model.official, "", new { @class
= "text-danger" })
 </div>
 </div>
 </div>

 <div class="form-group">
 @Html.LabelFor(model => model.Title, htmlAttributes: new { @class = "control-
label col-md-2" })
 <div class="col-md-10">
 @Html.EditorFor(model => model.Title, new { htmlAttributes = new { @class
= "form-control" } })
 @Html.ValidationMessageFor(model => model.Title, "", new { @class =
"text-danger" })
 </div>
 </div>

 <div class="form-group">
 @Html.LabelFor(model => model.Body, htmlAttributes: new { @class = "control-
label col-md-2" })
 <div class="col-md-10">
 @Html.EditorFor(model => model.Body, new { htmlAttributes = new { @class
= "form-control" } })
 @Html.ValidationMessageFor(model => model.Body, "", new { @class = "text-
danger" })
 </div>
 </div>

 <div class="form-group">
 @Html.LabelFor(model => model.Depart, htmlAttributes: new { @class =
"control-label col-md-2" })
 <div class="col-md-10">
 @Html.EditorFor(model => model.Depart, new { htmlAttributes = new {
@class = "form-control" } })
 @Html.ValidationMessageFor(model => model.Depart, "", new { @class =
"text-danger" })
 </div>
 </div>

 <div class="form-group">
 @Html.LabelFor(model => model.Arrive, htmlAttributes: new { @class =
"control-label col-md-2" })
 <div class="col-md-10">
 @Html.EditorFor(model => model.Arrive, new { htmlAttributes = new {
@class = "form-control" } })
 @Html.ValidationMessageFor(model => model.Arrive, "", new { @class =
"text-danger" })
 </div>
 </div>

 <div class="form-group">

52

 @Html.LabelFor(model => model.user.matric_no, htmlAttributes: new { @class =
"control-label col-md-2" })
 <div class="col-md-10">
 @Html.Display("matrics", null, new { htmlAttributes = new { @class =
"form-control" } })
 @Html.ValidationMessageFor(model => model.user, "", new { @class = "text-
danger" })
 </div>
 </div>

 <div class="form-group">
 @Html.LabelFor(model => model.ExeatType, "ExeatType", htmlAttributes: new {
@class = "control-label col-md-2" })
 <div class="col-md-10">
 @Html.DropDownList("ExeatType", null, new { htmlAttributes = new { @class
= "form-control" } })
 @Html.ValidationMessageFor(model => model.ExeatType, "", new { @class =
"text-danger" })
 </div>
 </div>

 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <input type="submit" value="Create" class="btn btn-default" />
 </div>
 </div>
 </div>
}

<div>
 @Html.ActionLink("Back to List", "Index")
</div>

@section Scripts {
 @Scripts.Render("~/bundles/jqueryval")
}

