

DESIGN AND IMPLEMENTATION OF AN AUTOMATIC ACUTE LYMPHOBLASTIC

LEUKEMIA DIAGNOSIS SYSTEM

BY

ENOCH ADURAGBEMI OLUTUNMIDA

MATRI C NO : - 1 6 0 1 0 3 0 1 0 1 7

SUBMITTED TO

THE DEPARTMENT OF COMPUTER SCIENCE AND MATHEMATICS, COLLEGE

OF BASIC AND APPLIED SCIENCES, MOUNTAIN TOP UNIVERSITY, IBAFO,

NIGERIA

IN FULFILMENT OF THE REQUIREMENTS FOR THE AWARD DEGREE OF

BACHELOR OF SCIENCE (B.SC) IN COMPUTER SCIENCE

NOVEMBER 2020

1

Certification

This is to certify that this project, Design and Implementation of an Automatic Acute

Lymphoblastic Leukemia Diagnosis System was carried out by me, Enoch Aduragbemi

Olutunmida (Matriculation Number: 16010301017) and duly supervised by Dr. F.A Kasali.

Dr. Kasali F.A. Date

(Supervisor)

Dr. Akinyemi I.O. Date

(Head of Department)

Professor Olalusi A.P. Date

(Dean of College)

2

Dedication

This project work is dedicated to the giver of life and wisdom: The Almighty God.

3

Acknowledgement

Firstly, I would like to give all glory to God Almighty for helping me through the process of

this project work.

I specially appreciate my Supervisor Dr. Kasali F.A. who took keen interest in my project work

and guided me all along.

I cannot express enough thanks to the Head of Department Computer Science and Mathematics

Dr. I.O. Akinyemi for his fatherly role, constant encouragement and guidance. A big thank you to

all academic and non-academic staff of the Department of Computer Science and Mathematics for

their continued support and impartation of knowledge and positive values. I extend my sincere

appreciation to Mountain Top University for the adequate learning facilities and opportunities

provided. I say God bless you richly.

My special gratitude goes to Dr. D.K. Olukoya, my parents and my siblings for their moral and

financial support. The countless times you gave encouraging words and prayer support to help me

get through difficult times in this project were not taken for granted.

4

Table of Contents

Title Page

Certification __ 1

Dedication __ 2

Acknowledgement __ 3

Table of Contents __ 4

List of Figures ___ 6

Abstract __ 7

CHAPTER ONE ___ 1

INTRODUCTION ___ 1

1.1 Background of the Study __ 1

1.2 Statement of Problem ___ 2

1.3 Aim and Objectives __ 3

1.4 Methodology ___ 3

1.5 Significance of the Study __ 4

1.6 Scope of the Study ___ 4

1.7 Definition of Terms __ 4

1.8 Organization of Work __ 5

CHAPTER TWO __ 7

LITERATURE REVIEW ___ 7

5

2.1 Introduction __ 7

2.2 Dimensionality Reduction ___ 9

2.3 Otsu’s Thresholding Method ___ 9

2.4 Identification and Classification of Leucocytes __ 10

2.5 Segmentation and Morphological Image Processing ___ 10

2.6 Classification Models and Classifiers ___ 11

2.7 Existing Methods for Leukemia Diagnosis__ 11

2.8 Digital Image Processing Techniques ___ 12

2.8.1 Image Representation __ 12

2.8.2 Image Preprocessing __ 13

2.8.3 Image Enhancement ___ 14

2.8.4 Image Analysis ___ 14

2.8.5 Image Compression ___ 15

2.8.6 Image Processing and Medical Imaging__ 15

CHAPTER THREE ___ 16

METHODOLOGY __ 16

3.0 Introduction ___ 17

3.1 The Dataset ___ 17

3.2 Proposed Work___ 17

3.2.1 Image Preprocessing __ 18

3.2.2 Image Segmentation ___ 19

3.2.3 Feature Extraction __ 19

3.3 Application Design __ 21

3.3.1 Use Case Diagram __ 21

3.3.2 UML Sequence Diagram ___ 21

3.4 Machine Learning Life Cycle (MLLC) ___ 22

CHAPTER FOUR __ 22

IMPLEMENTATION AND RESULT __ 23

4.0 Implementation and Documentation __ 23

4.1 Programming Language, IDEs, Tools AND Technologies ___ 23

4.2 How Automated Leukemia Diagnosis System Works __ 24

4.2.1 Function Requirement ___ 25

4.2.2 Non-Functional Requirement __ 25

4.3 Screenshots of Implementation Stages ___ 25

4.3.1 Leukemia Diagnosis Model (Using Image Processing) ___ 1

4.3.2 Leukemia Diagnosis Model (Using Image Classification) _______________________________________ 1

4.3.3 Android Interfaces ___ 1

CHAPTER FIVE __ 2

SUMMARY AND CONCLUSION __ 2

5.0 Summary __ 3

5.1 Contribution to Knowledge __ 3

5.2 Limitations ___ 1

5.3 Recommendation for Further Study __ 1

6

5.4 Conclusion ___ 1

REFERENCES __ 1

APPENDIX ___ 1

List of Figures

Figure 2.1 Algorithm to count the cells (Source: Modi et al., 2016) __ 1

Figure 2.2 Diagrammatic representation of dimensionality reduction of image data 3D to 2D ___________________ 2

Figure 2.3 Bimodal histogram representation of a grayscale image _______________________________________ 3

Figure 2.5 Diagrammatic representation of how digital images appear _____________________________________ 4

Figure 2.6 Block diagram of image processing stages ___ 6

Figure 2.7 Diagrammatic representation of image preprocessing __ 7

Figure 2.8 Types of image enhancement ___ 1

Figure 2.9 Image compression model __ 1

Figure 3.1 Proposed leukemia diagnosis system ___ 1

Figure 3.2 Process Model (Source: ALL-IDB initiative) ___ 2

Figure 3.3 Mask R-CNN (Source: Analytics Vidhya, 2019) ___ 3

Figure 3.4 MVVM Architecture Component ___ 3

Figure 3.5 Use Case Diagram ___ 4

Figure 3.6 UML Sequence Diagram ___ 4

Figure 3.7 Machine Learning Model Development Lifecycle (Source: Analytics Vidhya, 2020) ___________________ 4

Figure 3.8 CI/CD and automated ML pipeline (Source: Google Cloud, n.d.) _________________________________ 5

7

Figure 4.1 Original image __ 7

Figure 4.2 Grayscale Image ___ 7

Figure 4.3 Enhanced Image ___ 7

Figure 4.4 Edge Detection __ 9

Figure 4.5 Thresholding and Image segmentation __ 9

Figure 4.6 Training Accuracy and Training Loss of CNN Classifier _______________________________________ 10

Figure 4.7 Training Accuracy and Training Loss of SVM Classifier _______________________________________ 10

Figure 4.8 Capturing cell image ___ 11

Figure 4.9 WBCs Found Screen ___ 11

Figure 4.10 Leukemia Found Screen ___ 12

Abstract

Automatic Leukemia Diagnosis is a computer-aided approach to diagnosing leukemia. This work

focuses on the diagnosis of Acute Lymphoblastic Leukemia (ALL) which accounts for 12% of all

childhood and adult leukemias diagnosed in developed countries and for nearly 60% of those

diagnosed in persons under 20 years of age (Pui, 2011). The relevance of this work is to find a way

to reduce the over-reliance on medical specialist for the diagnosis of ALL. Machine Learning and

Deep Learning algorithms are the current trends adopted for the purpose of medical diagnosis

involving image analysis. This approach has been adopted by many other researchers for the

purpose of diagnosing breast cancer (Poorti & Neetu, 2019), and prostate cancer (Janney, Christilda,

Mary & Haritha, 2017), amongst others.

This project work would be achieved using Python 3.7. A number of Machine Learning models

will be compared to find the best performing algorithm. The best performing algorithm will be

implemented as an API in Python (Flask) and then hosted using Google Cloud Platform (GCP). The

8

hosted API will then be consumed in an Android App for easy usage and diagnosis of ALL in

medical facilities.

1

CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

Decades of research have focused on the question of if computers can aid human in carrying

out tasks that would rather have taken ages and achieve them within a shorter time, while also

prioritizing efficiency. It has been widely assumed that concepts such as artificial intelligence (AI)

and machine learning (ML) would serve as a foundation for creating a world we all deserve

(Zuckerberg, n.d.). A world where we can avoid fatal accidents through the introduction of

autonomous driving vehicles, handle the risk of heart-attack using smartwatches and the use of

computer vision for early diagnosis of terminal illness such as leukemia. Leukemia could be

explained to be a malignant disease involving the bone marrows, which in this case, produces an

excessive number of leucocytes (Burgun et al., 2005).

The French-American-British (FAB) classification model categories acute leukaemia into two

distinct types: acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). In

developed countries, ALL is said to have accounted for 12% of leukemia in children and adults, it

was also reported to have higher prevalence of up to 60% in persons under 20 years. It is a very

common type of cancer in children (25% of all cases) and elderly patients (Pui, 2011).

Of all the numerous indicators used in evaluating whether a patient is positive for leukemia

or not, the presence of lymphoblasts in the blood sample is a sure and confident indicator for

diagnosis. In this manner, tallying of lymphoblasts is the most trusted method for diagnosing

leukemia (Gayathri & Jyothi, 2018). While the present approaches to diagnosis leukemia still

appear to be effective and accurate, some of the challenges faced include time-consuming

procedures and error-prone techniques due to human interference.

2

The relevance of machine learning algorithms for making the process of leukemia diagnosis

more efficient and accurate has been proven by its application in the process of diagnosing other

cancer ailments such as breast cancer (Poorti & Neetu, 2019), and prostate cancer (Janney,

Christilda, Mary & Haritha, 2017), amongst others. Machine Learning uses mathematical equations

to study the tiniest insights or patterns in the image data (which the human senses may ordinarily

not be able to detect). These patterns are obtained by training models on several datasets in other to

help them make an intelligent diagnosis (2006). Hence, the main focus of this work is to

build a system for diagnosing the presence the of lymphoblast in the blood cell, while also carrying

out a comparative analysis of various algorithms for diagnosing acute lymphoblastic leukemia

(ALL) using blood sample images.

1.2 Statement of Problem

In recent times, there‟s been a lot of application of deep learning techniques and algorithms in

problem solving across various domains, especially the medical field. This is because deep learning

algorithms have the ability to draw patterns and insight from data (Najafabadi et al., 2015). This has

had a high positive impact in medical domain especially in disease diagnosis and prediction. Cancer

is a prevalent cankerworm that continues to eat deep into the health and wealth of many nations as

ascertained by the World health Organization (WHO, 2018). It was reported that the disease alone

accounted for an estimated 9.6 million deaths in 2018 globally which means that 1 in 6 deaths was

due to cancer that year alone.

Leukemia is a type of cancer that affects the white blood cells of its patients, and from 2011 to 2015

– the most recent 5 years for which data are available, leukemia alone represented 39.6 percent of

all malignant growth types in children, teenagers and young adults younger than 20 years (Facts,

2018). In the diagnosis of the disease, complete blood count (CBC) is normally used, however some

of the problems associated with this procedure includes high cost of diagnosis and machineries,

time consuming procedures and over-reliance on experts which are rarely available in developing

3

countries. The end goal of this research work is to help reduce the time, cost and over reliance on

experts for the diagnosis of leukemia and other related ailments.

1.3 Aim and Objectives

The aim of this work is to develop a system to diagnose acute lymphoblastic leukemia from blood

sample images. The specific objectives are to:

 1. Collect and prepare dataset for image processing and classification.

 2. Train and design a model for leukemia cell segmentation.

 3. Compare result of the diagnosis when directly classifying images against how its performance

when using image processing techniques to extract features and classify them.

 1. Implement the proposed design as an android-based system for diagnosing leukemia by

consuming the machine learning model as a RESTful API.

1.4 Methodology

1. Performing image segmentation, enhancement and feature extraction on ALL-IDB1 cell images.

2. Analyzing the performance of some image classification algorithms on ALL-IDB2 dataset in

comparison to the use of image processing to extract features form ALLIDB1 dataset which are

eventually classified.

3.i. Systematically highlighting how the leukemia diagnosis system would work.

ii. Highlighting all resources and tools adopted to ensure the best performance of the system (like

the cloud hosting platform used).

4

iii. Highlighting the model used in the framework based on evaluation of the relevant classification

algorithms implemented using Python 3.7.

iv. Discuss the chosen approach to make the framework easily usable and adaptable to the present

healthcare working environment; such as making it operate as an android-based leukemia diagnosis

framework.

1.5 Significance of the Study

This study will redound to the benefit of society considering that providing a quicker and less

expensive means of diagnosing diseases will play an important role by giving as many people as

possible access to quality diagnosis of leukemia. The estimated 9.6 million deaths leukemia

accounted for in 2018 globally (WHO, 2018) justifies the need for a more effective, reliable and

cheaper approach to aid early discovery and diagnosis of the ailment. Thus, medical facilities that

apply our technology derived from the result of this study will be able to diagnose leukemia faster,

cheaper and without much reliance on experts in the field.

1.6 Scope of the Study

1.7 Definition of Terms

 •

 •

5

 •

 •

 •

 •

 •

 •

 •

 •

 •

 •

1.8 Organization of Work

This work is structured in such a way that, Chapter 1 introduces the concept and overview of the

topic, Chapter 2 discusses recent related works as well as giving sufficient understanding on the

6

various terminologies and concepts that surround the work, Chapter 3 discusses the methods used in

achieving the said objectives laid down in chapter 1, the various image classification techniques

compared and the precautions taken during the cause of implementing those techniques. Chapter 4

talks about the implementation of the proposed system, while Chapter 5 discusses the summary,

limitations experienced during the project, recommendation and conclusion.

7

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

The diagnosis of leukemia much of the time follows a routine blood test that results in abnormal or

irregular platelet count. In a case where the doctor suspects leukemia, samples of the bone marrow

and blood are taken to examine the cell shape. This collected sample may likewise be sent to the

pathology laboratory to distinguish proteins situated on a superficial level and chromosomal

changes. This group of information serve important purposes in the process of diagnosing patients.

This work makes reference to other literatures around the idea of diagnosing leukemia and related

ailments with the help of machine learning algorithms. While some studies suggested using image

processing techniques to extract shape based features from the cell image such as roundness,

standard deviation, and so on to diagnose the presence of malignant cells in a blood sample (Modi

et al., 2016). Other studies took a slightly different approach by just getting the shape and texture

of the blood sample images and then passing that into a classifier which would determine whether it

is malignant or not (Gayathri & Jyothi, 2018).

Several techniques have been suggested for detecting blast cells and for diagnosing leukemia.

(Ahmed et al., 2019) proposed an approach to diagnosis leukemia (and its subtypes) from

microscopic blood cell images using convolutional neural networks (CNN). They made use of two

publicly available leukemia data sources: ALL-IDB and American Society of Hematology (ASH)

Image Bank in carrying out their research. CNN however requires large dataset to avoid

memorization and perform optimally, so they performed data augmentation on the training dataset

to synthetically increase the size of the dataset.

8

CNN performed well with 88% accuracy for the binary classification of one leukemia type and 81%

accuracy for classifying all leukemia subtypes (Ahmed et al., 2019). Other works propose utilizing

image processing techniques like automatic Otsu‟s threshold segmentation method, image

enhancement and arithmetic for WBC segmentation, and KNN classifier to characterize blast cells

from typical lymphocyte cells (Chatarwad et al., 2018). (Chatarwad et al., 2018) used Otsu‟s

thresholding method for conversion of grayscale image into binary image. To remove noise, they

applied image filtering using median filter and then used sobel operator for edge detection.

(Modi et al., 2016) also proposed methods for performing different image processing operations on

leukemia detected images such as reducing image quality from RGB to gray level, thresholding

methods for converting images into binary forms, area opening to remove connected component,

dilation to add pixels to boundary of objects and erosion to remove the pixel on object boundaries.

After detecting the boundary of object, they performed hole filling operations to detect perfect cells.

By the end of this processes, they were able to detect boundaries around the cells using operators

like sobel, prewitt, canny, etc. They computed shape-based features like major axis, minor axis,

area, perimeter, standard deviation, radius and roundness using certain formulas:

Radius = (Major axis + Minor axis) / 4

Roundness = (4*PI*area) / perimeter
2

Standard deviation = ((Major axis – X)
2
 + (Minor axis – X)

2
)
1/2

Where X = (Major axis + Minor axis) / 2

Using the value of major axis and minor axis, the number of overlapping cells and non-overlapping

cells were detected and in-turn the number of overlapping cells and non-overlapping cells were

used to compute the total number of malignant cells present.

9

Figure 2.1 Algorithm to count the cells (Source: Modi et al., 2016)

2.2 Dimensionality Reduction

Dimensionality reduction involves the application of data encoding or transformation to obtain a

reduced or compressed representation of the original data (Data Mining: Concepts and Techniques

Second Edition, 2013 pg77). A major reason for dimensionality reduction is “degree of freedom” –

the creation of simpler structures in a machine learning model, and according to (Machine Learning

: A Probabilistic perspective, 2012 pg11) “when dealing with high dimensional data, it is often

10

useful to reduce the dimensionality by projecting the data to a lower dimensional subspace which

captures the essence of the data.”.

Figure 2.2 Diagrammatic representation of dimensionality reduction of image data 3D to 2D

2.3 Otsu’s Thresholding Method

Many works have referenced Otsu‟s thresholding method to be the best method for thresholding. In

some works like (Modi et al., 2016) – “Leukemia Detection using Digital Image Processing

Techniques Leukemia Detection using Digital Image Processing Techniques” and (Joshi, Karode &

Suralkar, 2013) – “White blood cells segmentation and classification to detect acute leukemia” ,

automatic Otsu‟s Thresholding was proposed for blood cell segmentation before carrying out image

enhancement . In the later work (Joshi, Karode & Suralkar, 2013), Otsu‟s thresholding method was

used to successfully segment the blood cell images, after which a K-Nearest Neighbor classifier was

utilized to classify the blast cells – hence providing a way to distinguish them from normal

lymphocyte cells. Otsu‟s thresholding method is a data-driven way for adaptively finding the

optimal threshold to distinguish two-class data.

11

Figure 2.3 Bimodal histogram representation of a grayscale image

With reference to the above image, Otsu‟s thresholding method (also called automatic thresholding) finds the

threshold t that minimizes the weighted sum of within-group variances for the two groups that result from

separating the gray tones at value t.

The formula𝜎𝜔
2 𝑡 = 𝑞

1 𝑡
𝜎1

2 𝑡 + 𝑞
2 𝑡

𝜎2
2 𝑡 could be used to represent the Otsu‟s thresholding method,

where t represents the threshold.

2.4 Identification and Classification of Leucocytes

(Gayathri & Jyothi, 2018) proposed an approach for identifying and classifying leucocytes. Their

work revolved around developing an automated and accurate method to find whether a blood

sample image is leukemia affected or not. To achieve their objective, they carried out certain

procedures such as performing segmentation on the input image, image cleaning, extracting

features from the image, and finally using a classifier to classify the extracted features. Beyond just

building a model to classify leucocytes, they went further ahead to compare several classification

models such as SVM, ANN, and CNN in other to find the best method possible for the

classification of leucocytes. They built their system such that in addition to diagnosing leukemia, it

is also able to detect which type of leukemia in particular i.e. ALL, AML, etc.

12

2.5 Segmentation and Morphological Image Processing

Segmentation is a very potent image processing technique in medical image analysis and in the

diagnosis of various ailments like cancer. Segmentation has been used in detecting lumps and

diagnosing breast cancer (Guzmán-Cabrera et al., 2013). (Guzmán-Cabrera et al., 2013) suggested

an approach to distinguish the presence of breast cancer mass in mammograms. They utilized

morphological operators for segmentation and clustering for clear identification of abnormalities

such as microcalcifications. Their proposed algorithm was tried over more than a few images taken

from the digital database for screening mammography for cancer examination and diagnosis. One

of the current methods for leukemia diagnosis, Complete Blood Count (CBC) would usually require

a medical specialist who counts the malignant cells and sort of “take stock” of the various

components present in the blood sample (Rathee, 2013). To computationally simulate the Complete

Blood Count (CBC) method of diagnosing leukemia, (Scotti, 2007) suggested an approach to

automatically detect and count the blast cells present in the blood image (using image segmentation

and some other morphological operations).

2.6 Classification Models and Classifiers

Classification is simply a process of categorizing a given set of data into classes (Data Mining:

Concepts and Techniques Second Edition, 2013 pg24). This cycle of order can be performed on both

structured and unstructured data. Other terminologies such as targets, labels, or categories can be

used interchangeably with classes to communicate the same meaning. Classification can be either

binary – involving just two possible outcomes, or multiclass – having more than two possible

outcomes / labels. Since the classifier helps to determine whether a cell is malignant or not, the

classifiers used in (Gayathri & Jyothi, 2018) are binary.

A Classifier is an algorithm used to map input data specific to a category or label.

13

2.7 Existing Methods for Leukemia Diagnosis

Complete blood count (CBC) involves taking the blood and checking under the microscope for the

quantity of RBCs, WBCs and platelets. Leukemia can cause anomalous blood cell counts. Immature

blood cells (called leukemia cells, or blasts) are not regularly found in the blood, so specialists will

speculate leukemia if there are blasts or if blood cells do not look normal. Bone marrow aspiration

on the other hand requires expulsion of the bone marrow with the assistance of a needle from the

breastbone and observing the removed sample under a microscope to search for unusual cells.

Healthy Infected

Infected Healthy

14

2.8 Digital Image Processing Techniques

Image processing is a technique adopted for improving raw image data. Image processing holds a

ton of significance in different fields of study, for example, remote sensing, textiles, material

science, military, entertainment world, document processing, graphic arts, medical imaging, etc.

Image processing can be analog or digital, while analog image processing rely on using electrical

means for altering images, digital image processing requires digital computers to process the

images. Digital image processing can be defined as subjecting numerical representations of objects

to a series of operations in order to obtain a desired result (Ravi & Ashokkumar, 2017).

(Ravi & Ashokkumar, 2017) in their work on Analysis of various image processing techniques,

gave a classification of image processing techniques – Image representation, Image preprocessing,

Image enhancement, Image analysis, and Image compression.

2.8.1 Image Representation

While creating a digital image, continuous sensed data is converted into digital forms, and this

process references the relevance of concepts like Sampling – digitizing the co-ordinate values, and

Quantization – digitizing the amplitude value. Sampling & Quantization are of relevance given that

the sampling rates is a determinant factor of the spatial resolution of the digitized image and the

quantization level determines the color depth.

Among a rundown of potential factors, the elements that essentially decide image quality are:

  Spatial resolution: constrained by spatial testing, and;

  Color depth: controlled by number of colors or grey levels designated for every pixel.

15

Manipulating any of these factors would in some way have an effect on the size of the image file.

On this note, an image can be rightly defined as a 2D rectilinear array of pixels, having a fixed

number of samples.

The figure below serves as a diagrammatic representation of how digital images appear – as a 2D

array. Each of the elements in the matrix represents a pixel in the image. 0 represents black and 255

represents white. Other values within the 0 – 255 range represent the various combination of colors

within the image.

Figure 2.5 Diagrammatic representation of how digital images appear

2.8.2 Image Preprocessing

Image preprocessing (also known as data cleaning) describes a set of operations (feature

engineering) carried out on images at the lowest level of abstraction to improve the image quality.

16

Figure 2.6 Block diagram of image processing stages

Figure 2.7 Diagrammatic representation of image preprocessing

17

2.8.3 Image Enhancement

Image Enhancement is the way toward adjusting digital images in other to make them more

reasonable for a necessary assignment. Image enhancement can be either qualitative or quantitative.

Qualitative image enhancement is used to make the image quality more appealing (look better)

while Quantitative image enhancement is used to modify certain information within an image.

There are two types of Image Enhancement – Spatial domain and Frequency domain. Spatial

domain has to do with the pixels of the images, and the Frequency domain pays more attention to

the manipulation of the orthogonal transform in the image rather than the image itself.

Figure 2.8 Types of image enhancement

2.8.4 Image Analysis

Image Analysis is the process of using a digital medium to recognize and study the attributes within

an image. Over the years image analysis has been used in various fields like age prediction,

extracting emotions from images, facial recognition, auto-caption from images and barcode reading.

Image analysis adopts image processing techniques to extract meaningful information from images.

18

2.8.5 Image Compression

Image compression is the process of encoding or converting an image file in such a way that it

requires less space than the original file (Techopedia, n.d.). Simply put, image compression is a

compression technique applied to digital images in other to reduce their memory consumption and

computational complexity. Compression can either be lossy or lossless. In lossy compression

redundant data is removed in compression and added during decompression – i.e. some data is lost,

while in lossless compression the data after compression and decompression are the same – i.e. no

data is lost.

The model for image compression follows the process;

a. Input image (as a 2D array).

b. Encoding Image: this process encompasses the activities of the mapper, quantizer and

symbol coder. The mapper reduces the spatial or temporal redundancy, the quantizer

reduces the accuracy of the mapper‟s output (by rounding-down the value from the mapper),

and the symbol coder generates fixed or variable length codes for the quantizer‟s output.

c. Decoding Image: this process involves the symbol decoder and inverse mapper, and;

d. Getting the compressed image as output.

19

Figure 2.9 Image compression model

2.8.6 Image Processing and Medical Imaging

Image Processing has been the foundational text for the study of digital image processing.

(Gonzalez & Woods, 2018) emphasizes that digital image processing is the use of a

 to process through an . Generally, image processing consist of

several stages: image acquisition, image preprocessing and analysis, manipulation and image

output. (Gonzalez et al., 2009, p. 2) in their book titled Digital Image Processing Using MATLAB,

gave an interesting and rather unconventional definition for digital image processing. They defined

an image as a two-dimensional function, f(x, y), where x and y are spatial coordinates, and the

amplitude f at any pair of coordinates (x, y) is called the intensity or gray-level of the image at that

point. They eventually went ahead to defined digital image processing as a when x, y, and the

amplitude values f are all finite discrete quantities.

Some other researching who have made certain contributions in the field of image processing for

medical diagnosis include (Zadeh, Haddadnia & Janianpour, 2013) & (Supardi, Masher, Harun,

20

Bakri & Hassan, 2012). While the former (Zadeh, Haddadnia & Janianpour, 2013) did some work

on the recognition and clarification of cancer cells with image processing in Lab VIEW. Lab VIEW

used an image analysis approach for automated detection, preprocessing (smoothing, enhancement,

segmentation, feature extraction morphological and calorimetric) and then detection and

classification of particular cells, the later (Supardi, Masher, Harun, Bakri & Hassan, 2012)

presented a study on classifying acute leukemia into two major forms which are ALL and AML by

using K-NN. 12 primary highlights that speak to size, color and shape were extricated from the

blood images. In other to find suitable parameters for classifying the blasts, a range of k values and

distance metrics were tested.

A few other cases in which Image processing techniques were adopted for medical diagnosis

include (Arena, Basile, Bucolo & Fortuna, 2018) in their work on Image Processing for Medical

Diagnosis using Cellular Neural Networks. Though carried out almost two decades ago – when

Deep Learning Algorithms were yet to hold firmer grounds, they were able to infer correctly how

much potency Image Processing would hold in respect to medical diagnosis. They highlighted

Image Processing as a very potent phase for improving the accuracy of the diagnosis procedure.

They adopted the use of Cellular Neural Networks to process diagnostic images, like: Magnetic

Resonance Imaging, Computed Tomography, and fluorescent cDNA microarray images. (Jindal,

Gupta & Goyal, 2019) also emphasized the use of digital image processing techniques in the

detection of cataract – one of the leading causes of blindness, especially among old people.

Several studies taken together have suggested various image processing procedures to achieve the

common goal – leukemia diagnosis, it however remains an open question whether there could be an

easier, more efficient and straightforward approach to diagnosing the ailment. Therefore, in this

work we will be suggesting other techniques and also building upon some already laid down

techniques by comparing more algorithms.

21

CHAPTER THREE

METHODOLOGY

3.0 Introduction

Research is a deliberate, formal, thorough and exact cycle employed to acquire answers for an issue

or to find and decipher new facts and relationships (Waltz and Bansell, 1981). It is a quest for trust

22

with the assistance of study, perception, correlation and examination, the quest for knowledge

through an unbiased and deliberate strategy for discovering solutions to a problem (Kothari, 2006).

The research methodology is a section containing explanations and clarifications of what was done

and how it was done. It is a systematic description of how the initially stated objectives of the

projects were achieved by adopting various problem-solving techniques. It gives an understanding

of how the data used were collected, how they were analyzed, tools and material used in the

research process, and rationales for adopting such approaches.

3.1 The Dataset

In this work secondary data from ALL-DB1 and ALL-IDB2 will be used. The datasets consist of images

captured with a Canon Powershot G5 camera. The images have 24bit color depth and resolution of 2592 x

1944. The images contain about 39,000 blood elements with lymphocytes labelled by expert oncologists.

3.2 Proposed Work

In the proposed methodology the blood smear would undergo a number of steps from the point of inputting

the image into the system all the way to point where the system returns an output (stating whether the blood

sample is leukemia affected or not). In line with the work proposed by (Gayathri & Jyothi, 2018), this work

would adopt a similar process for the diagnosis but would be comparing more algorithms to achieve the

objective of comparatively reviewing algorithms to see which of them would perform best to classify the

extracted features from the input image. After reviewing the performance of CNN, SVM, PNN, random

forest, and naïve bayes algorithm on the extracted features, the best performing algorithm would be

deployed as an API and consumed within an android app that would collect the microscopic images through

the camera and pass it to our model for diagnosis, hereby achieving the fourth objective in this work.

23

Figure 3.1 Proposed leukemia diagnosis system

Figure 3.2 Process Model (Source: ALL-IDB initiative)

3.2.1 Image Preprocessing

Data acquired could sometimes be messy and uniformed. To make it easier for the leukemia diagnosis ML

model to analyze and process data computationally, image preprocessing is used to standardize the image

24

data before feeding them to the model or neural network. In this work, the following methods of image

preprocessing were adopted;

  Data Augmentation: provided with just 260 cell images from ALL-IDB initiative, this method is

used to increase the dataset by computationally scaling, rotating, and performing other types of

transformation on the image. It consists of de-texturization, decolorization and edge enhancement.

Some algorithms and image classification techniques that adopt deep learning perform less effective

and efficient with little image dataset. Data augmentation is used in this work to increase the image

dataset before passing it to a CNN model.

  Image standardization: to achieve uniformity on the image dataset, it is necessary to sometimes

resize images and align their width and height. Some algorithms like CNN require all training image

dataset to be of uniform to perform optimally.

  Color images to grayscale: the adopted process of diagnosis leukemia in this work do not require

colors, it was hereby important to reduce the input images to grayscale in other to avoid unnecessary

memory consumption and computation complexity.

3.2.2 Image Segmentation

Image segmentation is a technique used to partition digital images into multiple parts or regions. Medical

diagnosis that require studying some properties and elements of the cell image would mostly require image

segmentation automate that process. To achieve instance segmentation in this work, a pretrained model

called Mask R-CNN was used, the final layers were dropped and retrained on ALL-IDB1 dataset to uniquely

classify only blast cells. Mask R-CNN uses RestNet101 architecture to extract features from images. It

makes use of region proposal network (RPN) to generate a region of interest (ROI).

25

Figure 3.3 Mask R-CNN (Source: Analytics Vidhya, 2019)

3.2.3 Feature Extraction

Features play a very important role in image processing and medical image analysis. Haven carried out

several other important steps of preprocessing, thresholding, and image segmentation, some filters where

added to the image to achieve feature extraction. The features used in this work include, gabor, canny edge,

robert edge, sobel, scharr, prewitt, gaussian, median, and variance. These extracted features are then used to

train some ML classifiers and compare their performance.

3.3 Application Design

To achieve a robust, testable and maintainable design, this work adopts the use of android architecture

component, MVVM (Model View View-Model). This proposed system will rely on android framework to

collect new images and pass them to ML model hosted in the cloud. The model processes the input image

and sends a response back to the android interface where the status of the blood sample is displayed.

26

1

Figure 3.4 MVVM Architecture Component

1

3.3.1 Use Case Diagram

A Use Case Diagram is the simplest representation of a user’s interaction with a system that shows the

relationship between the user and the different user cases in which the user is involved.

Figure 3.5 Use Case Diagram

2

3.3.2 UML Sequence Diagram

UML sequence diagram show the sequence of object interaction that take place. They are connection charts

that detail how operations are carried out.

Figure 3.6 UML Sequence Diagram

3

3.4 Machine Learning Life Cycle (MLLC)

MLLC is a cyclical process for building and managing good quality models. It is an approach adopted by

data science specialists to design, develop and test high quality models. The leukemia diagnosis ML model

was developed through the processes of data gathering, exploratory analysis, training, model selection and

verification, deployment and monitoring. A continuous deployment and automation pipeline was developed

to ensure that the model can be easily improved and deployed for use in the long run.

Figure 3.7 Machine Learning Model Development Lifecycle (Source: Analytics Vidhya, 2020)

1

Figure 3.8 CI/CD and automated ML pipeline (Source: Google Cloud, n.d.)

2

1

CHAPTER FOUR

IMPLEMENTATION AND RESULT

4.0 Implementation and Documentation

This chapter demonstrates the experimental results of implementing an android-based automated

leukemia diagnosis system. The output include an optimal method for diagnosis acute

lymphoblastic leukemia (ALL) using image processing and image classification techniques.

It describes the tools used in developing and implementing the system. It describes the various steps

and processes carried out on the image samples and their output at every step.

4.1 Programming Language, IDEs, Tools AND Technologies

Python 3.7 was used in building and deploying the ML model. The model was hosted as a RESTful

API on Google Cloud Platform (GCP) with Python (Flask). Some of the libraries used in this work

include Keras, Tensorflow, OpenCV, and Mask R-CNN pretrained RestNet101 instance

segmentation framework. The frontend of the system was built in Java (Android) while adopting a

MVVM architecture component. MVVM (Model View View-Model) is a software architectural

pattern that facilitates the separation of the development of the graphical user interface (GUI code)

from the development of the back-end logic so that the view is not dependent on any specific model

platform. Spyder IDE and Jupyter Notebook were used to run all python programs, and Android

Studio IDE (4.0.1) was used to in developing the android app.

4.2 How Automated Leukemia Diagnosis System Works

The diagnosis system works based on some functional and non-functional requirements. These

requirements portray the features and behaviour of the system or software application. It conveys

the expectation of the users from the software product.

2

4.2.1 Function Requirement

Functional requirements specify what the system should do. The functional requirements of the

proposed automated leukemia diagnosis system include;

1. Registration and Login

2. Capturing blood smear images through the device camera

3. Performing diagnosis on the blood image gotten from the device camera

4. Provide a medical report containing the result of the diagnosis

4.2.2 Non-Functional Requirement

Non-functional requirements represent constraints under which a system should perform all it‟s

functional requirements. The Non-functional requirements of the proposed automated leukemia

diagnosis system include;

1. Security:

a. The system should have a constraint on patient identity and information.

b. The system should have multiple layers for authenticating users and deciding what level

of data and information they have access to. These layers would include, user, admin,

and super-admin.

2. Usability: the diagnosis system should be easily understandable and user friendly.

3. Scalability: the system should be robust enough to perform efficiently and accommodate

changes across geographical boundaries.

4.3 Screenshots of Implementation Stages

The screenshots of the implementation stages show the interface of the android software to be used

by the medical laboratory technician and the output image of the various processes happening in

backend.

3

4.3.1 Leukemia Diagnosis Model (Using Image Processing)

a. Original Image

This is the cell image before undergoing any form of preprocessing or cleaning.

Figure 4.1 Original image

4

1

b. Grayscale Image

This is the cell image after programmatically converting it to grayscale

Figure 4.2 Grayscale Image

1

c. Enhanced Image

This is the cell image after applying median blur filter to enhance and smoothing the grayscale

image.

Figure 4.3 Enhanced Image

2

1

d. Edge Detection

This is the cell image after applying canny edge filter to get the edges of all cells present.

Figure 4.4 Edge Detection

2

e. Thresholding and Image Segmentation

This is the cell image after applying Otsu‟s thresholding to the enhanced image and performing

segmentation with the Mask R-CNN pretrained model.

Figure 4.5 Thresholding and Image segmentation

3

1

4.3.2 Leukemia Diagnosis Model (Using Image Classification)

a. CNN Classifier

Out[17]:

<matplotlib.legend.Legend at 0x1a568e99e8>

In [18]:

130/130 [==============================] - 3s 27ms/step

In [19]:

LOSS : 0.527237777870435

ACCURACY : 0.8461538461538461

[[0.03920074 0.9607993]]

Infected

Figure 4.6 Training Accuracy and Training Loss of CNN Classifier

2

1

b. SVM Classifier

Accuracy: 0.7076923076923077

Prediction is: infected

Figure 4.7 Training Accuracy and Training Loss of SVM Classifier

2

4.3.3 Android Interfaces

a. Take Image Screen

Figure 4.8 Capturing cell image

3

b. Show WBC Screen

4

Figure 4.9 WBCs Found Screen

5

c. Diagnose Screen

Figure 4.10 Leukemia Found Screen

6

1

CHAPTER FIVE

SUMMARY AND CONCLUSION

5.0 Summary

The use of machine learning techniques like image processing to diagnose some disease has proved

effective and valuable. The process of diagnosing leukemia in this work adopted two approaches.

First was using image classification algorithms on the 260 ALL-IDB2 image dataset, while the

second approach was to use image processing techniques to enhance the image, segment it, extract

some features like shape from the segmented image and then passing those features into a random

forest classifier. This work compared the performance of CNN, SVM, PNN, random forest, and

naïve bayes classifiers. The image segmentation also compared performance of using Otsu‟s

thresholding (as a basic form of segmentation) against the Mask R-CNN (which is a RestNet101

instance segmentation architecture).

5.1 Contribution to Knowledge

This research contributes to knowledge by utilizing machine learning techniques to develop a

system that diagnoses acute lymphoblastic leukemia (ALL). The developed system aims to assist

medical institutions and the society as large in timely and cheap diagnosis of ALL. This work

provides some insight into the process of using image processing and classification for identifying

blast cells in a blood sample. This provides opportunities for other researchers to expand the scope

of this work and build models that would diagnose other related ailments using similar approaches

of image processing techniques.

5.2 Limitations

i. Scarcity of previous works

ii. Scarcity of sufficient datasets

2

iii. Time constraints

5.3 Recommendation for Further Study

After designing and implementing a system for automatically diagnosing acute lymphoblastic

leukemia, and also evaluating the performance and accuracy of five classification algorithms to

ascertain the most effective and efficient one of them, the following are recommended;

i. Other leukemia subtypes like AML and CML can be diagnosed using a similar

approach.

ii. Other image processing and classification algorithms can be compared outside the scope

of this work to adequately extract features from images and also classify them.

iii. Other android architecture components like Model View Presenter (MVP) could be used

in designing the android system for consuming the hosted ML model while also

prioritizing security of patient data.

5.4 Conclusion

In conclusion, it was observed that a traditional machine learning random forest classifier

performed better than CNN in classifying features extracted from the 260 ALL-IDB1 images

dataset. CNN however performed best when image augmentation was adopted to increase the ALL-

IDB2 image dataset used in training the deep learning classifier.

3

REFERENCES

Harun, N. H., Bakar, N. A. A., Mohan, U. A. P., Nadzir, M. M., Hassan, M. G., & Adollah, R.

(2019). Automated Cell Counting System for Chronic Leukemia. 2019 IEEE Jordan

International Joint Conference on Electrical Engineering and Information Technology, JEEIT

2019 - Proceedings, 502–506. https://doi.org/10.1109/JEEIT.2019.8717500

Kumar, S., Mishra, S., Asthana, P., & Pragya. (2018). Automated detection of acute leukemia using

K-mean clustering algorithm. Advances in Intelligent Systems and Computing, 554, 655–670.

https://doi.org/10.1007/978-981-10-3773-3_64

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2015). Automatic differentiation

in machine learning: a survey. Journal of Machine Learning Research, 18, 1–43.

http://arxiv.org/abs/1502.05767

Scotti, F. (2007). Robust Segmentation and Measurements Techniques of White Cells in Blood

Microscope Images.

Suganda, R., Sutrisno, E., & Wardana, I. W. (2013). Data Mining: Concepts and Techniques

Second Edition. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9).

Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E.

(2015). Deep learning applications and challenges in big data analytics. Journal of Big Data,

2(1). https://doi.org/10.1186/s40537-014-0007-7

Rathee, R. (2013). Acute Lymphoblastic Leukemia : Characterization and its Prognostic Values.

2(December 2008), 27–36.

Guzmán-Cabrera, R., Guzmán-Sepúlveda, J. R., Torres-Cisneros, M., May-Arrioja, D. A., Ruiz-

Pinales, J., Ibarra-Manzano, O. G., Aviña-Cervantes, G., & Parada, A. G. (2013). Digital

image processing technique for breast cancer detection. International Journal of

Thermophysics, 34(8–9), 1519–1531. https://doi.org/10.1007/s10765-012-1328-4

4

Gayathri, S., & Jyothi, R. L. (2018). An Automated Leucocyte Classification For Leukemia

Detection. International Research Journal of Engineering and Technology (IRJET).

Pui, C.-H. (2011). Acute Lymphoblastic Leukemia BT - Encyclopedia of Cancer. Encyclopedia of

Cancer, 23–26. https://doi.org/10.1007/978-3-642-16483-5_57

Shafique, S., & Tehsin, S. (2018). Computer-Aided Diagnosis of Acute Lymphoblastic Leukaemia.

Computational and Mathematical Methods in Medicine, 2018.

https://doi.org/10.1155/2018/6125289

Ahmed, N., Yigit, A., Isik, Z., & Alpkocak, A. (2019). Identification of Leukemia Subtypes from

Microscopic Images Using Convolutional Neural Network.

Salah, H. T., Muhsen, I. N., Salama, M. E., Owaidah, T., & Hashmi, S. K. (2019). Machine learning

applications in the diagnosis of leukemia: Current trends and future directions. International

Journal of Laboratory Hematology, 41(6), 717–725. https://doi.org/10.1111/ijlh.13089

Ravi, P., & Ashokkumar, A. (2017). Analysis of Various Image Processing Techniques.

International Journal of Advanced Networking & Applications, 8(5), 86–89.

Hu, R., & Li, C. (2015). Computational and Mathematical Methods in Medicine Indexed in Science

Citation Index Expanded Indexed in Science Citation Index Expanded. Computational and

Mathematical Methods in Medicine, 2015(Figure 1), 1–8.

Chatarwad, S., Bansode, P., Burade, A., & Chaware, P. T. S. (2018). Automatic Blood Cancer

Detection Using Image Processing. International Journal of Recent Trends in Engineering and

Research, 4(3), 204–210. https://doi.org/10.23883/ijrter.2018.4117.o3kbv

Modi, H., Pandya, M., Vaghela, H., & Potdar, M. (2016). Leukemia Detection using Digital Image

Processing Techniques Leukemia Detection using Digital Image Processing Techniques.

International Journal of Applied Information Systems (IJAIS), November 2015.

https://doi.org/10.5120/ijais2015451461

5

Gonzalez, R., Woods, R., & Eddins, S. (2009). Digital Image Processing Using Matlab (Second

Edition). Gatesmark, LLC.

Sharma, P. (2019, April 1). Computer Vision Tutorial: A Step-by-Step Introduction to Image

Segmentation Techniques (Part 1). Retrieved from Analytics Vidhya:

https://www.analyticsvidhya.com/blog/2019/04/introduction-image-segmentation-techniques-

python/

WHO, (2018). Cancer. Retrieved from https://www.who.int/news-room/fact-sheets/detail/cancer

Facts 2018-2019 provides updates from the American Cancer Society‟s Cancer Facts & Figures

2019 (published online 2019, https://www.cancer.org/research/cancer-facts-statistics.html)

https://www.analyticsvidhya.com/blog/2019/04/introduction-image-segmentation-techniques-python/
https://www.analyticsvidhya.com/blog/2019/04/introduction-image-segmentation-techniques-python/
https://www.who.int/news-room/fact-sheets/detail/cancer

6

APPENDIX

Source code for Automated Leukemia Diagnosis System

IMAGE CLASSIFICATION

Convolutional Neural Network (CNN)

In [1]:

This Python 3 environment comes with many helpful analytics libraries installe

d

It is defined by the kaggle/python docker image: https://github.com/kaggle/doc

ker-python

For example, here's several helpful packages to load in import numpy as np #

linear algebra

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

Input data files are available in the "../input/" directory.

For example, running this (by clicking run or pressing Shift+Enter) will list

 the files in the input directory

import os

print(os.listdir('../enocholutunmida/Downloads/cell_images/Parasitized'))

print(os.listdir('../enocholutunmida/Downloads/cell_images/Uninfected'))

parasitized_data = os.listdir('../enocholutunmida/Downloads/ALL_IDB2/infected')

uninfected_data = os.listdir('../enocholutunmida/Downloads/ALL_IDB2/uninfected')

print(parasitized_data[1:]) #the output we get are the .png files print('\n')

print(uninfected_data[1:])

import cv2

import matplotlib.pyplot as plt

import seaborn as sns

import os

from PIL import Image

from keras.preprocessing.image import img_to_array from

keras.preprocessing.image import load_img from keras.utils import np_utils

['Im090_1.tif', 'Im050_1.tif', 'Im015_1.tif', 'Im108_1.tif', 'Im074_

1.tif', 'Im031_1.tif', 'Im089_1.tif', 'Im111_1.tif', 'Im049_1.tif',

'Im113_1.tif', 'Im076_1.tif', 'Im033_1.tif', 'Im052_1.tif', 'Im017_

1.tif', 'Im092_1.tif', 'Im056_1.tif', 'Im013_1.tif', 'Im096_1.tif',

'Im117_1.tif', 'Im072_1.tif', 'Im037_1.tif', 'Im128_1.tif', 'Im070_

1.tif', 'Im035_1.tif', 'Im008_1.tif', 'Im115_1.tif', 'Im094_1.tif',

'Im069_1.tif', 'Im054_1.tif', 'Im011_1.tif', 'Im032_1.tif', 'Im077_

1.tif', 'Im112_1.tif', 'Im093_1.tif', 'Im016_1.tif', 'Im053_1.tif',

'Im109_1.tif', 'Im014_1.tif', 'Im051_1.tif', 'Im029_1.tif', 'Im091_

1.tif', 'Im048_1.tif', 'Im110_1.tif', 'Im030_1.tif', 'Im075_1.tif',

'Im088_1.tif', 'Im114_1.tif', 'Im009_1.tif', 'Im034_1.tif', 'Im071_

1.tif', 'Im129_1.tif', 'Im010_1.tif', 'Im055_1.tif', 'Im130_1.tif',

'Im095_1.tif', 'Im068_1.tif', 'Im097_1.tif', 'Im012_1.tif', 'Im057_

1.tif', 'Im036_1.tif', 'Im073_1.tif', 'Im116_1.tif', 'Im042_1.tif',

'Im007_1.tif', 'Im082_1.tif', 'Im127_1.tif', 'Im103_1.tif', 'Im066_

1.tif', 'Im023_1.tif', 'Im099_1.tif', 'Im064_1.tif', 'Im021_1.tif',

'Im059_1.tif', 'Im101_1.tif', 'Im080_1.tif', 'Im038_1.tif', 'Im125_

1.tif', 'Im118_1.tif', 'Im040_1.tif', 'Im005_1.tif', 'Im121_1.tif',

'Im079_1.tif', 'Im084_1.tif', 'Im044_1.tif', 'Im001_1.tif', 'Im060_

1.tif', 'Im025_1.tif', 'Im105_1.tif', 'Im018_1.tif', 'Im107_1.tif',

7

'Im062_1.tif', 'Im027_1.tif', 'Im046_1.tif', 'Im003_1.tif', 'Im123_

1.tif', 'Im086_1.tif', 'Im100_1.tif', 'Im058_1.tif', 'Im098_1.tif',

'Im020_1.tif', 'Im065_1.tif', 'Im004_1.tif', 'Im041_1.tif', 'Im119_

1.tif', 'Im124_1.tif', 'Im081_1.tif', 'Im039_1.tif', 'Im126_1.tif',

'Im083_1.tif', 'Im006_1.tif', 'Im043_1.tif', 'Im022_1.tif', 'Im067_

1.tif', 'Im102_1.tif', 'Im026_1.tif', 'Im063_1.tif', 'Im106_1.tif',

'Im087_1.tif', 'Im122_1.tif', 'Im002_1.tif', 'Im047_1.tif', 'Im045_

1.tif', 'Im078_1.tif', 'Im085_1.tif', 'Im120_1.tif', 'Im019_1.tif',

'Im104_1.tif', 'Im024_1.tif', 'Im061_1.tif']

['Im255_0.tif', 'Im154_0.tif', 'Im169_0.tif', 'Im194_0.tif', 'Im209_

0.tif', 'Im135_0.tif', 'Im170_0.tif', 'Im234_0.tif', 'Im236_0.tif',

'Im137_0.tif', 'Im172_0.tif', 'Im196_0.tif', 'Im156_0.tif', 'Im212_

0.tif', 'Im257_0.tif', 'Im192_0.tif', 'Im216_0.tif', 'Im253_0.tif',

'Im152_0.tif', 'Im133_0.tif', 'Im176_0.tif', 'Im232_0.tif', 'Im149_

0.tif', 'Im248_0.tif', 'Im189_0.tif', 'Im230_0.tif', 'Im131_0.tif',

'Im174_0.tif', 'Im150_0.tif', 'Im214_0.tif', 'Im251_0.tif', 'Im229_

0.tif', 'Im190_0.tif', 'Im237_0.tif', 'Im173_0.tif', 'Im136_0.tif',

'Im157_0.tif', 'Im256_0.tif', 'Im213_0.tif', 'Im197_0.tif', 'Im168_

0.tif', 'Im195_0.tif', 'Im254_0.tif', 'Im211_0.tif', 'Im155_0.tif',

'Im171_0.tif', 'Im134_0.tif', 'Im235_0.tif', 'Im208_0.tif', 'Im188_

0.tif', 'Im231_0.tif', 'Im175_0.tif', 'Im148_0.tif', 'Im249_0.tif',

'Im228_0.tif', 'Im191_0.tif', 'Im151_0.tif', 'Im250_0.tif', 'Im215_

0.tif', 'Im252_0.tif', 'Im217_0.tif', 'Im153_0.tif', 'Im193_0.tif',

'Im177_0.tif', 'Im132_0.tif', 'Im233_0.tif', 'Im186_0.tif', 'Im202_

0.tif', 'Im247_0.tif', 'Im146_0.tif', 'Im162_0.tif', 'Im226_0.tif',

'Im219_0.tif', 'Im224_0.tif', 'Im160_0.tif', 'Im144_0.tif', 'Im200_

0.tif', 'Im245_0.tif', 'Im184_0.tif', 'Im179_0.tif', 'Im204_0.tif',

'Im241_0.tif', 'Im140_0.tif', 'Im138_0.tif', 'Im239_0.tif', 'Im180_

0.tif', 'Im258_0.tif', 'Im159_0.tif', 'Im164_0.tif', 'Im199_0.tif',

'Im220_0.tif', 'Im222_0.tif', 'Im166_0.tif', 'Im182_0.tif', 'Im142_

0.tif', 'Im206_0.tif', 'Im243_0.tif', 'Im260_0.tif', 'Im225_0.tif',

'Im161_0.tif', 'Im218_0.tif', 'Im185_0.tif', 'Im178_0.tif', 'Im145_

0.tif', 'Im244_0.tif', 'Im201_0.tif', 'Im246_0.tif', 'Im203_0.tif',

'Im147_0.tif', 'Im187_0.tif', 'Im163_0.tif', 'Im227_0.tif', 'Im223_

0.tif', 'Im167_0.tif', 'Im143_0.tif', 'Im242_0.tif', 'Im207_0.tif',

'Im183_0.tif', 'Im139_0.tif', 'Im238_0.tif', 'Im181_0.tif', 'Im240_

0.tif', 'Im205_0.tif', 'Im141_0.tif', 'Im165_0.tif', 'Im198_0.tif',

'Im221_0.tif', 'Im259_0.tif', 'Im158_0.tif']

Using TensorFlow backend.

In [2]:

['Im028_1.tif', 'Im090_1.tif', 'Im050_1.tif', 'Im015_1.tif', 'Im108_

1.tif', 'Im074_1.tif', 'Im031_1.tif', 'Im089_1.tif', 'Im111_1.tif',

'Im049_1.tif']

['Im210_0.tif', 'Im255_0.tif', 'Im154_0.tif', 'Im169_0.tif', 'Im194_

0.tif', 'Im209_0.tif', 'Im135_0.tif', 'Im170_0.tif', 'Im234_0.tif',

'Im236_0.tif']

In [3]:

parasitized_data = os.listdir('../enocholutunmida/Downloads/ALL_IDB2/infected')

print(parasitized_data[:10]) #the output we get are the .png files

uninfected_data = os.listdir('../enocholutunmida/Downloads/ALL_IDB2/uninfected')

print('\n')

print(uninfected_data[:10])

plt.figure(figsize = (12,12)) for i in range(4):

 plt.subplot(1, 4, i+1)

 img = cv2.imread('../enocholutunmida/Downloads/ALL_IDB2/infected' + "/" + pa

rasitized_data[i])

 plt.imshow(img)

8

 plt.title('INFECTED : 1')

 plt.tight_layout()

plt.show()

In [4]:

plt.figure(figsize = (12,12)) for i in range(4):

 plt.subplot(1, 4, i+1)

 img = cv2.imread('../enocholutunmida/Downloads/ALL_IDB2/uninfected' + "/" +

uninfected_data[i+1])

 plt.imshow(img)

 plt.title('UNINFECTED : 0')

 plt.tight_layout()

plt.show()

In [5]:

data = []

labels = []

for img in uninfected_data: try:

 img_read = plt.imread('../enocholutunmida/Downloads/ALL_IDB2/uninfecte

d/' + "/" + img)

 img_resize = cv2.resize(img_read, (250, 250))

 img_array = img_to_array(img_resize)

 data.append(img_array)

 labels.append(0)

except: None

for img in parasitized_data: try:

 img_read = plt.imread('../enocholutunmida/Downloads/ALL_IDB2/infected/'

+ "/" + img)

 img_resize = cv2.resize(img_read, (250, 250))

 img_array = img_to_array(img_resize)

 data.append(img_array)

 labels.append(1)

except: None

In [6]:

9

Clipping input data to the valid range for imshow with RGB data

([0..1] for floats or [0..255] for integers).

In [7]:

In [8]:

In [9]:

In [10]:

In [11]:

SHAPE OF TRAINING IMAGE DATA : (130, 250, 250, 3)

SHAPE OF TESTING IMAGE DATA : (130, 250, 250, 3)

SHAPE OF TRAINING LABELS : (130, 2)

SHAPE OF TESTING LABELS : (130, 2)

plt.imshow(data[50])

plt.show()

image_data = np.array(data)

labels = np.array(labels)

idx = np.arange(image_data.shape[0])

np.random.shuffle(idx)

image_data = image_data[idx]

labels = labels[idx]

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(image_data, labels, test_siz

e = 0.5, random_state = 101)

y_train = np_utils.to_categorical(y_train, num_classes = 2)

y_test = np_utils.to_categorical(y_test, num_classes = 2)

print(f'SHAPE OF TRAINING IMAGE DATA : {x_train.shape}') print(f'SHAPE OF

TESTING IMAGE DATA : {x_test.shape}') print(f'SHAPE OF TRAINING LABELS :

{y_train.shape}') print(f'SHAPE OF TESTING LABELS : {y_test.shape}')

In [12]:

import keras

from keras.layers import Dense, Conv2D

from keras.layers import Flatten

from keras.layers import MaxPooling2D, GlobalAveragePooling2D from keras.layers

import Activation

from keras.layers import BatchNormalization

from keras.layers import Dropout

10

from keras.models import Sequential

from keras import backend as K

from keras import optimizers

from keras.optimizers import Adam

In [13]:

def CNNbuild(height, width, classes, channels): model = Sequential()

 inputShape = (height, width, channels)

 chanDim = -1

if K.image_data_format() == 'channels_first': inputShape = (channels, height,

width)

 model.add(Conv2D(32, (3,3), activation = 'relu', input_shape = inputShape))

 model.add(MaxPooling2D(2,2))

 model.add(BatchNormalization(axis = chanDim))

 model.add(Dropout(0.2))

 model.add(Conv2D(32, (3,3), activation = 'relu'))

 model.add(MaxPooling2D(2,2))

 model.add(BatchNormalization(axis = chanDim))

 model.add(Dropout(0.2))

 model.add(Flatten())

 model.add(Dense(512, activation = 'relu'))

 model.add(BatchNormalization(axis = chanDim))

 model.add(Dropout(0.5))

 model.add(Dense(classes, activation = 'softmax'))

return model

In [14]:

#instantiate the model

height = 250

width = 250

classes = 2

channels = 3

model = CNNbuild(height = height, width = width, classes = classes, channels = c

hannels)

model.summary()

Instructions for updating:

Please use `rate` instead of `keep_prob`. Rate should be set to `rat

e = 1 - keep_prob`.

Model: "sequential_1"

Layer (type) Output Shape Param #

===

conv2d_1 (Conv2D) (None, 248, 248, 32) 896

max_pooling2d_1 (MaxPooling2 (None, 124, 124, 32) 0

batch_normalization_1 (Batch (None, 124, 124, 32) 128

dropout_1 (Dropout) (None, 124, 124, 32) 0

conv2d_2 (Conv2D) (None, 122, 122, 32) 9248

max_pooling2d_2 (MaxPooling2 (None, 61, 61, 32) 0

batch_normalization_2 (Batch (None, 61, 61, 32) 128

dropout_2 (Dropout) (None, 61, 61, 32) 0

11

flatten_1 (Flatten) (None, 119072) 0

dense_1 (Dense) (None, 512) 60965376

batch_normalization_3 (Batch (None, 512) 2048

dropout_3 (Dropout) (None, 512) 0

dense_2 (Dense) (None, 2) 1026

===

Total params: 60,978,850

Trainable params: 60,977,698

Non-trainable params: 1,152

In [15]:

#compile the model

opt = Adam(lr=0.0001)

model.compile(loss = 'categorical_crossentropy', optimizer = opt, metrics = ['ac

curacy'])

In [16]:

#fit the model onto the dataset

h = model.fit(x_train, y_train, epochs = 10, batch_size = 32)

model.save('my_model.h5')

Instructions for updating:

Use tf.where in 2.0, which has the same broadcast rule as np.where

Epoch 1/10

130/130 [==============================] - 22s 169ms/step - loss: 1.

2231 - acc: 0.6538

Epoch 2/10

130/130 [==============================] - 10s 77ms/step - loss: 0.1

661 - acc: 0.9385

Epoch 3/10

130/130 [==============================] - 19s 146ms/step - loss: 0.

1851 - acc: 0.9231

Epoch 4/10

130/130 [==============================] - 21s 159ms/step - loss: 0.

0699 - acc: 0.9846

Epoch 5/10

130/130 [==============================] - 19s 149ms/step - loss: 0.

0604 - acc: 0.9769

Epoch 6/10

130/130 [==============================] - 28s 214ms/step - loss: 0.

0334 - acc: 0.9846

Epoch 7/10

130/130 [==============================] - 29s 220ms/step - loss: 0.

0884 - acc: 0.9769

Epoch 8/10

130/130 [==============================] - 19s 147ms/step - loss: 0.

0414 - acc: 0.9923

Epoch 9/10

130/130 [==============================] - 18s 136ms/step - loss: 0.

0189 - acc: 1.0000

Epoch 10/10

130/130 [==============================] - 16s 122ms/step - loss: 0.

0261 - acc: 0.9923

In [17]:

12

plt.figure(figsize = (18,8))

plt.plot(range(10), h.history['acc'], label = 'Training Accuracy')

plt.plot(range(10), h.history['loss'], label = 'Taining Loss')

#ax1.set_xticks(np.arange(0, 31, 5))

plt.xlabel("Number of Epoch's")

plt.ylabel('Accuracy/Loss Value')

plt.title('Training Accuracy and Training Loss')

plt.legend(loc = "best")

Out[17]:

<matplotlib.legend.Legend at 0x1a568e99e8>

In [18]:

130/130 [==============================] - 3s 27ms/step

In [19]:

LOSS : 0.527237777870435

ACCURACY : 0.8461538461538461

#evaluate the model on test data

predictions = model.evaluate(x_test, y_test)

print(f'LOSS : {predictions[0]}') print(f'ACCURACY : {predictions[1]}')

In [25]:

import cv2

import tensorflow as tf from PIL import Image

CATEGORIES = ["Infected", "Uninfected"]

def prepare(filepath): IMG_SIZE = 250;

img_array = cv2.imread(filepath)

img_resize = cv2.resize(img_array,(250,250),interpolation=cv2.INTER_AREA)

img_array = img_to_array(img_resize)

plt.imshow(img_resize)

plt.show()

 return img_resize

return img_resize.reshape(-3, IMG_SIZE, IMG_SIZE, 3)

IMG_SIZE = 50;

model = tf.keras.models.load_model("my_model.h5")

prediction = model.predict([data[22000].reshape(-1, IMG_SIZE, IMG_SIZE, 3)])

13

prediction = model.predict(prepare('Im003_1.tif'))

print(prediction) # will be a list in a list.

for pred in prediction: print(CATEGORIES[int(round(pred[0]))]) #

print(int(pred[0]))

[[0.03920074 0.9607993]]

Infected

14

Support Vector Machine (SVM)

In [106]:

import os

import numpy as np

import cv2

import matplotlib.pyplot as plt

import pickle

import random

from sklearn.model_selection import train_test_split from sklearn.svm import SVC

import seaborn as sns

from PIL import Image

from keras.preprocessing.image import img_to_array from

keras.preprocessing.image import load_img from keras.utils import np_utils

Using TensorFlow backend.

In [110]:

dir = '../enocholutunmida/Downloads/ALL_IDB2'

categories = ['infected', 'uninfected']

data = []

for category in categories:

path = os.path.join(dir, category) label = categories.index(category)

for img in os.listdir(path):

imgpath = os.path.join(path, img) cell_img = cv2.imread(imgpath, 0) cell_img =

cv2.resize(cell_img, (50,50)) image = np.array(cell_img).flatten()

 data.append([image, label])

In [111]:

print(len(data))

In [142]:

random.shuffle(data)

features = []

labels = []

for feature , label in data: features.append(feature) labels.append(label)

In [143]:

xtrain, xtest, ytrain, ytest = train_test_split(features, labels, test_size= 0.2

5)

In [150]:

model = SVC(C=1, kernel = 'poly', gamma = 'auto')

model.fit(xtrain, ytrain)

prediction = model.predict(xtest)

accuracy = model.score(xtest, ytest)

categories = ['infected', 'uninfected']

print('Accuracy:', accuracy)

print('Prediction is:', categories[prediction[6]])

img_cell = xtest[14].reshape(50,50)

plt.imshow(img_cell, cmap='gray')

plt.show()

15

Accuracy: 0.7076923076923077

Prediction is: infected

16

IMAGE PROCESSING

RGB TO GRAYSCALE

import cv2

import numpy as np

from matplotlib import pyplot as plt

import seaborn as sns

import os

from PIL import Image

img_data = os.listdir('../Downloads/ALL_IDB1/im')

img = cv2.imread('../Downloads/ALL_IDB1/im' + "/" + img_data[1], 1)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

cv2.imshow("Original Image", gray)

cv2.waitKey(0)

cv2.destroyAllWindows()

IMAGE ENHANCING

import cv2

import numpy as np

from matplotlib import pyplot as plt

import seaborn as sns

import os

from PIL import Image

img_data = os.listdir('../Downloads/ALL_IDB1/im')

17

img = cv2.imread('../Downloads/ALL_IDB1/im' + "/" + img_data[1], 1)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

median = cv2.medianBlur(gray, 3)

cv2.imshow("Median Image", median)

cv2.waitKey(0)

cv2.destroyAllWindows()

EDGE DETECTION

import cv2

import numpy as np

from matplotlib import pyplot as plt

import seaborn as sns

import os

from PIL import Image

img_data = os.listdir('../Downloads/ALL_IDB1/im')

img = cv2.imread('../Downloads/ALL_IDB1/im' + "/" + img_data[1], 1)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

median = cv2.medianBlur(gray, 3)

edges = cv2.Canny(median,60,120)

cv2.imshow("Edge Detection", edges)

cv2.waitKey(0)

cv2.destroyAllWindows()

18

THESHOLDING AND SEGMENTATION

import cv2

import numpy as np

from matplotlib import pyplot as plt

import seaborn as sns

import os

from PIL import Image

img_data = os.listdir('../Downloads/ALL_IDB1/im')

img = cv2.imread('../Downloads/ALL_IDB1/im' + "/" + img_data[1], 1)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

median = cv2.medianBlur(gray, 3)

edges = cv2.Canny(median,60,120)

ret,th = cv2.threshold(median,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)

cv2.imshow("Thresholded Image", th)

cv2.waitKey(0)

cv2.destroyAllWindows()

FEATURE EXTRACTION

import numpy as np

import cv2

import pandas as pd

19

import os

#img = cv2.imread('BSE_Image.jpg')

img_data = os.listdir('../Downloads/ALL_IDB1/im')

img = cv2.imread('../Downloads/ALL_IDB1/im' + "/" + img_data[1])

img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#Here, if you have multichannel image then extract the right channel instead of converting the image to grey.

#For example, if DAPI contains nuclei information, extract the DAPI channel image first.

#Multiple images can be used for training. For that, you need to concatenate the data

#Save original image pixels into a data frame. This is our Feature #1.

img2 = img.reshape(-1)

df = pd.DataFrame()

df['Original Image'] = img2

#Generate Gabor features

num = 1

kernels = []

for theta in range(2):

 theta = theta / 4. * np.pi

20

 for sigma in (1, 3): #Sigma with 1 and 3

 for lamda in np.arange(0, np.pi, np.pi / 4): #Range of wavelengths

 for gamma in (0.05, 0.5): #Gamma values of 0.05 and 0.5

 gabor_label = 'Gabor' + str(num)

 print(gabor_label)

 ksize=9

 kernel = cv2.getGaborKernel((ksize, ksize), sigma, theta, lamda, gamma, 0, ktype=cv2.CV_32F)

 kernels.append(kernel)

 #Now filter the image and add values to a new column

 fimg = cv2.filter2D(img2, cv2.CV_8UC3, kernel)

 filtered_img = fimg.reshape(-1)

 df[gabor_label] = filtered_img

 print(gabor_label, ': theta=', theta, ': sigma=', sigma, ': lamda=', lamda, ': gamma=', gamma)

 num += 1 #Increment for gabor column label

#CANNY EDGE

edges = cv2.Canny(img, 100,200) #Image, min and max values

edges1 = edges.reshape(-1)

df['Canny Edge'] = edges1 #Add column to original dataframe

from skimage.filters import roberts, sobel, scharr, prewitt

21

#ROBERTS EDGE

edge_roberts = roberts(img)

edge_roberts1 = edge_roberts.reshape(-1)

df['Roberts'] = edge_roberts1

#SOBEL

edge_sobel = sobel(img)

edge_sobel1 = edge_sobel.reshape(-1)

df['Sobel'] = edge_sobel1

#SCHARR

edge_scharr = scharr(img)

edge_scharr1 = edge_scharr.reshape(-1)

df['Scharr'] = edge_scharr1

#PREWITT

edge_prewitt = prewitt(img)

edge_prewitt1 = edge_prewitt.reshape(-1)

df['Prewitt'] = edge_prewitt1

#GAUSSIAN with sigma=3

from scipy import ndimage as nd

22

gaussian_img = nd.gaussian_filter(img, sigma=3)

gaussian_img1 = gaussian_img.reshape(-1)

df['Gaussian s3'] = gaussian_img1

#GAUSSIAN with sigma=7

gaussian_img2 = nd.gaussian_filter(img, sigma=7)

gaussian_img3 = gaussian_img2.reshape(-1)

df['Gaussian s7'] = gaussian_img3

#MEDIAN with sigma=3

median_img = nd.median_filter(img, size=3)

median_img1 = median_img.reshape(-1)

df['Median s3'] = median_img1

#VARIANCE with size=3

variance_img = nd.generic_filter(img, np.var, size=3)

variance_img1 = variance_img.reshape(-1)

df['Variance s3'] = variance_img1 #Add column to original dataframe

#Import the labeled/masked image

labeled_img = cv2.imread('../Downloads/ALL_IDB1/im' + "/" + img_data[1])

#Remember that you can load an image with partial labels

drop the rows with unlabeled data

23

labeled_img = cv2.cvtColor(labeled_img, cv2.COLOR_BGR2GRAY)

labeled_img1 = labeled_img.reshape(-1)

df['Labels'] = labeled_img1

print(df.head())

#df.to_csv("Gabor.csv")

#Define the dependent variable that needs to be predicted (labels)

Y = df["Labels"].values

#Define the independent variables

X = df.drop(labels = ["Labels"], axis=1)

#Split data into train and test to verify accuracy after fitting the model.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.4, random_state=20)

Import the model we are using

#RandomForestRegressor is for regression type of problems.

#For classification we use RandomForestClassifier.

#Both yield similar results except for regressor the result is float

24

#and for classifier it is an integer.

RANDOM FOREST CLASSIFIER

from sklearn.ensemble import RandomForestClassifier

Instantiate model with n number of decision trees

model = RandomForestClassifier(n_estimators = 100, random_state = 42)

SUPPORT VECTOR MACHINE (SVM)

Training the SVM to compare against Random Forest

from sklearn.svm import LinearSVC

model = LinearSVC(max_iter=100) #Default of 100 is not converging

Train the model on training data

model.fit(X_train, y_train)

verify number of trees used. If not defined above.

#print('Number of Trees used : ', model.n_estimators)

#First test prediction on the training data itself.

prediction_test_train = model.predict(X_train)

#Test prediction on testing data.

25

prediction_test = model.predict(X_test)

#Let us check the accuracy on test data

from sklearn import metrics

#Print the prediction accuracy

print ("Accuracy on training data = ", metrics.accuracy_score(y_train, prediction_test_train))

#Check accuracy on test dataset.

print ("Accuracy = ", metrics.accuracy_score(y_test, prediction_test))

feature_list = list(X.columns)

feature_imp = pd.Series(model.feature_importances_,index=feature_list).sort_values(ascending=False)

print(feature_imp)

store the model for future use.

#Train on training images, validate on test images and deploy the model on unknown images.

import pickle

#Save the trained model as pickle string to disk for future use

filename = "sandstone_model"

pickle.dump(model, open(filename, 'wb'))

26

#To test the model on future datasets

loaded_model = pickle.load(open(filename, 'rb'))

result = loaded_model.predict(X)

segmented = result.reshape((img.shape))

from matplotlib import pyplot as plt

plt.imshow(segmented, cmap ='jet')

API ENDPOINT

DIAGNOSE API

@app.route('/diagnose', methods=['POST'])

def main():

 if flask.request.method == 'POST':

 image_data = flask.request.form['image_data']

 prediction = model.predict(image_data)

 return flask.render_template('main.html',

 original_input={'image_data':image_data},

 result=prediction,

)

AUTHENTICATION API

27

@app.route('/api/users', methods = ['POST'])

def new_user():

 username = request.json.get(„user_id‟)

 password = request.json.get(„pass_id‟)

 user = User(user_id = username)

 user.hash_password(password)

 db.session.add(user)

 db.session.commit()

 return jsonify({ 'username': user.user_id }), 201, {'message': „successful‟})

USER MODEL

class User(db.Model):

 __tablename__ = 'users'

 id = db.Column(db.Integer, primary_key = True)

 user_id = db.Column(db.String(32), index = True)

 password_hash = db.Column(db.String(128))

