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Abstract 

 

Automatic Leukemia Diagnosis is a computer-aided approach to diagnosing leukemia. This work 

focuses on the diagnosis of Acute Lymphoblastic Leukemia (ALL) which accounts for 12% of all 

childhood and adult leukemias diagnosed in developed countries and for nearly 60% of those 

diagnosed in persons under 20 years of age (Pui, 2011). The relevance of this work is to find a way 

to reduce the over-reliance on medical specialist for the diagnosis of ALL. Machine Learning and 

Deep Learning algorithms are the current trends adopted for the purpose of medical diagnosis 

involving image analysis. This approach has been adopted by many other researchers for the 

purpose of diagnosing breast cancer (Poorti & Neetu, 2019), and prostate cancer (Janney, Christilda, 

Mary & Haritha, 2017), amongst others.  

This project work would be achieved using Python 3.7.  A number of Machine Learning models 

will be compared to find the best performing algorithm. The best performing algorithm will be 

implemented as an API in Python (Flask) and then hosted using Google Cloud Platform (GCP). The 
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hosted API will then be consumed in an Android App for easy usage and diagnosis of ALL in 

medical facilities.
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

Decades of research have focused on the question of if computers can aid human in carrying 

out tasks that would rather have taken ages and achieve them within a shorter time, while also 

prioritizing efficiency. It has been widely assumed that concepts such as artificial intelligence (AI) 

and machine learning (ML) would serve as a foundation for creating a world we all deserve 

(Zuckerberg, n.d.). A world where we can avoid fatal accidents through the introduction of 

autonomous driving vehicles, handle the risk of heart-attack using smartwatches and the use of 

computer vision for early diagnosis of terminal illness such as leukemia. Leukemia could be 

explained to be a malignant disease involving the bone marrows, which in this case, produces an 

excessive number of leucocytes (Burgun et al., 2005). 

The French-American-British (FAB) classification  model categories acute leukaemia into two 

distinct types: acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). In 

developed countries, ALL is said to have accounted for 12% of leukemia in children and adults, it 

was also reported to have higher prevalence of up to 60% in persons under 20 years. It is a very 

common type of cancer in children (25% of all cases) and elderly patients (Pui, 2011).  

Of all the numerous indicators used in evaluating whether a patient is positive for leukemia 

or not, the presence of lymphoblasts in the blood sample is a sure and confident indicator for 

diagnosis. In this manner, tallying of lymphoblasts is the most trusted method for diagnosing 

leukemia (Gayathri & Jyothi, 2018). While the present approaches to diagnosis leukemia still 

appear to be effective and accurate, some of the challenges faced include time-consuming 

procedures and error-prone techniques due to human interference. 
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The relevance of machine learning algorithms for making the process of leukemia diagnosis 

more efficient and accurate has been proven by its application in the process of diagnosing other 

cancer ailments such as breast cancer (Poorti & Neetu, 2019), and prostate cancer (Janney, 

Christilda, Mary & Haritha, 2017), amongst others. Machine Learning uses mathematical equations 

to study the tiniest insights or patterns in the image data (which the human senses may ordinarily 

not be able to detect). These patterns are obtained by training models on several datasets in other to 

help them make an intelligent diagnosis ( 2006).  Hence, the main focus of this work is to 

build a system for diagnosing the presence the of lymphoblast in the blood cell, while also carrying 

out a comparative analysis of various algorithms for diagnosing acute lymphoblastic leukemia 

(ALL) using blood sample images. 

1.2 Statement of Problem 

In recent times, there‟s been a lot of application of deep learning techniques and algorithms in 

problem solving across various domains, especially the medical field. This is because deep learning 

algorithms have the ability to draw patterns and insight from data (Najafabadi et al., 2015). This has 

had a high positive impact in medical domain especially in disease diagnosis and prediction. Cancer 

is a prevalent cankerworm that continues to eat deep into the health and wealth of many nations as 

ascertained by the World health Organization (WHO, 2018). It was reported that the disease alone 

accounted for an estimated 9.6 million deaths in 2018 globally which means that 1 in 6 deaths was 

due to cancer that year alone.  

Leukemia is a type of cancer that affects the white blood cells of its patients, and from 2011 to 2015 

– the most recent 5 years for which data are available, leukemia alone represented 39.6 percent of 

all malignant growth types in children, teenagers and young adults younger than 20 years (Facts, 

2018). In the diagnosis of the disease, complete blood count (CBC) is normally used, however some 

of the problems associated with this procedure includes high cost of diagnosis and machineries, 

time consuming procedures and over-reliance on experts which are rarely available in developing 
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countries. The end goal of this research work is to help reduce the time, cost and over reliance on 

experts for the diagnosis of leukemia and other related ailments. 

1.3 Aim and Objectives 

The aim of this work is to develop a system to diagnose acute lymphoblastic leukemia from blood 

sample images. The specific objectives are to: 

 1. Collect and prepare dataset for image processing and classification. 

 2. Train and design a model for leukemia cell segmentation. 

 3. Compare result of the diagnosis when directly classifying images against how its performance 

when using image processing techniques to extract features and classify them. 

 1. Implement the proposed design as an android-based system for diagnosing leukemia by 

consuming the machine learning model as a RESTful API. 

 

1.4 Methodology 

1. Performing image segmentation, enhancement and feature extraction on ALL-IDB1 cell images. 

2. Analyzing the performance of some image classification algorithms on ALL-IDB2 dataset in 

comparison to the use of image processing to extract features form ALLIDB1 dataset which are 

eventually classified.  

3.i. Systematically highlighting how the leukemia diagnosis system would work. 

ii. Highlighting all resources and tools adopted to ensure the best performance of the system (like 

the cloud hosting platform used). 
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iii. Highlighting the model used in the framework based on evaluation of the relevant classification 

algorithms implemented using Python 3.7. 

iv. Discuss the chosen approach to make the framework easily usable and adaptable to the present 

healthcare working environment; such as making it operate as an android-based leukemia diagnosis 

framework. 

1.5 Significance of the Study 

This study will redound to the benefit of society considering that providing a quicker and less 

expensive means of diagnosing diseases will play an important role by giving as many people as 

possible access to quality diagnosis of leukemia. The estimated 9.6 million deaths leukemia 

accounted for in 2018 globally (WHO, 2018) justifies the need for a more effective, reliable and 

cheaper approach to aid early discovery and diagnosis of the ailment. Thus, medical facilities that 

apply our technology derived from the result of this study will be able to diagnose leukemia faster, 

cheaper and without much reliance on experts in the field. 

1.6 Scope of the Study 

1.7 Definition of Terms 

 •  

 •
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1.8 Organization of Work 

This work is structured in such a way that, Chapter 1 introduces the concept and overview of the 

topic, Chapter 2 discusses recent related works as well as giving sufficient understanding on the 
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various terminologies and concepts that surround the work, Chapter 3 discusses the methods used in 

achieving the said objectives laid down in chapter 1, the various image classification techniques 

compared and the precautions taken during the cause of implementing those techniques. Chapter 4 

talks about the implementation of the proposed system, while Chapter 5 discusses the summary, 

limitations experienced during the project, recommendation and conclusion.   



 

7 

 

 

CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

The diagnosis of leukemia much of the time follows a routine blood test that results in abnormal or 

irregular platelet count. In a case where the doctor suspects leukemia, samples of the bone marrow 

and blood are taken to examine the cell shape. This collected sample may likewise be sent to the 

pathology laboratory to distinguish proteins situated on a superficial level and chromosomal 

changes. This group of information serve important purposes in the process of diagnosing patients. 

 

This work makes reference to other literatures around the idea of diagnosing leukemia and related 

ailments with the help of machine learning algorithms. While some studies suggested using image 

processing techniques to extract shape based features from the cell image such as roundness, 

standard deviation, and so on to diagnose the presence of malignant cells in a blood sample (Modi 

et al., 2016).   Other studies took a slightly different approach by just getting the shape and texture 

of the blood sample images and then passing that into a classifier which would determine whether it 

is malignant or not (Gayathri & Jyothi, 2018). 

 

Several techniques have been suggested for detecting blast cells and for diagnosing leukemia. 

(Ahmed et al., 2019) proposed an approach to diagnosis leukemia (and its subtypes) from 

microscopic blood cell images using convolutional neural networks (CNN). They made use of two 

publicly available leukemia data sources: ALL-IDB and American Society of Hematology (ASH) 

Image Bank in carrying out their research. CNN however requires large dataset to avoid 

memorization and perform optimally, so they performed data augmentation on the training dataset 

to synthetically increase the size of the dataset.  
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CNN performed well with 88% accuracy for the binary classification of one leukemia type and 81% 

accuracy for classifying all leukemia subtypes (Ahmed et al., 2019). Other works propose utilizing 

image processing techniques like automatic Otsu‟s threshold segmentation method, image 

enhancement and arithmetic for WBC segmentation, and KNN classifier to characterize blast cells 

from typical lymphocyte cells (Chatarwad et al., 2018). (Chatarwad et al., 2018) used Otsu‟s 

thresholding method for conversion of grayscale image into binary image. To remove noise, they 

applied image filtering using median filter and then used sobel operator for edge detection. 

 

(Modi et al., 2016) also proposed methods for performing different image processing operations on 

leukemia detected images such as reducing image quality from RGB to gray level, thresholding 

methods for converting images into binary forms, area opening to remove connected component, 

dilation to add pixels to boundary of objects and erosion to remove the pixel on object boundaries. 

After detecting the boundary of object, they performed hole filling operations to detect perfect cells. 

By the end of this processes, they were able to detect boundaries around the cells using operators 

like sobel, prewitt, canny, etc. They computed shape-based features like major axis, minor axis, 

area, perimeter, standard deviation, radius and roundness using certain formulas:   

Radius = (Major axis + Minor axis) / 4 

Roundness = (4*PI*area) / perimeter
2
 

Standard deviation = ((Major axis – X)
2
 + (Minor axis – X)

2
)
1/2

  

Where X = (Major axis + Minor axis) / 2 

Using the value of major axis and minor axis, the number of overlapping cells and non-overlapping 

cells were detected and in-turn the number of overlapping cells and non-overlapping cells were 

used to compute the total number of malignant cells present.  
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Figure 2.1 Algorithm to count the cells (Source: Modi et al., 2016) 

  

2.2 Dimensionality Reduction 

Dimensionality reduction involves the application of data encoding or transformation to obtain a 

reduced or compressed representation of the original data (Data Mining: Concepts and Techniques 

Second Edition, 2013 pg77). A major reason for dimensionality reduction is “degree of freedom” – 

the creation of simpler structures in a machine learning model, and according to (Machine Learning 

: A Probabilistic perspective, 2012 pg11) “when dealing with high dimensional data, it is often 
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useful to reduce the dimensionality by projecting the data to a lower dimensional subspace which 

captures the essence of the data.”. 

 

Figure 2.2 Diagrammatic representation of dimensionality reduction of image data 3D to 2D 

 

2.3 Otsu’s Thresholding Method 

Many works have referenced Otsu‟s thresholding method to be the best method for thresholding. In 

some works like (Modi et al., 2016) – “Leukemia Detection using Digital Image Processing 

Techniques Leukemia Detection using Digital Image Processing Techniques” and (Joshi, Karode & 

Suralkar, 2013) – “White blood cells segmentation and classification to detect acute leukemia” , 

automatic Otsu‟s Thresholding was proposed for blood cell segmentation before carrying out image 

enhancement . In the later work (Joshi, Karode & Suralkar, 2013), Otsu‟s thresholding method was 

used to successfully segment the blood cell images, after which a K-Nearest Neighbor classifier was 

utilized to classify the blast cells – hence providing a way to distinguish them from normal 

lymphocyte cells. Otsu‟s thresholding method is a data-driven way for adaptively finding the 

optimal threshold to distinguish two-class data. 
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Figure 2.3  Bimodal histogram representation of a grayscale image 

 

With reference to the above image, Otsu‟s thresholding method (also called automatic thresholding) finds the 

threshold t that minimizes the weighted sum of within-group variances for the two groups that result from 

separating the gray tones at value t.  

The formula𝜎𝜔
2 𝑡 = 𝑞

1 𝑡 
𝜎1

2 𝑡  + 𝑞
2 𝑡 

𝜎2
2 𝑡  could be used to represent the Otsu‟s thresholding method, 

where t represents the threshold. 

2.4 Identification and Classification of Leucocytes 

(Gayathri & Jyothi, 2018) proposed an approach for identifying and classifying leucocytes. Their 

work revolved around developing an automated and accurate method to find whether a blood 

sample image is leukemia affected or not. To achieve their objective, they carried out certain 

procedures such as performing segmentation on the input image, image cleaning, extracting 

features from the image, and finally using a classifier to classify the extracted features. Beyond just 

building a model to classify leucocytes, they went further ahead to compare several classification 

models such as SVM, ANN, and CNN in other to find the best method possible for the 

classification of leucocytes. They built their system such that in addition to diagnosing leukemia, it 

is also able to detect which type of leukemia in particular i.e. ALL, AML, etc. 
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2.5 Segmentation and Morphological Image Processing 

Segmentation is a very potent image processing technique in medical image analysis and in the 

diagnosis of various ailments like cancer. Segmentation has been used in detecting lumps and 

diagnosing breast cancer (Guzmán-Cabrera et al., 2013).  (Guzmán-Cabrera et al., 2013) suggested 

an approach to distinguish the presence of breast cancer mass in mammograms. They utilized 

morphological operators for segmentation and clustering for clear identification of abnormalities 

such as microcalcifications. Their proposed algorithm was tried over more than a few images taken 

from the digital database for screening mammography for cancer examination and diagnosis.  One 

of the current methods for leukemia diagnosis, Complete Blood Count (CBC) would usually require 

a medical specialist who counts the malignant cells and sort of “take stock” of the various 

components present in the blood sample (Rathee, 2013). To computationally simulate the Complete 

Blood Count (CBC) method of diagnosing leukemia, (Scotti, 2007) suggested an approach to 

automatically detect and count the blast cells present in the blood image (using image segmentation 

and some other morphological operations). 

2.6 Classification Models and Classifiers 

Classification is simply a process of categorizing a given set of data into classes (Data Mining: 

Concepts and Techniques Second Edition, 2013 pg24). This cycle of order can be performed on both 

structured and unstructured data. Other terminologies such as targets, labels, or categories can be 

used interchangeably with classes to communicate the same meaning. Classification can be either 

binary – involving just two possible outcomes, or multiclass – having more than two possible 

outcomes / labels.  Since the classifier helps to determine whether a cell is malignant or not, the 

classifiers used in (Gayathri & Jyothi, 2018) are binary. 

A Classifier is an algorithm used to map input data specific to a category or label.  
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2.7 Existing Methods for Leukemia Diagnosis 

Complete blood count (CBC) involves taking the blood and checking under the microscope for the 

quantity of RBCs, WBCs and platelets. Leukemia can cause anomalous blood cell counts. Immature 

blood cells (called leukemia cells, or blasts) are not regularly found in the blood, so specialists will 

speculate leukemia if there are blasts or if blood cells do not look normal. Bone marrow aspiration 

on the other hand requires expulsion of the bone marrow with the assistance of a needle from the 

breastbone and observing the removed sample under a microscope to search for unusual cells. 

 

 

 

 

Healthy Infected 

Infected Healthy 
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2.8 Digital Image Processing Techniques 

Image processing is a technique adopted for improving raw image data. Image processing holds a 

ton of significance in different fields of study, for example, remote sensing, textiles, material 

science, military, entertainment world, document processing, graphic arts, medical imaging, etc. 

Image processing can be analog or digital, while analog image processing rely on using electrical 

means for altering images, digital image processing requires digital computers to process the 

images. Digital image processing can be defined as subjecting numerical representations of objects 

to a series of operations in order to obtain a desired result (Ravi & Ashokkumar, 2017).  

(Ravi & Ashokkumar, 2017) in their work on Analysis of various image processing techniques, 

gave a classification of image processing techniques – Image representation, Image preprocessing, 

Image enhancement, Image analysis, and Image compression. 

2.8.1 Image Representation 

While creating a digital image, continuous sensed data is converted into digital forms, and this 

process references the relevance of concepts like Sampling – digitizing the co-ordinate values, and 

Quantization – digitizing the amplitude value. Sampling & Quantization are of relevance given that 

the sampling rates is a determinant factor of the spatial resolution of the digitized image and the 

quantization level determines the color depth. 

Among a rundown of potential factors, the elements that essentially decide image quality are: 

  Spatial resolution: constrained by spatial testing, and; 

  Color depth: controlled by number of colors or grey levels designated for every pixel. 
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Manipulating any of these factors would in some way have an effect on the size of the image file. 

On this note, an image can be rightly defined as a 2D rectilinear array of pixels, having a fixed 

number of samples.  

The figure below serves as a diagrammatic representation of how digital images appear – as a 2D 

array. Each of the elements in the matrix represents a pixel in the image. 0 represents black and 255 

represents white. Other values within the 0 – 255 range represent the various combination of colors 

within the image. 

 

 

Figure 2.5 Diagrammatic representation of how digital images appear 

 

2.8.2 Image Preprocessing 

Image preprocessing (also known as data cleaning) describes a set of operations (feature 

engineering) carried out on images at the lowest level of abstraction to improve the image quality.  
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Figure 2.6 Block diagram of image processing stages 

 

 

 

 

Figure 2.7 Diagrammatic representation of image preprocessing 
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2.8.3 Image Enhancement 

Image Enhancement is the way toward adjusting digital images in other to make them more 

reasonable for a necessary assignment. Image enhancement can be either qualitative or quantitative. 

Qualitative image enhancement is used to make the image quality more appealing (look better) 

while Quantitative image enhancement is used to modify certain information within an image.  

There are two types of Image Enhancement – Spatial domain and Frequency domain. Spatial 

domain has to do with the pixels of the images, and the Frequency domain pays more attention to 

the manipulation of the orthogonal transform in the image rather than the image itself. 

 

Figure 2.8 Types of image enhancement 

 

2.8.4 Image Analysis 

Image Analysis is the process of using a digital medium to recognize and study the attributes within 

an image. Over the years image analysis has been used in various fields like age prediction, 

extracting emotions from images, facial recognition, auto-caption from images and barcode reading. 

Image analysis adopts image processing techniques to extract meaningful information from images.  



 

18 

 

 

2.8.5 Image Compression 

Image compression is the process of encoding or converting an image file in such a way that it 

requires less space than the original file (Techopedia, n.d.). Simply put, image compression is a 

compression technique applied to digital images in other to reduce their memory consumption and 

computational complexity. Compression can either be lossy or lossless. In lossy compression 

redundant data is removed in compression and added during decompression – i.e. some data is lost, 

while in lossless compression the data after compression and decompression are the same – i.e. no 

data is lost. 

The model for image compression follows the process;  

a. Input image (as a 2D array). 

b. Encoding Image: this process encompasses the activities of the mapper, quantizer and 

symbol coder. The mapper reduces the spatial or temporal redundancy, the quantizer 

reduces the accuracy of the mapper‟s output (by rounding-down the value from the mapper), 

and the symbol coder generates fixed or variable length codes for the quantizer‟s output. 

c. Decoding Image: this process involves the symbol decoder and inverse mapper, and; 

d. Getting the compressed image as output. 
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Figure 2.9 Image compression model 

 

2.8.6 Image Processing and Medical Imaging 

Image Processing has been the foundational text for the study of digital image processing. 

(Gonzalez & Woods, 2018) emphasizes that digital image processing is the use of a 

 to process  through an . Generally, image processing consist of 

several stages: image acquisition, image preprocessing and analysis, manipulation and image 

output. (Gonzalez et al., 2009, p. 2) in their book titled Digital Image Processing Using MATLAB, 

gave an interesting and rather unconventional definition for digital image processing. They defined 

an image as a two-dimensional function, f(x, y), where x and y are spatial coordinates, and the 

amplitude f at any pair of coordinates (x, y) is called the intensity or gray-level of the image at that 

point. They eventually went ahead to defined digital image processing as a when x, y, and the 

amplitude values f are all finite discrete quantities. 

Some other researching who have made certain contributions in the field of image processing for 

medical diagnosis include (Zadeh, Haddadnia & Janianpour, 2013) & (Supardi, Masher, Harun, 
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Bakri & Hassan, 2012). While the former (Zadeh, Haddadnia & Janianpour, 2013) did some work 

on the recognition and clarification of cancer cells with image processing in Lab VIEW. Lab VIEW 

used an image analysis approach for automated detection, preprocessing (smoothing, enhancement, 

segmentation, feature extraction morphological and calorimetric) and then detection and 

classification of particular cells, the later (Supardi, Masher, Harun, Bakri & Hassan, 2012) 

presented a study on classifying acute leukemia into two major forms which are ALL and AML by 

using K-NN. 12 primary highlights that speak to size, color and shape were extricated from the 

blood images. In other to find suitable parameters for classifying the blasts, a range of k values and 

distance metrics were tested.  

 

A few other cases in which Image processing techniques were adopted for medical diagnosis 

include (Arena, Basile, Bucolo & Fortuna, 2018) in their work on Image Processing for Medical 

Diagnosis using Cellular Neural Networks. Though carried out almost two decades ago – when 

Deep Learning Algorithms were yet to hold firmer grounds, they were able to infer correctly how 

much potency Image Processing would hold in respect to medical diagnosis. They highlighted 

Image Processing as a very potent phase for improving the accuracy of the diagnosis procedure. 

They adopted the use of Cellular Neural Networks to process diagnostic images, like: Magnetic 

Resonance Imaging, Computed Tomography, and fluorescent cDNA microarray images. (Jindal, 

Gupta & Goyal, 2019) also emphasized the use of digital image processing techniques in the 

detection of cataract – one of the leading causes of blindness, especially among old people.  

Several studies taken together have suggested various image processing procedures to achieve the 

common goal – leukemia diagnosis, it however remains an open question whether there could be an 

easier, more efficient and straightforward approach to diagnosing the ailment. Therefore, in this 

work we will be suggesting other techniques and also building upon some already laid down 

techniques by comparing more algorithms. 
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CHAPTER THREE 

METHODOLOGY 

3.0 Introduction 

Research is a deliberate, formal, thorough and exact cycle employed to acquire answers for an issue 

or to find and decipher new facts and relationships (Waltz and Bansell, 1981). It is a quest for trust 
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with the assistance of study, perception, correlation and examination, the quest for knowledge 

through an unbiased and deliberate strategy for discovering solutions to a problem (Kothari, 2006). 

 

The research methodology is a section containing explanations and clarifications of what was done 

and how it was done. It is a systematic description of how the initially stated objectives of the 

projects were achieved by adopting various problem-solving techniques. It gives an understanding 

of how the data used were collected, how they were analyzed, tools and material used in the 

research process, and rationales for adopting such approaches.  

3.1 The Dataset 

In this work secondary data from ALL-DB1 and ALL-IDB2 will be used. The datasets consist of images 

captured with a Canon Powershot G5 camera. The images have 24bit color depth and resolution of 2592 x 

1944. The images contain about 39,000 blood elements with lymphocytes labelled by expert oncologists. 

3.2 Proposed Work 

In the proposed methodology the blood smear would undergo a number of steps from the point of inputting 

the image into the system all the way to point where the system returns an output (stating whether the blood 

sample is leukemia affected or not). In line with the work proposed by (Gayathri & Jyothi, 2018), this work 

would adopt a similar process for the diagnosis but would be comparing more algorithms to achieve the 

objective of comparatively reviewing algorithms to see which of them would perform best to classify the 

extracted features from the input image. After reviewing the performance of CNN, SVM, PNN, random 

forest, and naïve bayes algorithm on the extracted features, the best performing algorithm would be 

deployed as an API and consumed within an android app that would collect the microscopic images through 

the camera and pass it to our model for diagnosis, hereby achieving the fourth objective in this work. 
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Figure 3.1 Proposed leukemia diagnosis system 

 

 

Figure 3.2 Process Model (Source: ALL-IDB initiative) 

3.2.1 Image Preprocessing 

Data acquired could sometimes be messy and uniformed. To make it easier for the leukemia diagnosis ML 

model to analyze and process data computationally, image preprocessing is used to standardize the image 
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data before feeding them to the model or neural network. In this work, the following methods of image 

preprocessing were adopted; 

  Data Augmentation: provided with just 260 cell images from ALL-IDB initiative, this method is 

used to increase the dataset by computationally scaling, rotating, and performing other types of 

transformation on the image. It consists of de-texturization, decolorization and edge enhancement. 

Some algorithms and image classification techniques that adopt deep learning perform less effective 

and efficient with little image dataset. Data augmentation is used in this work to increase the image 

dataset before passing it to a CNN model. 

  Image standardization: to achieve uniformity on the image dataset, it is necessary to sometimes 

resize images and align their width and height. Some algorithms like CNN require all training image 

dataset to be of uniform to perform optimally. 

  Color images to grayscale: the adopted process of diagnosis leukemia in this work do not require 

colors, it was hereby important to reduce the input images to grayscale in other to avoid unnecessary 

memory consumption and computation complexity. 

3.2.2 Image Segmentation 

Image segmentation is a technique used to partition digital images into multiple parts or regions. Medical 

diagnosis that require studying some properties and elements of the cell image would mostly require image 

segmentation automate that process. To achieve instance segmentation in this work, a pretrained model 

called Mask R-CNN was used, the final layers were dropped and retrained on ALL-IDB1 dataset to uniquely 

classify only blast cells. Mask R-CNN uses RestNet101 architecture to extract features from images. It 

makes use of region proposal network (RPN) to generate a region of interest (ROI). 
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Figure 3.3 Mask R-CNN (Source: Analytics Vidhya, 2019) 

 

3.2.3 Feature Extraction 

Features play a very important role in image processing and medical image analysis. Haven carried out 

several other important steps of preprocessing, thresholding, and image segmentation, some filters where 

added to the image to achieve feature extraction. The features used in this work include, gabor, canny edge, 

robert edge, sobel, scharr, prewitt, gaussian, median, and variance. These extracted features are then used to 

train some ML classifiers and compare their performance. 

3.3 Application Design 

To achieve a robust, testable and maintainable design, this work adopts the use of android architecture 

component, MVVM (Model View View-Model). This proposed system will rely on android framework to 

collect new images and pass them to ML model hosted in the cloud. The model processes the input image 

and sends a response back to the android interface where the status of the blood sample is displayed. 

 



 

26 

 

 

 



 

1 

 

 

 

 

 

Figure 3.4 MVVM Architecture Component 
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3.3.1 Use Case Diagram 

A Use Case Diagram is the simplest representation of a user’s interaction with a system that shows the 

relationship between the user and the different user cases in which the user is involved. 

 

Figure 3.5 Use Case Diagram 
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3.3.2 UML Sequence Diagram 

UML sequence diagram show the sequence of object interaction that take place. They are connection charts 

that detail how operations are carried out. 

 

Figure 3.6 UML Sequence Diagram  
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3.4 Machine Learning Life Cycle (MLLC) 

MLLC is a cyclical process for building and managing good quality models. It is an approach adopted by 

data science specialists to design, develop and test high quality models. The leukemia diagnosis ML model 

was developed through the processes of data gathering, exploratory analysis, training, model selection and 

verification, deployment and monitoring. A continuous deployment and automation pipeline was developed 

to ensure that the model can be easily improved and deployed for use in the long run. 

 

Figure 3.7 Machine Learning Model Development Lifecycle (Source: Analytics Vidhya, 2020) 
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Figure 3.8 CI/CD and automated ML pipeline (Source: Google Cloud, n.d.)  
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CHAPTER FOUR 

IMPLEMENTATION AND RESULT 

4.0 Implementation and Documentation  

This chapter demonstrates the experimental results of implementing an android-based automated 

leukemia diagnosis system. The output include  an optimal method for diagnosis acute 

lymphoblastic leukemia (ALL) using image processing and image classification techniques. 

It describes the tools used in developing and implementing the system. It describes the various steps 

and processes carried out on the image samples and their output at every step. 

4.1 Programming Language, IDEs, Tools AND Technologies  

Python 3.7 was used in building and deploying the ML model. The model was hosted as a RESTful 

API on Google Cloud Platform (GCP) with Python (Flask). Some of the libraries used in this work 

include Keras, Tensorflow, OpenCV, and Mask R-CNN pretrained RestNet101 instance 

segmentation framework. The frontend of the system was built in Java (Android) while adopting a 

MVVM architecture component. MVVM (Model View View-Model) is a software architectural 

pattern that facilitates the separation of the development of the graphical user interface (GUI code) 

from the development of the back-end logic so that the view is not dependent on any specific model 

platform. Spyder IDE and Jupyter Notebook were used to run all python programs, and Android 

Studio IDE (4.0.1) was used to in developing the android app. 

4.2 How Automated Leukemia Diagnosis System Works 

The diagnosis system works based on some functional and non-functional requirements. These 

requirements portray the features and behaviour of the system or software application. It conveys 

the expectation of the users from the software product. 
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4.2.1 Function Requirement 

Functional requirements specify what the system should do. The functional requirements of the 

proposed automated leukemia diagnosis system include; 

1. Registration and Login 

2. Capturing blood smear images through the device camera 

3. Performing diagnosis on the blood image gotten from the device camera 

4. Provide a medical report containing the result of the diagnosis 

4.2.2 Non-Functional Requirement 

Non-functional requirements represent constraints under which a system should perform all it‟s 

functional requirements. The Non-functional requirements of the proposed automated leukemia 

diagnosis system include; 

1. Security:  

a. The system should have a constraint on patient identity and information. 

b. The system should have multiple layers for authenticating users and deciding what level 

of data and information they have access to. These layers would include, user, admin, 

and super-admin. 

2. Usability: the diagnosis system should be easily understandable and user friendly. 

3. Scalability: the system should be robust enough to perform efficiently and accommodate 

changes across geographical boundaries. 

4.3 Screenshots of Implementation Stages 

The screenshots of the implementation stages show the interface of the android software to be used 

by the medical laboratory technician and the output image of the various processes happening in 

backend. 
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4.3.1 Leukemia Diagnosis Model (Using Image Processing) 

a. Original Image 

 

This is the cell image before undergoing any form of preprocessing or cleaning.  

Figure 4.1 Original image
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b. Grayscale Image 

 

This is the cell image after programmatically converting it to grayscale 

Figure 4.2 Grayscale Image 
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c. Enhanced Image 

 

This is the cell image after applying median blur filter to enhance and smoothing the grayscale 

image.  

Figure 4.3 Enhanced Image
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d. Edge Detection 

 

This is the cell image after applying canny edge filter to get the edges of all cells present. 

Figure 4.4 Edge Detection  

 

 

 

 

 

 

 

 



 

2 

 

 

 

e. Thresholding and Image Segmentation 

 

 

This is the cell image after applying Otsu‟s thresholding to the enhanced image and performing 

segmentation with the Mask R-CNN pretrained model. 

Figure 4.5 Thresholding and Image segmentation
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4.3.2 Leukemia Diagnosis Model (Using Image Classification) 

a. CNN Classifier 

Out[17]:  

<matplotlib.legend.Legend at 0x1a568e99e8> 

 
In [18]:  

130/130 [==============================] - 3s 27ms/step 

In [19]:  

LOSS : 0.527237777870435 

ACCURACY : 0.8461538461538461 

 

 
[[0.03920074 0.9607993 ]] 

Infected 

 

Figure 4.6 Training Accuracy and Training Loss of CNN Classifier
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b. SVM Classifier 

 
Accuracy: 0.7076923076923077 

Prediction is: infected 

 
 
Figure 4.7 Training Accuracy and Training Loss of SVM Classifier 
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4.3.3 Android Interfaces 

a. Take Image Screen 

 

Figure 4.8 Capturing cell image 
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b. Show WBC Screen 
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Figure 4.9 WBCs Found Screen 
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c. Diagnose Screen 

 

 
 

Figure 4.10 Leukemia Found Screen
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CHAPTER FIVE 

SUMMARY AND CONCLUSION 

5.0 Summary 

The use of machine learning techniques like image processing to diagnose some disease has proved 

effective and valuable. The process of diagnosing leukemia in this work adopted two approaches. 

First was using image classification algorithms on the 260 ALL-IDB2 image dataset, while the 

second approach was to use image processing techniques to enhance the image, segment it, extract 

some features like shape from the segmented image and then passing those features into a random 

forest classifier. This work compared the performance of CNN, SVM, PNN, random forest, and 

naïve bayes classifiers. The image segmentation also compared performance of using Otsu‟s 

thresholding (as a basic form of segmentation) against the Mask R-CNN (which is a RestNet101 

instance segmentation architecture). 

5.1 Contribution to Knowledge 

This research contributes to knowledge by utilizing machine learning techniques to develop a 

system that diagnoses acute lymphoblastic leukemia (ALL). The developed system aims to assist 

medical institutions and the society as large in timely and cheap diagnosis of ALL. This work 

provides some insight into the process of using image processing and classification for identifying 

blast cells in a blood sample. This provides opportunities for other researchers to expand the scope 

of this work and build models that would diagnose other related ailments using similar approaches 

of image processing techniques. 

5.2 Limitations 

i. Scarcity of previous works 

ii. Scarcity of sufficient datasets 
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iii. Time constraints 

5.3 Recommendation for Further Study 

After designing and implementing a system for automatically diagnosing acute lymphoblastic 

leukemia, and also evaluating the performance and accuracy of five classification algorithms to 

ascertain the most effective and efficient one of them, the following are recommended;  

i. Other leukemia subtypes like AML and CML can be diagnosed using a similar 

approach. 

ii. Other image processing and classification algorithms can be compared outside the scope 

of this work to adequately extract features from images and also classify them. 

iii. Other android architecture components like Model View Presenter (MVP) could be used 

in designing the android system for consuming the hosted ML model while also 

prioritizing security of patient data. 

5.4 Conclusion 

In conclusion, it was observed that a traditional machine learning random forest classifier 

performed better than CNN in classifying features extracted from the 260 ALL-IDB1 images 

dataset. CNN however performed best when image augmentation was adopted to increase the ALL-

IDB2 image dataset used in training the deep learning classifier.  
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APPENDIX 

Source code for Automated Leukemia Diagnosis System 

IMAGE CLASSIFICATION 

Convolutional Neural Network (CNN) 

In [1]:  

# This Python 3 environment comes with many helpful analytics libraries installe 

d 

# It is defined by the kaggle/python docker image: https://github.com/kaggle/doc 

ker-python 

# For example, here's several helpful packages to load in import numpy as np # 

linear algebra  

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)  

# Input data files are available in the "../input/" directory. 

# For example, running this (by clicking run or pressing Shift+Enter) will list 

 the files in the input directory 

import os 

# print(os.listdir('../enocholutunmida/Downloads/cell_images/Parasitized'))  

# print(os.listdir('../enocholutunmida/Downloads/cell_images/Uninfected')) 

parasitized_data = os.listdir('../enocholutunmida/Downloads/ALL_IDB2/infected') 

uninfected_data = os.listdir('../enocholutunmida/Downloads/ALL_IDB2/uninfected') 

print(parasitized_data[1:]) #the output we get are the .png files print('\n') 

print(uninfected_data[1:])  

import cv2 

import matplotlib.pyplot as plt 

import seaborn as sns 

import os 

from PIL import Image 

from keras.preprocessing.image import img_to_array from 

keras.preprocessing.image import load_img from keras.utils import np_utils  

 

['Im090_1.tif', 'Im050_1.tif', 'Im015_1.tif', 'Im108_1.tif', 'Im074_ 

1.tif', 'Im031_1.tif', 'Im089_1.tif', 'Im111_1.tif', 'Im049_1.tif', 

'Im113_1.tif', 'Im076_1.tif', 'Im033_1.tif', 'Im052_1.tif', 'Im017_ 

1.tif', 'Im092_1.tif', 'Im056_1.tif', 'Im013_1.tif', 'Im096_1.tif', 

'Im117_1.tif', 'Im072_1.tif', 'Im037_1.tif', 'Im128_1.tif', 'Im070_ 

1.tif', 'Im035_1.tif', 'Im008_1.tif', 'Im115_1.tif', 'Im094_1.tif', 

'Im069_1.tif', 'Im054_1.tif', 'Im011_1.tif', 'Im032_1.tif', 'Im077_ 

1.tif', 'Im112_1.tif', 'Im093_1.tif', 'Im016_1.tif', 'Im053_1.tif', 

'Im109_1.tif', 'Im014_1.tif', 'Im051_1.tif', 'Im029_1.tif', 'Im091_ 

1.tif', 'Im048_1.tif', 'Im110_1.tif', 'Im030_1.tif', 'Im075_1.tif', 

'Im088_1.tif', 'Im114_1.tif', 'Im009_1.tif', 'Im034_1.tif', 'Im071_ 

1.tif', 'Im129_1.tif', 'Im010_1.tif', 'Im055_1.tif', 'Im130_1.tif', 

'Im095_1.tif', 'Im068_1.tif', 'Im097_1.tif', 'Im012_1.tif', 'Im057_ 

1.tif', 'Im036_1.tif', 'Im073_1.tif', 'Im116_1.tif', 'Im042_1.tif', 

'Im007_1.tif', 'Im082_1.tif', 'Im127_1.tif', 'Im103_1.tif', 'Im066_ 

1.tif', 'Im023_1.tif', 'Im099_1.tif', 'Im064_1.tif', 'Im021_1.tif', 

'Im059_1.tif', 'Im101_1.tif', 'Im080_1.tif', 'Im038_1.tif', 'Im125_ 

1.tif', 'Im118_1.tif', 'Im040_1.tif', 'Im005_1.tif', 'Im121_1.tif', 

'Im079_1.tif', 'Im084_1.tif', 'Im044_1.tif', 'Im001_1.tif', 'Im060_ 

1.tif', 'Im025_1.tif', 'Im105_1.tif', 'Im018_1.tif', 'Im107_1.tif', 
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'Im062_1.tif', 'Im027_1.tif', 'Im046_1.tif', 'Im003_1.tif', 'Im123_ 

1.tif', 'Im086_1.tif', 'Im100_1.tif', 'Im058_1.tif', 'Im098_1.tif', 

'Im020_1.tif', 'Im065_1.tif', 'Im004_1.tif', 'Im041_1.tif', 'Im119_ 

1.tif', 'Im124_1.tif', 'Im081_1.tif', 'Im039_1.tif', 'Im126_1.tif', 

'Im083_1.tif', 'Im006_1.tif', 'Im043_1.tif', 'Im022_1.tif', 'Im067_ 

1.tif', 'Im102_1.tif', 'Im026_1.tif', 'Im063_1.tif', 'Im106_1.tif', 

'Im087_1.tif', 'Im122_1.tif', 'Im002_1.tif', 'Im047_1.tif', 'Im045_ 

1.tif', 'Im078_1.tif', 'Im085_1.tif', 'Im120_1.tif', 'Im019_1.tif', 

'Im104_1.tif', 'Im024_1.tif', 'Im061_1.tif'] 

['Im255_0.tif', 'Im154_0.tif', 'Im169_0.tif', 'Im194_0.tif', 'Im209_ 

0.tif', 'Im135_0.tif', 'Im170_0.tif', 'Im234_0.tif', 'Im236_0.tif', 

'Im137_0.tif', 'Im172_0.tif', 'Im196_0.tif', 'Im156_0.tif', 'Im212_ 

0.tif', 'Im257_0.tif', 'Im192_0.tif', 'Im216_0.tif', 'Im253_0.tif', 

'Im152_0.tif', 'Im133_0.tif', 'Im176_0.tif', 'Im232_0.tif', 'Im149_ 

0.tif', 'Im248_0.tif', 'Im189_0.tif', 'Im230_0.tif', 'Im131_0.tif', 

'Im174_0.tif', 'Im150_0.tif', 'Im214_0.tif', 'Im251_0.tif', 'Im229_ 

0.tif', 'Im190_0.tif', 'Im237_0.tif', 'Im173_0.tif', 'Im136_0.tif', 

'Im157_0.tif', 'Im256_0.tif', 'Im213_0.tif', 'Im197_0.tif', 'Im168_ 

0.tif', 'Im195_0.tif', 'Im254_0.tif', 'Im211_0.tif', 'Im155_0.tif', 

'Im171_0.tif', 'Im134_0.tif', 'Im235_0.tif', 'Im208_0.tif', 'Im188_ 

0.tif', 'Im231_0.tif', 'Im175_0.tif', 'Im148_0.tif', 'Im249_0.tif', 

'Im228_0.tif', 'Im191_0.tif', 'Im151_0.tif', 'Im250_0.tif', 'Im215_ 

0.tif', 'Im252_0.tif', 'Im217_0.tif', 'Im153_0.tif', 'Im193_0.tif', 

'Im177_0.tif', 'Im132_0.tif', 'Im233_0.tif', 'Im186_0.tif', 'Im202_ 

0.tif', 'Im247_0.tif', 'Im146_0.tif', 'Im162_0.tif', 'Im226_0.tif', 

'Im219_0.tif', 'Im224_0.tif', 'Im160_0.tif', 'Im144_0.tif', 'Im200_ 

0.tif', 'Im245_0.tif', 'Im184_0.tif', 'Im179_0.tif', 'Im204_0.tif', 

'Im241_0.tif', 'Im140_0.tif', 'Im138_0.tif', 'Im239_0.tif', 'Im180_ 

0.tif', 'Im258_0.tif', 'Im159_0.tif', 'Im164_0.tif', 'Im199_0.tif', 

'Im220_0.tif', 'Im222_0.tif', 'Im166_0.tif', 'Im182_0.tif', 'Im142_ 

0.tif', 'Im206_0.tif', 'Im243_0.tif', 'Im260_0.tif', 'Im225_0.tif', 

'Im161_0.tif', 'Im218_0.tif', 'Im185_0.tif', 'Im178_0.tif', 'Im145_ 

0.tif', 'Im244_0.tif', 'Im201_0.tif', 'Im246_0.tif', 'Im203_0.tif', 

'Im147_0.tif', 'Im187_0.tif', 'Im163_0.tif', 'Im227_0.tif', 'Im223_ 

0.tif', 'Im167_0.tif', 'Im143_0.tif', 'Im242_0.tif', 'Im207_0.tif', 

'Im183_0.tif', 'Im139_0.tif', 'Im238_0.tif', 'Im181_0.tif', 'Im240_ 

0.tif', 'Im205_0.tif', 'Im141_0.tif', 'Im165_0.tif', 'Im198_0.tif', 

'Im221_0.tif', 'Im259_0.tif', 'Im158_0.tif'] 

 
 

Using TensorFlow backend. 

In [2]:  

['Im028_1.tif', 'Im090_1.tif', 'Im050_1.tif', 'Im015_1.tif', 'Im108_ 

1.tif', 'Im074_1.tif', 'Im031_1.tif', 'Im089_1.tif', 'Im111_1.tif', 

'Im049_1.tif'] 

['Im210_0.tif', 'Im255_0.tif', 'Im154_0.tif', 'Im169_0.tif', 'Im194_ 

0.tif', 'Im209_0.tif', 'Im135_0.tif', 'Im170_0.tif', 'Im234_0.tif', 

'Im236_0.tif'] 

In [3]:  

parasitized_data = os.listdir('../enocholutunmida/Downloads/ALL_IDB2/infected') 

print(parasitized_data[:10]) #the output we get are the .png files  

uninfected_data = os.listdir('../enocholutunmida/Downloads/ALL_IDB2/uninfected') 

print('\n') 

print(uninfected_data[:10])  

plt.figure(figsize = (12,12)) for i in range(4):  

    plt.subplot(1, 4, i+1) 

    img = cv2.imread('../enocholutunmida/Downloads/ALL_IDB2/infected' + "/" + pa 

rasitized_data[i]) 

    plt.imshow(img) 
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    plt.title('INFECTED : 1') 

    plt.tight_layout() 

plt.show()  

 
 

In [4]:  

plt.figure(figsize = (12,12)) for i in range(4):  

    plt.subplot(1, 4, i+1) 

    img = cv2.imread('../enocholutunmida/Downloads/ALL_IDB2/uninfected' + "/" + 

uninfected_data[i+1]) 

    plt.imshow(img) 

    plt.title('UNINFECTED : 0') 

    plt.tight_layout() 

plt.show()  

 
In [5]:  

data = [] 

labels = [] 

for img in uninfected_data: try:  

        img_read = plt.imread('../enocholutunmida/Downloads/ALL_IDB2/uninfecte 

d/' + "/" + img) 

        img_resize = cv2.resize(img_read, (250, 250)) 

        img_array = img_to_array(img_resize) 

        data.append(img_array) 

        labels.append(0) 

except: None  

for img in parasitized_data: try:  

        img_read = plt.imread('../enocholutunmida/Downloads/ALL_IDB2/infected/' 

+ "/" + img) 

        img_resize = cv2.resize(img_read, (250, 250)) 

        img_array = img_to_array(img_resize) 

        data.append(img_array) 

        labels.append(1) 

except: None  

 

In [6]:  
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Clipping input data to the valid range for imshow with RGB data 

([0..1] for floats or [0..255] for integers). 

In [7]:  

In [8]:  

In [9]:  

In [10]:  

In [11]:  

SHAPE OF TRAINING IMAGE DATA : (130, 250, 250, 3) 

SHAPE OF TESTING IMAGE DATA : (130, 250, 250, 3) 

SHAPE OF TRAINING LABELS : (130, 2) 

SHAPE OF TESTING LABELS : (130, 2) 

 
plt.imshow(data[50]) 

plt.show() 

 
image_data = np.array(data) 

labels = np.array(labels) 

idx = np.arange(image_data.shape[0]) 

np.random.shuffle(idx) 

image_data = image_data[idx] 

labels = labels[idx] 

from sklearn.model_selection import train_test_split 

x_train, x_test, y_train, y_test = train_test_split(image_data, labels, test_siz 

e = 0.5, random_state = 101)  

 
y_train = np_utils.to_categorical(y_train, num_classes = 2) 

y_test = np_utils.to_categorical(y_test, num_classes = 2) 

print(f'SHAPE OF TRAINING IMAGE DATA : {x_train.shape}') print(f'SHAPE OF 

TESTING IMAGE DATA : {x_test.shape}') print(f'SHAPE OF TRAINING LABELS : 

{y_train.shape}') print(f'SHAPE OF TESTING LABELS : {y_test.shape}')  

 

In [12]:  

import keras 

from keras.layers import Dense, Conv2D 

from keras.layers import Flatten 

from keras.layers import MaxPooling2D, GlobalAveragePooling2D from keras.layers 

import Activation 

from keras.layers import BatchNormalization 

from keras.layers import Dropout 
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from keras.models import Sequential 

from keras import backend as K  

from keras import optimizers 

from keras.optimizers import Adam  

In [13]:  

def CNNbuild(height, width, classes, channels): model = Sequential()  

    inputShape = (height, width, channels) 

    chanDim = -1 

if K.image_data_format() == 'channels_first': inputShape = (channels, height, 

width)  

    model.add(Conv2D(32, (3,3), activation = 'relu', input_shape = inputShape)) 

    model.add(MaxPooling2D(2,2)) 

    model.add(BatchNormalization(axis = chanDim)) 

    model.add(Dropout(0.2)) 

    model.add(Conv2D(32, (3,3), activation = 'relu')) 

    model.add(MaxPooling2D(2,2)) 

    model.add(BatchNormalization(axis = chanDim)) 

    model.add(Dropout(0.2)) 

    model.add(Flatten()) 

    model.add(Dense(512, activation = 'relu')) 

    model.add(BatchNormalization(axis = chanDim)) 

    model.add(Dropout(0.5)) 

    model.add(Dense(classes, activation = 'softmax')) 

return model  

 

In [14]:  

#instantiate the model 

height = 250 

width = 250 

classes = 2 

channels = 3 

model = CNNbuild(height = height, width = width, classes = classes, channels = c 

hannels) 

model.summary() 

 

Instructions for updating: 

Please use `rate` instead of `keep_prob`. Rate should be set to `rat 

e = 1 - keep_prob`. 

Model: "sequential_1" 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param # 

================================================================= 

conv2d_1 (Conv2D)            (None, 248, 248, 32)      896 

_________________________________________________________________ 

max_pooling2d_1 (MaxPooling2 (None, 124, 124, 32)      0 

_________________________________________________________________ 

batch_normalization_1 (Batch (None, 124, 124, 32)      128 

_________________________________________________________________ 

dropout_1 (Dropout)          (None, 124, 124, 32)      0 

_________________________________________________________________ 

conv2d_2 (Conv2D)            (None, 122, 122, 32)      9248 

_________________________________________________________________ 

max_pooling2d_2 (MaxPooling2 (None, 61, 61, 32)        0 

_________________________________________________________________ 

batch_normalization_2 (Batch (None, 61, 61, 32)        128 

_________________________________________________________________ 

dropout_2 (Dropout)          (None, 61, 61, 32)        0 
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_________________________________________________________________ 

flatten_1 (Flatten)          (None, 119072)            0 

_________________________________________________________________ 

dense_1 (Dense)              (None, 512)               60965376 

_________________________________________________________________ 

batch_normalization_3 (Batch (None, 512)               2048 

_________________________________________________________________ 

dropout_3 (Dropout)          (None, 512)               0 

_________________________________________________________________ 

dense_2 (Dense)              (None, 2)                 1026 

================================================================= 

Total params: 60,978,850 

Trainable params: 60,977,698 

Non-trainable params: 1,152 

_________________________________________________________________ 

In [15]:  

#compile the model 

opt = Adam(lr=0.0001) 

model.compile(loss = 'categorical_crossentropy', optimizer = opt, metrics = ['ac 

curacy']) 

In [16]:  

#fit the model onto the dataset 

h = model.fit(x_train, y_train, epochs = 10, batch_size = 32) 

model.save('my_model.h5') 

 

Instructions for updating: 

Use tf.where in 2.0, which has the same broadcast rule as np.where 

Epoch 1/10 

130/130 [==============================] - 22s 169ms/step - loss: 1. 

2231 - acc: 0.6538 

Epoch 2/10 

130/130 [==============================] - 10s 77ms/step - loss: 0.1 

661 - acc: 0.9385 

Epoch 3/10 

130/130 [==============================] - 19s 146ms/step - loss: 0. 

1851 - acc: 0.9231 

Epoch 4/10 

130/130 [==============================] - 21s 159ms/step - loss: 0. 

0699 - acc: 0.9846 

Epoch 5/10 

130/130 [==============================] - 19s 149ms/step - loss: 0. 

0604 - acc: 0.9769 

Epoch 6/10 

130/130 [==============================] - 28s 214ms/step - loss: 0. 

0334 - acc: 0.9846 

Epoch 7/10 

130/130 [==============================] - 29s 220ms/step - loss: 0. 

0884 - acc: 0.9769 

Epoch 8/10 

130/130 [==============================] - 19s 147ms/step - loss: 0. 

0414 - acc: 0.9923 

Epoch 9/10 

130/130 [==============================] - 18s 136ms/step - loss: 0. 

0189 - acc: 1.0000 

Epoch 10/10 

130/130 [==============================] - 16s 122ms/step - loss: 0. 

0261 - acc: 0.9923 

In [17]:  
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plt.figure(figsize = (18,8)) 

plt.plot(range(10), h.history['acc'], label = 'Training Accuracy') 

plt.plot(range(10), h.history['loss'], label = 'Taining Loss') 

#ax1.set_xticks(np.arange(0, 31, 5)) 

plt.xlabel("Number of Epoch's") 

plt.ylabel('Accuracy/Loss Value') 

plt.title('Training Accuracy and Training Loss') 

plt.legend(loc = "best")  

Out[17]:  

<matplotlib.legend.Legend at 0x1a568e99e8> 

 
In [18]:  

130/130 [==============================] - 3s 27ms/step 

In [19]:  

LOSS : 0.527237777870435 

ACCURACY : 0.8461538461538461 

 
#evaluate the model on test data 

predictions = model.evaluate(x_test, y_test) 

 

print(f'LOSS : {predictions[0]}') print(f'ACCURACY : {predictions[1]}')  

In [25]:  

import cv2 

import tensorflow as tf from PIL import Image  

CATEGORIES = ["Infected", "Uninfected"] 

def prepare(filepath): IMG_SIZE = 250;  

#  

img_array = cv2.imread(filepath) 

img_resize = cv2.resize(img_array,(250,250),interpolation=cv2.INTER_AREA) 

img_array = img_to_array(img_resize) 

plt.imshow(img_resize) 

plt.show() 

  return img_resize 

return img_resize.reshape(-3, IMG_SIZE, IMG_SIZE, 3)  

IMG_SIZE = 50; 

# model = tf.keras.models.load_model("my_model.h5") 

# prediction = model.predict([data[22000].reshape(-1, IMG_SIZE, IMG_SIZE, 3)]) 



 

13 

 

 

prediction = model.predict(prepare('Im003_1.tif')) 

print(prediction) # will be a list in a list.  

for pred in prediction: print(CATEGORIES[int(round(pred[0]))]) # 

print(int(pred[0]))  

 
[[0.03920074 0.9607993 ]] 

Infected 
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Support Vector Machine (SVM) 

 

In [106]:  

import os 

import numpy as np 

import cv2 

import matplotlib.pyplot as plt 

import pickle 

import random 

from sklearn.model_selection import train_test_split from sklearn.svm import SVC  

import seaborn as sns 

from PIL import Image 

from keras.preprocessing.image import img_to_array from 

keras.preprocessing.image import load_img from keras.utils import np_utils  

Using TensorFlow backend. 

In [110]:  

 
dir = '../enocholutunmida/Downloads/ALL_IDB2' 

 
categories = ['infected', 'uninfected'] 

 
data = []  

for category in categories: 

path = os.path.join(dir, category) label = categories.index(category)  

for img in os.listdir(path): 

imgpath = os.path.join(path, img) cell_img = cv2.imread(imgpath, 0) cell_img = 

cv2.resize(cell_img, (50,50)) image = np.array(cell_img).flatten()  

        data.append([image, label]) 

In [111]:  

print(len(data)) 

 

In [142]:  

random.shuffle(data) 

features = [] 

labels = []  

for feature , label in data: features.append(feature) labels.append(label)  

In [143]:  

xtrain, xtest, ytrain, ytest = train_test_split(features, labels, test_size= 0.2 

5) 

In [150]:  

model = SVC(C=1, kernel = 'poly', gamma = 'auto') 

model.fit(xtrain, ytrain) 

prediction = model.predict(xtest) 

accuracy = model.score(xtest, ytest) 

categories = ['infected', 'uninfected'] 

print('Accuracy:', accuracy) 

print('Prediction is:', categories[prediction[6]]) 

img_cell = xtest[14].reshape(50,50) 

plt.imshow(img_cell, cmap='gray') 

plt.show() 
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Accuracy: 0.7076923076923077 

Prediction is: infected 
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IMAGE PROCESSING 

RGB TO GRAYSCALE 

import cv2 

import numpy as np 

from matplotlib import pyplot as plt 

import seaborn as sns 

import os 

from PIL import Image 

img_data = os.listdir('../Downloads/ALL_IDB1/im') 

img = cv2.imread('../Downloads/ALL_IDB1/im' + "/" + img_data[1], 1) 

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

cv2.imshow("Original Image", gray) 

cv2.waitKey(0) 

cv2.destroyAllWindows() 

 

IMAGE ENHANCING 

import cv2 

import numpy as np 

from matplotlib import pyplot as plt 

import seaborn as sns 

import os 

from PIL import Image 

img_data = os.listdir('../Downloads/ALL_IDB1/im') 
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img = cv2.imread('../Downloads/ALL_IDB1/im' + "/" + img_data[1], 1) 

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

median = cv2.medianBlur(gray, 3) 

cv2.imshow("Median Image", median) 

cv2.waitKey(0) 

cv2.destroyAllWindows() 

 

EDGE DETECTION 

import cv2 

import numpy as np 

from matplotlib import pyplot as plt 

import seaborn as sns 

import os 

from PIL import Image 

img_data = os.listdir('../Downloads/ALL_IDB1/im') 

img = cv2.imread('../Downloads/ALL_IDB1/im' + "/" + img_data[1], 1) 

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

median = cv2.medianBlur(gray, 3) 

edges = cv2.Canny(median,60,120) 

cv2.imshow("Edge Detection", edges) 

cv2.waitKey(0) 

cv2.destroyAllWindows() 

 



 

18 

 

 

 

 

THESHOLDING AND SEGMENTATION 

import cv2 

import numpy as np 

from matplotlib import pyplot as plt 

import seaborn as sns 

import os 

from PIL import Image 

img_data = os.listdir('../Downloads/ALL_IDB1/im') 

img = cv2.imread('../Downloads/ALL_IDB1/im' + "/" + img_data[1], 1) 

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

median = cv2.medianBlur(gray, 3) 

edges = cv2.Canny(median,60,120) 

ret,th = cv2.threshold(median,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) 

cv2.imshow("Thresholded Image", th) 

cv2.waitKey(0) 

cv2.destroyAllWindows() 

 

FEATURE EXTRACTION 

import numpy as np 

import cv2 

import pandas as pd 
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import os 

  

#img = cv2.imread('BSE_Image.jpg') 

 

img_data = os.listdir('../Downloads/ALL_IDB1/im') 

 

img = cv2.imread('../Downloads/ALL_IDB1/im' + "/" + img_data[1]) 

img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)   

#Here, if you have multichannel image then extract the right channel instead of converting the image to grey.  

#For example, if DAPI contains nuclei information, extract the DAPI channel image first.  

 

#Multiple images can be used for training. For that, you need to concatenate the data 

 

#Save original image pixels into a data frame. This is our Feature #1. 

img2 = img.reshape(-1) 

df = pd.DataFrame() 

df['Original Image'] = img2 

 

#Generate Gabor features 

num = 1  

kernels = [] 

for theta in range(2):   

    theta = theta / 4. * np.pi 
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    for sigma in (1, 3):  #Sigma with 1 and 3 

        for lamda in np.arange(0, np.pi, np.pi / 4):   #Range of wavelengths 

            for gamma in (0.05, 0.5):   #Gamma values of 0.05 and 0.5 

             

                 

                gabor_label = 'Gabor' + str(num)   

               print(gabor_label) 

                ksize=9 

                kernel = cv2.getGaborKernel((ksize, ksize), sigma, theta, lamda, gamma, 0, ktype=cv2.CV_32F)     

                kernels.append(kernel) 

                #Now filter the image and add values to a new column  

                fimg = cv2.filter2D(img2, cv2.CV_8UC3, kernel) 

                filtered_img = fimg.reshape(-1) 

                df[gabor_label] = filtered_img   

                print(gabor_label, ': theta=', theta, ': sigma=', sigma, ': lamda=', lamda, ': gamma=', gamma) 

                num += 1  #Increment for gabor column label 

 

#CANNY EDGE 

edges = cv2.Canny(img, 100,200)   #Image, min and max values 

edges1 = edges.reshape(-1) 

df['Canny Edge'] = edges1 #Add column to original dataframe 

 

from skimage.filters import roberts, sobel, scharr, prewitt 
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#ROBERTS EDGE 

edge_roberts = roberts(img) 

edge_roberts1 = edge_roberts.reshape(-1) 

df['Roberts'] = edge_roberts1 

 

#SOBEL 

edge_sobel = sobel(img) 

edge_sobel1 = edge_sobel.reshape(-1) 

df['Sobel'] = edge_sobel1 

 

#SCHARR 

edge_scharr = scharr(img) 

edge_scharr1 = edge_scharr.reshape(-1) 

df['Scharr'] = edge_scharr1 

 

#PREWITT 

edge_prewitt = prewitt(img) 

edge_prewitt1 = edge_prewitt.reshape(-1) 

df['Prewitt'] = edge_prewitt1 

 

#GAUSSIAN with sigma=3 

from scipy import ndimage as nd 
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gaussian_img = nd.gaussian_filter(img, sigma=3) 

gaussian_img1 = gaussian_img.reshape(-1) 

df['Gaussian s3'] = gaussian_img1 

 

#GAUSSIAN with sigma=7 

gaussian_img2 = nd.gaussian_filter(img, sigma=7) 

gaussian_img3 = gaussian_img2.reshape(-1) 

df['Gaussian s7'] = gaussian_img3 

 

#MEDIAN with sigma=3 

median_img = nd.median_filter(img, size=3) 

median_img1 = median_img.reshape(-1) 

df['Median s3'] = median_img1 

 

#VARIANCE with size=3 

variance_img = nd.generic_filter(img, np.var, size=3) 

variance_img1 = variance_img.reshape(-1) 

df['Variance s3'] = variance_img1  #Add column to original dataframe 

 

#Import the labeled/masked image 

labeled_img = cv2.imread('../Downloads/ALL_IDB1/im' + "/" + img_data[1]) 

#Remember that you can load an image with partial labels  

# drop the rows with unlabeled data 
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labeled_img = cv2.cvtColor(labeled_img, cv2.COLOR_BGR2GRAY) 

labeled_img1 = labeled_img.reshape(-1) 

df['Labels'] = labeled_img1 

 

print(df.head()) 

 

#df.to_csv("Gabor.csv") 

 

#Define the dependent variable that needs to be predicted (labels) 

Y = df["Labels"].values 

 

#Define the independent variables 

X = df.drop(labels = ["Labels"], axis=1)  

 

#Split data into train and test to verify accuracy after fitting the model.  

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.4, random_state=20) 

 

 

# Import the model we are using 

#RandomForestRegressor is for regression type of problems.  

#For classification we use RandomForestClassifier. 

#Both yield similar results except for regressor the result is float 
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#and for classifier it is an integer.  

 

RANDOM FOREST CLASSIFIER 

from sklearn.ensemble import RandomForestClassifier 

# Instantiate model with n number of decision trees 

model = RandomForestClassifier(n_estimators = 100, random_state = 42) 

 

 

SUPPORT VECTOR MACHINE (SVM) 

# Training the SVM to compare against Random Forest 

from sklearn.svm import LinearSVC 

model = LinearSVC(max_iter=100)  #Default of 100 is not converging 

 

# Train the model on training data 

model.fit(X_train, y_train) 

 

# verify number of trees used. If not defined above.  

#print('Number of Trees used : ', model.n_estimators) 

 

#First test prediction on the training data itself.  

prediction_test_train = model.predict(X_train) 

 

#Test prediction on testing data.  



 

25 

 

 

prediction_test = model.predict(X_test) 

 

#Let us check the accuracy on test data 

from sklearn import metrics 

 

#Print the prediction accuracy 

print ("Accuracy on training data = ", metrics.accuracy_score(y_train, prediction_test_train)) 

 

#Check accuracy on test dataset.  

print ("Accuracy = ", metrics.accuracy_score(y_test, prediction_test)) 

 

feature_list = list(X.columns) 

feature_imp = pd.Series(model.feature_importances_,index=feature_list).sort_values(ascending=False) 

print(feature_imp) 

 

# store the model for future use.  

#Train on training images, validate on test images and deploy the model on unknown images.  

import pickle 

 

#Save the trained model as pickle string to disk for future use 

filename = "sandstone_model" 

pickle.dump(model, open(filename, 'wb')) 
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#To test the model on future datasets 

loaded_model = pickle.load(open(filename, 'rb')) 

result = loaded_model.predict(X) 

segmented = result.reshape((img.shape)) 

from matplotlib import pyplot as plt 

plt.imshow(segmented, cmap ='jet') 

 

 

 

 

API ENDPOINT 

DIAGNOSE API 

@app.route('/diagnose', methods=['POST']) 

def main(): 

    if flask.request.method == 'POST': 

        image_data = flask.request.form['image_data'] 

        prediction = model.predict(image_data) 

        return flask.render_template('main.html', 

                                     original_input={'image_data':image_data}, 

                                     result=prediction, 

                                     ) 

 

AUTHENTICATION API 
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@app.route('/api/users', methods = ['POST']) 

def new_user(): 

    username = request.json.get(„user_id‟) 

    password = request.json.get(„pass_id‟) 

    user = User(user_id = username) 

    user.hash_password(password) 

    db.session.add(user) 

    db.session.commit() 

    return jsonify({ 'username': user.user_id }), 201, {'message': „successful‟}) 

 

 

 

 

 

 
USER MODEL 

class User(db.Model): 

    __tablename__ = 'users' 

    id = db.Column(db.Integer, primary_key = True) 

    user_id = db.Column(db.String(32), index = True) 

    password_hash = db.Column(db.String(128)) 

 


