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Abstract

Several mathematical and statistical models have been used to describe the

features involved in the transmission of malaria. However malaria still remains

the most widespread and life-threatening disease among the known vector-borne

diseases. In this work, an SEIR model is adapted to capture the basic features

regarding the dynamics of malaria. We obtain the basic reproduction number

(R0) and use it to establish the local stability of the disease-free equilibrium. The

parameters most responsible for the disease transmission in the population are

examined with respect to the basic reproduction number by sensitivity analysis.

The disease-free equilibrium is found to be locally asymptotically stable ifR0 < 1

and unstable if R0 > 1. Numerical simulations are carried out to validate the

theoretical results and to further investigate the dynamics of the disease.
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Chapter 1

INTRODUCTION

Human beings are at constant risk of infectious diseases. No human can be

exempted from the menace of an epidemic disease. Malaria, a common para-

sitic disease in sub-Saharan Africa, Asia and Latin America, is caused by the

genus Plasmodium. There are several known species, however, humans are often

affected through the bite of the female Anopheles mosquito vector. Global esti-

mates of malaria show 80 percent cases from Africa, and malaria is responsible

for more than a million annual death in affected developing countries(WHO,

2012). Among children under five years of age, malaria seems to be the lead-

ing cause of mortality, with similar incidence among pregnant women (WHO,

2012). In pregant women,severe malaria cases have been reported to cause ma-

ternal death, still birth, severe anaemia, congenital malformations and low birth

weights (WHO, 2012).

1.1 History of malaria

Here, we give a brief account of the origin, causes and transmission of malaria

disease. However, a full account of the discovery of malaria disease can be seen

in Cox (2010) .

1.1.1 Malaria history

In 1880, a French physician, Charles Louis A. Laveran, while working in Alge-

ria, made a landmark discovery of the main cause of the malaria disease that has
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been affecting human lives for the long period. He discovered the presence of a

parasitic protozoan Plasmodium in the blood of humans infected with malaria

and was awarded the Nobel prize in 1907 as a result of the discovery. In other

discovery, an experiment was conducted in 1897 by a British Physician, Ronald

Ross, who showed for the first time that mosquito was responsible for transmis-

sion of the Plasmodium parasite that causes malaria in human population.

Not less than half of the world’s population, distributed across 104 countries

are at risk of malaria disease (WHO, 2012). Meanwhile, an initial report of

300 - 500 million persons have been observed to be infected annually, of which

1.5 - 2.7 million annual deaths have been estimated (Magombedze et al, 2011).

Malaria is widely spread in tropical and subtropical regions, including Africa,

Asia, Latin America, the middle East and some parts of Europe. However the

most cases and deaths occur in sub-Saharan countries of Africa which account

for 80 percent of the world’s malaria cases and 90 percent of the global malaria

deaths (WHO, 2012).

Death of an African child occurs in every 30 seconds, while global report

of deaths from malaria exceeds 2000 among the youth. (Tumwiine et al, 2007;

Okosun and Makinde, 2011). For example, in Nigeria, malaria accounts for 60

percent of outpatient visits and 30 percent of hospitalization with children under

five years of age most severely affected (USE, 2011).

1.1.2 Malaria parasites and cycle

Malaria is a disease characterized by fever, pain, paroxysms of chills, headache,

vomitting and pain. The disease is caused by protozoan parasite, known as

Plasmodium. The commonest species that infect humans are; Plasmodium vivax,

P. ovale, P. falciparum, P. malariae and P. knowlesi. The socioeconomic burden

of malaria disease and its clinical signs include multi-organ failures such as lung,

brain, liver and kidney (Tumwiine et al., 2007).

The life cycle of the plasmodium parasite can be divided into two phases:

sexual and asexual phases, with the sexual phase taking place in the female
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anopheles mosquito and asexual phase in the human host (Ibezim and Odo

2008). The infection subtly begins when an infectious mosquito pierces the

human skin with its proboscis and injects parasite in the form of sporozoites into

the human’s bloodstream for blood circulation. In the process, the sporozoites

enter the liver where each sporozoites undergoes asexual multiplication stage to

produce cells called merozoites. This first asexual multiplication stage in human

host is known as exoerythrocytic schizogony (Cox, 2010).

Following the rupture of the hepatocytes, merozites escape into circulatory

system for asexual reproduction in the red cells, a stage called erythrocytic

schizogony develops (Cox, 2010). At this stage, more merozoites are produced

until the red blood cells burst and new merozoites are released to further infect

other red blood cells while some merozoites developed into gametocytes (Cox,

2010). These geametocytes in the human’s bloodstream can be taken up by a

naive mosquito in the blood meal gametocytes and mature into male and female

gametes in the mosquito’s gut. Consequently, microgamete and macrogamete

representing male and female gametes respectively, fuse salivary gland of the

mosquito vector where they can be injected when the mosquito bites another

human host to continue the cycle.

1.2 Modelling and its importance

Modelling has been an important part of describing reality. It has been in exis-

tence since the stone age when humans constructed caved paintings. Modelling

became important in ancient Greek when symbols were used to represent in-

crease in substance which are called numbers and they were the first models.

Three very important civilizations stood out in the knowledge of mathemat-

ics and they were Egypt, Babylon and India. Geometry was the first major

part of mathematics that was used to model reality by Thales. In 585 B.C.,

he developed a system for calculating heights by estimating shadow lengths. A

further improvement in modelling through mathematics came along when Dio-

phantus of Alexandria around 250 A.D. in his text called Arithmetica developed

the genesis of algebra centered on symbols and the concept of a variable.
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Ptolemy, based on the existing concept of Pythagoras derived a mathemati-

cal model for planetary, sun and moon motion which was further developed by

Johannes Kepler in 1619. Kepler’s model was further improved by Isaac Newton

and Albert Einstein and their models were in use till date. Mathematical mod-

els were utilized when handling real life problems and hence, were very essential

for the improvement of the human society at that time. After the fall of the

Greek civilization, the most notable mathematican was Fibonacci Leonardo da

Pisa (1170-1240). He realized the practical advantageous use of indian num-

bers over roman figures which was still in use in that time. His mathematical

text, Liber Abaci first released in 1202 made an introduction of Indian numbers

(0,1,2,3,4,5,6,7,8,9). The book was detailed guide of arithmetic rules using nu-

merical illustrations. Another man, Giotto (1267-1336) and Filipo Brunelleschi

(1377-1446) were both accounted for the improvement of geometric principles.

Many more very important principles were discovered in later centuries like the

use of variables for representation which was developed by Vieta (1540-1603)

but it was still difficult to completely comprehend until it was used to describe

physical science and its application to real life situations and problems. The

significance of mathematical modelling cannot be ignored as it has played a ma-

jor role in the understanding and representation of problems in other fields of

study namely; biology, chemistry, physics, economics, accounting, business ad-

ministration etc. As previously stated, a mathematical model is a mathematical

description of a realistic problem so that if the model can copy the behaviour

of the real life problems then proper analysis of the created model can be done

using suitable mathematical tools. It is important to properly understand the

problem to be modelled so as concisely represent it. Mathematical modelling al-

lows the mathematician to be economist, biologist, chemist, physicist depending

on the problem been considered. Mathematical modelling helps the mathemati-

cian to perform experiments on the mathematical description of the realistic

problem as opposed to performing experiments in real life. Though sometimes,

not without limitations, the use of mathematical models has increased greatly

over time.
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1.2.1 Advantages of Mathematical modelling

Some of the advantages of mathematical modelling are:

(a) It gives better understanding of the problem to be modelled. When a prob-

lem is been modelled, it helps to clarify some problem statements.

(b) It can be used to perform experiments by analysis instead of actually per-

forming the experiment in real life.

(c) Multiple solution pathways can be discovered from modelling a problem

mathematically.

(d) It allows the mathematician to connect to different fields of study and think

along the line of study without actually entering into the field of study.

1.2.2 Limitations of Mathematical Modelling

Over the years, mathematical modelling has been and still is one of the greatest

discoveries for the application of mathematics in solving real-world problems.

However there are still some limitations that occur in mathematical modelling.

Some of these limitations are stated as follows:

(i) Mathematical models cannot represent real life problems 100 percent as

there can be some errors or some very important factors left out.

(ii) Not all factors in literature and real life can be represented mathematically.

(iii) Mathematical models may not function properly because there may be

unforeseen changes in the problems.

(iv) Mathematical models can become outdated over time so that it does not

solve the problem anymore due to the addition of unrepresented factors.

1.3 SEIRS Model

Mathematical models in epidemology have been salient tools for analysis of in-

fectious diseases. The SEIRS model is one of the various types of compartmental
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models used to describe the transmission of an infectious disease over a period of

time (Biswas et al,2014). The model divides the population into 4 compartments

or classes - the susceptible class (S) i.e prone to catching the disease, exposed

class (E) i.e have the disease but cannot infect others (infected but not yet in-

fectious), infectious class (I) i.e have the disease and can transfer it to others

and the recovered class (R) as a result of treatment or natural recovery. SEIR

model has been used to represent many diseases such as malaria (Osman and

Adu, 2017), cholera, COVID-19 (He et al,2020), tuberculosis etc. However,after

a recovered human losses immunity,they can become susceptible again. In this

work, we use the model to understand the dynamics behind the transmission of

malaria between humans and mosquitoes.

1.4 Basic definitions in model analysis

In mathematical modelling, long-term behaviour of solutions to models is

a main point of interest and focus. Consider the following general system of

ordinary differential equations.

dx1
dt

= f1(x1(t), x2(t), ..., xn(t))

dx2
dt

= f2(x1(t), x2(t), ..., xn(t)
...

dxn
dt

= fn(x1(t), x2(t), ..., xn(t)


(1.4.1)

which can be expressed in matrix form as

dX

dt
= f(X(t)) (1.4.2)

where

X =


x1

x2

...

xn

 and f =


f1

f2

...

fn

 .
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1.4.1 Equilibrium points

Definition 1.4.1. (Lungu, et al, 2007): An equilibrium point of the system of

differential equations (1.4.1) is a steady state x̄ satisfying f(x̄) = 0 for all time t.

This definition means that points at which the system (1.4.2) is equal to zero are

referred to as points of equilibrium or steady-state solutions. The two kinds of

points of equilibrium in mathematical epidemiology are: disease-free and endemic

points of equilibrium. The former stands for the non-trivial stable-state solution

where all the infected compartments that occur in the system are zero while the

later refers to the positive stable-state solution where the disease persists in the

system.

1.4.2 Simulation

Definition 1.4.2. Simulation, according to Shannon (1975), is ”the process of

designing a model of a real system and conducting experiments with this model

for the purpose either of understanding the behaviour of the system or of evaluat-

ing various strategies (within the limits imposed by a criterion or set of criteria)

for the operation of the system.

1.4.3 Stability

Definition 1.4.3. Stability properties characterize how a system behaves if its

state is initiated close to, but not precisely at a given equilibrium point.

An equilibrium point is stable whenever the system state is initiated near that

point, the state remains near it, perhaps even tending towards the equilibrium

point as time increases.

1.4.4 Basic reproduction number

For epidemiological models, a quantity of R0 is derived to assess the stability

of disease free equilibrium. The basic reproduction number, R0, represent the

number of secondary cases that are caused by a single infectious case introduced

into a completely susceptible population (Anderson and May, 1991). When
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R0 < 1 if a disease is introduced, there are insufficient new cases per case

and the disease cannot invade the population. When R0 > 1, the disease will

become endemic. To obtain R0 for epidemiological model involving more than

one infected class, a technique due to Diekmann et al (1990) is suitable. This

technique, known as the next generation matrix, was explicitly studied by Van

den Driessche and Watmough (2002) and summarized below.

1.4.5 The next generation matrix

Following the idea of Diekmann et al (1990), FV −1 is called the next

generation matrix.

F =

[
∂Fi
∂xi

(x̄)

]
and V =

[
∂Vi
∂xi

(x̄)

]

. Therefore, the basic reproduction number, R0, is given by

R0 = ρ(FV−1) (1.4.3)

where ρ is the maximum eigenvalue of the product, FV−1 known as the next

generation matrix; F is the rate of new infection in each infected compartment

and V is the rate of transfer in infected compartment.

1.4.6 Lyapunov function

Definition 1.4.4. (Derrick and Grossman, 1976): A function V defined on a

region Ω of the state space and containing x̄ is a Lyapunov function if it satisfies

the following:

(i) V is continuously differentiable,

(ii) V is positive definite, and

(iii) the derivative of V along the solution of the system (1.4.2) is defined by

V̇ =
∂V

∂x1

dx1

dt
+
∂V

∂x2

dx2

dt
+ ...+

∂V

∂xn

dxn
dt

=
∂V

∂xi
fi.
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It is should be noted that the construction of these types of functions is an

art rather than a rule, since there are no clear formulae for providing them.

However, whenever such a function is found, satisfying specific properties, many

stability results can be obtained (Ayoola, 2012).

1.4.7 Stability theorem

Theorem 1.4.5. (Derrick and Grossman, 1976): Given the system ẋ = Ax

where A is the matrix of the linearised nonlinear system (1.4.2). Then,

(i) the equilibrium point, x̄, is stable if all the eigenvalues of A have only imag-

inary parts.

(ii) the equilibrium point, x̄, is asymptotically stable if all the eigenvalues of A

have negative real parts.

(iii) the equilibrium point is unstable in all other cases.

1.4.8 Lyapunov stability theorem

Theorem 1.4.6. (Lungu et al, 2007): If there exists a Lyapunov function V̇ (x̄)

and such that V̇ ≤ 0, then the equilibrium point x̄ is stable. If, furthermore, the

function V̇ is strictly negative for every point then the stability is asymptotic.

1.4.9 Lasalle’s invariance principle

Theorem 1.4.7. (Lasalle, 1976): Given a Lyapunov function V (x) such that

V̇ ≤ 0 on a positive invariant set Ω and if the largest invariant set within

{x ∈ Ω : V̇ (x) = 0} is {x̄}. Then x̄ is globally asymptotically stable in Ω.

1.5 Aim and Objectives of this Work

The aim of the work is to investigate the transmission dynamics of malaria in an

endemic setting using a mathematical model. The objectives of the work are:

(i) to model the transmission dynamics of malaria between humans and mosquitoes

using a system of ordinary differential equations;

(ii) to investigate the local stability of the disease-free equilibrium point;
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(iii) to determine the influence of some parameters on the basic reproduction

number.

The rest of this work is organised as follows: in Chapter 2, we review some

articles relevant to the mathematical modelling of malaria. Chapter 3 is de-

voted to model formulation and analysis. The theoretical results are validated

numerically in Chapter 4 while conclusion is made in Chapter 5.
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Chapter 2

LITERATURE REVIEW

Mathematical modelling of malaria began in 1911 with Ronald Ross(1911) who

discovered the role of mosquitoes as an intermediate vector in the transmission

of the pathogenic malaria parasite. He introduced the first deterministic model

of the form
dIh
dt

= bβhm(1− Ih)Im − rIh,
dIm
dt

= bβm(1− Im)Ih − µIm.
.

with variable Ih representing the fraction of infectious humans and Im represent-

ing the fraction of infectious mosquitoes; b is the mosquito biting rate; βh is the

proportion of bites that produce infection in human; m is the fraction of number

of mosquitoes to that of humans; r is the human recovery rate; βm is the propor-

tion of bites that produce infection in mosquitoes; and µ is the per capita rate

of mosquitoes mortality. This model revealed that eradication of malaria could

be made possible by decreasing vector (mosquitoes) biting rate and increasing

the mosquitoes death rate resulting to reduction of threshold parameter given

R0 =
mb2βhβm

rµ

Macdonald (1957) presented the modification of the Ross model by incorpo-

rating the latency period of parasite in mosquitoes with an introduction of the
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exposed class. The result revealed a decrease in the basic reproduction number

with an increase in the latency period. A mathematical model was formulated

by Ira and Smith (1983), the model stimulates permanent immunity and sta-

bility analysed. The findings of the study concluded that environmental factor

could perturb the dynamical state from one subharmonic to another.

Macdonalds model was further extended by Anderson and May (1991) as

they introduced new exposed class into the human population. The long term

prevalence of both the infected humans and mosquitoes was decreased further

by this improvement.

The three basic models discussed above are the building-ground for litera-

ture on malaria models. Since then, different factors have been incorporated

in order to make the models epidemiologically more realistic. One such factor

is the inclusion of recovered class into the human population on the idea that

continuous exposure to reinfection could lead to acquired immunity in human.

A deterministic model that incorporated human and mosquito populations with

standard incidence function was developed by Nwga and shu (2000). The model

formulated was

dSh
dt

= λhNh + rhIh − fh(Nh)Sh −
(
CvavIv
Nh

Sh

)
,

dIh
dt

=

(
CvavIv
Nh

Sh

)
− (rh + fh(Nh))Ih,

dSv
dt

= λvNv − fv(Nv)Sv −
(
CvavIh
Nh

Sv

)
,

dEv
dt

=

(
CvavIh
Nh

Sv

)
− vv + fv(Nv)Ev,

dIv
dt

= vvEv − fv(Nv)Iv.

Their model made an exploration of the structure in which an infectious

human recovers with temporary immunity to become a recovered human before

entering the susceptible compartment again. Their conclusion unraveled that

there is persistence in the disease whenever the threshold parameter R0 exceeds

one and that the disease-free equilibrium is globally asymptotically stable when
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R0 is below one.

Factors such as: environmental effects, mosquitoes resistance to insecticides,

resistance of some parasite strains to anti-malaria drugs and the use of optimal

control methods have been integrated into the models so as to gain more in-

sight on the behaviour of the disease. Yang and Ferreira (2000), using bilinear

incidence, studied malaria transmission model by incorporating socio-economic

structure. From the model analysis, they showed how the basic reproduction

number changes with global warming and local social and economic conditions.

In addition, Iddi et al (2002) used deterministic model with standard in-

cidence function to study the impact of infectious immigrants on vector-borne

disease with direct transmission. The research work was analyzed qualitatively,

the computation of the basic reproduction number using the next generation

matrix method and the conditions for the stability of the equilibra were de-

termined. It was revealed through numerical simulation that increment in the

number of immigrants tends to result to an increment in the number of infected

population which leads to the persistence of the disease in the population.

Koella and Anita (2003) developed a model in order to understand the epi-

demiology of anti-malaria resistance and to assess approaches to decrease resis-

tance spread. The model developed is shown as follows:

dx

dt
= δ − δx− hx+ pz,

dy

dt
= hx− (r + δ)y,

dz

dt
= ry − (p+ δ)z.

.

Their analyses showed that resistance to treatment does not spread if the

fraction of infected individuals treated is less than a threshold value and if the

drug treatment exceeds this value, then resistance to drug eventually becomes

fixed in the population.

Chitnis et al (2006) presented a malaria model that incorporated human
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immigration and disease-induced death rates. This model was based on Nwga

and Shu model. The basic reproduction number was obtained to investigate

the stability of disease-free equilibrium point using the next generation operator

approach. It was further depicted through numerical examples that backward

bifurcation is possible for some positive values of disease-induced death rate.

In another development, Tumwiine et al (2007) developed a five dimensional

model with standard incidence for the dynamics of malaria in the human hosts

and vectors. The model considered is as follows:

dSH
dt

= λhNH −
abSHIV
NH

+ vIH + γRH − µhSH ,

dIH
dt

=
abSHIV
NH

− vIH − rIH − δIH − µhIH ,

dRH

dt
= rIH − γRH − µhRH ,

dSV
dt

= λvNV −
acSV IH
NH

− µvSV ,

dIV
dt

=
acSV IH
NH

− µvIV .

. In this model, the reservoir of the susceptible human was refilled by immunity

loss to the disease and newborns. The stability of the system was analysed for

the existence of disease-free and endemic equilibra. However, it was shown that

the basic reproduction number is independent of the rate of loss of immunity.

Schaffer and Bronnikova (2007), from another perspective, discussed the bi-

furcation structure of epidemic model subject to seasonality. The model that

was discussed is as follows:

ds

dt
= m(N − s)− β(t)SI + γR,

dE

dt
= β(t)SI − (m+ a)E,

dI

dt
= aE − (m+ g)I,

dR

dt
= gE − (m+ γ)R.
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. The combination of phenomenological equation (Regression analysis in Sta-

tistical model) which admits to mathematical analysis and detailed simulation

was suggested in their result as a proof and recipe for progress.

In addition, Chitnis et al (2008) carried out a sensitivity analysis of malaria

model with human immigration factor and disease-induced death rate in or-

der to determine the relative importance of model parameters to the disease

transmission and prevalence. A computation of sensitivity indices of the basic

reproduction number to parameters at the baseline values was done. It was

found out that the basic reproduction number is most sensitive to the mosquito

biting rate.

Labadin et al (2009) formulated and analysed a deterministic model with

standard incidence function. The model that was considered is shown below,

dSH
dt

= m+ bNh + cRH −
(
βMH

IM
NH

SH

)
+ rIH − (D1 +D2NH)SH ,

dEH
dt

=

(
βMH

IM
NH

SH

)
− LEH − (D1 +D2NH)SH ,

dIH
dt

= LEH −
(

qr

q + r
IH

)
− rIH − dIH − (D1 +D2NH)SH ,

dRH

dt
=

(
qr

q + r
IH

)
− cRH − (D1 +D2NH)SH ,

dSM
dt

= BNM −
(
βHM

IH
NH

SM

)
−
(
βHM

RH

NH

SM

)
− (δ1 + δ2NM)EM ,

dEM
dt

=

(
βHM

IH
NH

SM

)
+

(
βHM

RH

NH

SM

)
− uEM − (δ1 + δ2NM)EM ,

dIM
dt

= uEM − (δ1 + δ2NM)EM .

.

In this model, a consideration of the recovered population with and without

immunity and the impact of the different values of the average duration to

build effective immunity on infectious humans were investigated numerically.

The findings of their research showed that if the ability to build an effective

immunity is fast for those who recovered from the disease, then the number of

cases could be reduced.

15



One of the contributory factors to the spread of malaria is proven to be the

movement of human from one environment to another. In the light of this, Arino

et al (2011) came up with a metapopulation model for malaria where interaction

between humans in rural and urban area was investigated. They brought to the

light that the basic reproduction number governed the stability of the disease-

free steady state. Also, the unrestricted movement of infected humans could lead

to the persistence of the disease in the population. Again, the class of infectious

individuals with drug resistance symptoms was incorporated in the standard

incidence function deterministic model that was formulated and analysed by

Okosun and Makinde (2011). The model which was considered as follows;

dSh
dt

= Λh + kRh − βmSh − µhSh,

dEh
dt

= βmSh − (a1 + µh)Eh,

dIh
dt

= a1Eh − (b+ τu2(t) + ψ + µh)Ih,

dIdh

dt
= u2(t)(1− ρ)τIh − (µ+ ψ + σ)Idh,

dRh

dt
= u2(t)ρτIh + σIdh− (k + µh)Rh,

dSv
dt

= Λv − λvSv − µvSv,

dEv
dt

= λvSv − (a2 + µv)Ev,

dIv
dt

= a2Ev − µvIv.

. The model was shown to exhibit backward bifurcation and by the basic re-

production number, the existence and stability of equilibria were established.

Pontryagin maximum principle was used to obtain conditions for optimal con-

trol of the disease and their numerical results showed that effective control of the

proportion of individuals with drug resistance has a positive impact in reducing

the spread of the disease.

Magombedze et al (2011) developed an intra-host mathematical model of

malaria that described the interaction of immune system with the blood stage
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malaria merozoites. The model which was considered is as follows;

dX(t)

dt
= Λx + σY (t)− β X(t)M(t)

1 + c0A(t)
− µxX(t)− wX(t)M(t)B(t),

dY (t)

dt
= β

X(t)M(t)

1 + c0A(t)
− uyY (t)− kyB(t)Y (t),

dM(t)

dt
=

ruyY (t)

1 + c1B(t)
− µmM(t)− kmB(t)M(t)− β X(t)M(t)

1 + c0A(t)
.

.

Optimal control strategy was used in this analysis. This led to a suggestion

in their result that a malaria therapy that seeks to minimize merozoites pop-

ulation was beneficial to patients as this will lead to the reduction of infected

red blood cells. Also, a seven-dimensional compartmental model of malaria that

incorporated three control functions such as: the prevention of host-vector con-

tacts, treatment of hosts and reduction of mosquito population was studied by

Lashari et al (2012). In the analyses by the model, necessary conditions for op-

timal control of malaria were obtained. The numerical simulation of the model

revealed that the combination of the control efforts has a very desirable effect

on the population in reducing the number of infected individuals.

The influence of seasonal forcing system when the dynamical system which

is unforced have either stable, monotonic or oscillatory cycle was examined by

Rachel (2012). Their results revealed that the degree of oscillation in the un-

forced system has a larger effect on the range of behaviour when the system is

seasonally forced.

Moreover, Gouhei and Kazuyuki (2013) investigated the influence of seasonal

structure on disease transmission dynamics. In their result, it was suggested that

accurately estimated seasonal fluctuation is necessary to have good knowledge

on disease transmission.

Furthermore, Olaniyi and Obabiyi (2013) formulated a mathematical model

that incorporated antibodies to curtail transmission of parasite that causes
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malaria in both human and mosquito. The model formulated is as follows;

dSh
dt

= Λh −
bβhSh(t)Im
1 + vhIm(t)

− µhSh(t) + ωRh(t),

dEh
dt

=
bβhSh(t)Im
1 + vhIm(t)

− αhEh(t)− µhEh(t),

dIh
dt

= αhEh(t)− (γ + µh + δh)Ih(t),

dRh

dt
= γIh(t)− (µh + ω)Rh(t),

dSm
dt

= Λm −
bβmSm(t)Ih
1 + vmIh(t)

− µmSm(t),

dEm
dt

=
bβmSm(t)Ih
1 + vmIh(t)

− (αm + µm)Em(t),

dim
dt

= αmEm(t)− (µm + δm)Ih(t).

.

The stability of the model analyzed through threshold parameter (R0). The

results of their analyses showed that the disease will not persist in the population

whenever R0 is below unity. However, the system become unstable whenever R0

is above unity. In a related work, a non- autonomous model that incorporated

multiple control measures was developed by Olaniyi et al (2018) to investigate

the dynamics of malaria transmission in both human and mosquito populations.

The model considered is as follows;

dSh
dt

= (1− τ)Λh − (1− u1(t))bβhSh(t)Im(t)− µhSh(t),

dEh
dt

= (1− u1(t))bβhSh(t)Im(t)− (αh + µh)Eh(t),

dIh
dt

= (1− u2(t))αhEh(t)− (u3(t)γ + µh)Ih(t),

dVh
dt

= τΛh + u2(t)αhEh(t) + u3(t)γIh(t)− µhVh(t),

dSm
dt

= (1− u4(t))Λm − (1− u1(t))bβmSm(t)Ih(t)− (µm + u4(t)r)Sm(t),

dEm
dt

= (1− u1(t))bβmSm(t)Ih(t)− (αm + µm + u4(t)r)Em(t),

dIm
dt

= αmEm(t)− (µm + u4(t)r)Im(t).
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. With the aid of suitable Lyapunov functions, the stability of both disease-free

and endemic equilibra was established. A suggestion is made in the result of

their analysis that combination of multiple control at a time by human traveler

will help to eliminate the spread of malaria in the population.
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Chapter 3

MODEL FORMULATION AND
ANALYSIS

3.1 Model description

To study the transmission and spread of malaria in two interacting populations

of humans (the host) and mosquitoes (the vector), we formulate a model which

subdivides the total human population size at time t into susceptible humans,

Sh(t), exposed humans, Eh(t), infectious humans, Ih(t) and recovered humans,

Rh(t). Hence, we have Nh(t) = Sh(t)+Eh(t)+Ih(t)+Rh(t). We denote βh and ω,

as the Probability that a bite by an infectious mosquito results in transmission

of disease to human at time t and loss of immunity. Similarly, we divide the

adult mosquito population into two subclasses: susceptible mosquitoes Sm(t)

and infectious mosquitoes Im(t). The mosquito population has no recovered

class as the mosquitoes remain infectious for life (Lashari et al, 2012; Chitnis

et al, 2008). Thus, the total size of the mosquito population at any time t is

denoted by Nm(t) = Sm(t) + Im(t).

Susceptible individuals are recruited into the human population by input

rate Λh. Following the concept of parasite transmission as described in Cox

(2010), an infectious female anopheles mosquito, Im, usually attacks susceptible

human Sh by piercing and sucking using its proboscis, with which it introduces

an enzyme from the saliva into human’s bloodstream in order to inhibit blood

clotting while sucking. In the process, sporozoites are injected into the blood

and the susceptible human moves to the exposed class Eh(t). Exposed humans

are those who have parasites in them and the parasites are in asexual stages.

They are without gametocytes and are not capable of transmitting the disease
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to the susceptible mosquitoes. Generally, individuals are asymptomatic for 7-30

days since the incubation period depends on the parasite species (CDC, 2015).

From the blood of the exposed human, the parasite goes into the liver for

cell division and multiplication before being released into the blood again as

merozoites. At this stage, the exposed human becomes infectious Ih(t). Af-

ter treatment, the infectious human recovers and moves to the recovered class

Rh(t). Every class of human population is decreased by natural death except

for the infectious class which has a per capita disease-induced death rate δh in

addition. αh represents progression rate of exposed human to infectious human.

Humans leave the population through natural death rate µh. When a suscep-

tible mosquito Sm(t) bites an infectious human, the parasite (in the form of a

gametocytes) enters the mosquito with some probability, βm, and the mosquito

moves from the susceptible then becomes infectious and enters the class Im(t).

Mosquitoes leave the population through natural death rate µm.

The compartmental model which shows the mode of transmission of malaria

between the two interacting populations is depicted in the Figure 3.1. Based

on the above assumptions, we have the following system of ordinary differential

equations: 

dSh
dt

= Λh − βhSh(t)Im(t) + ωRh(t)− µhSh(t)

dEh
dt

= βhSh(t)Im(t)− (αh + µh)Eh(t)

dIh
dt

= αhEh(t)− (γh + µh + δh)Ih(t)

dRh

dt
= γhIh − (ω + µh)Rh(t)

dSm
dt

= Λm − βmSm(t)Ih(t)− µmSm(t)

dIm
dt

= βmSm(t)Ih(t)− µmIm

(3.1.1)
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Figure 3.1: Schematic diagram showing the transmission dynamics of malaria
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Table 3.1: Description of parameters.

Definition Symbols Value Source
Recruitment rate of humans Λh 0.05 (Assumed)

Effective Infection Rate of Humans βh 0.005 (Assumed)

Natural death rate of humans µh 0.0000548 (Lashari et al,2012 )

Loss of immunity ω 0.01 (Assumed)

Progression rate of exposed Humans αh 0.0588235294 (Blayneh et al,2009)
Recovery Rate of Infectious Humans γh 0.05 (Assumed)

Disease Induced Death rate δh 0.001 (Okosun and Makinde,2011)

Recruitment Rate of the Mosquito population Λm 100 (Assumed)

Effective Infection Rate of Mosquitoes by the Parasite. βm 0.004 (Assumed)

Natural Death Rate of Mosquitoes µm 0.0666667 (Lashari et al,2012)
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3.2 Positivity of solutions

Here, we provide the following results which guarantee that the malaria model

governed by system (3.1.1) is mathematically well-posed in a feasible region D

Theorem 3.2.1. There exists a domain D in which the solution set

{Sh, Eh, Ih, Rh, Sm, Im} of model (3.1.1) is contained and bounded.

Proof. If the total human population size is given by Nh = Sh +Eh + Ih +Rh,

and the total size of mosquito population is Nm = Sm(t) + Im(t). From model

(3.1.1) we have that,
dNh

dt
= Λh − βShIm + γRh − µhSh + βShIm − αhEh − µhEh

+ αhEh − µhIh − δI − γRh

= Λ− µ[Sh + Eh + Ih +Rh]− δhIh. (3.2.1)

Equation (3.2.1) becomes,
dNh

dt
= Λh − µhNh − δhIh. (3.2.2)

ignoring the term δhIh, we have,
dNh

dt
≤ Λh − µNh (3.2.3)

solving equation (3.2.3), We have
dNh(t)

dt
+ µNh(t) ≤ Λh

Using the integration factor I.F= e
∫
µdt = eµht
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d

dt
(eµhtN(t)) = Λh

dN(t)

dt
= Λhe

µht

Integrating both sides, we have

N(t) =

∫
Λhe

−µtdt

N(t) =

∫ t

0

Λhe
−µtdt

N(t) = −Λh

µ
e−µx|t0

N(t) = −Λh

µ
e−µt −

(
−Λh

µ
e−µh(0)

)
N(t) = −Λh

µ
e−µt +

Λh

µh
,

as t→∞ we have

lim
t→∞

N(t) ≤ −Λh

µ
e−µ(∞) +

Λh

µh

N(t) ≤ Λh

µh
.

Therefore,

D =

{
N(t) ≤ Λh

µh
, Sh > 0, Eh ≥ 0, Ih ≥ 0, Rh ≥ 0

}
.

.

3.3 Local stability of disease-free equilibrium

Now, we obtain the disease free equilibrium, E0. At the steady state the first

derivatives dSh

dt
= dEh

dt
= dIh

dt
= dRh

dt
= dSm

dt
= dIm

dt
= 0, we then set all the disease

classes Eh, Ih, Im to zero. Solving the resulting solutions, we obtain the disease
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free equilibrium

E0 =

(
Λh

µh
, 0, 0, 0,

Λm

µm
, 0

)
.

Now, we obtain the basic reproduction number usually denoted by (R0) using

next generation matrix technique. Detailed explanation of this approach is con-

tained in Section 1.3.5. Following the idea of Dikmann, 1990 we obtain R0 as

follows:

F (x) =


βhShIm

0

βhSmIh

 , V (x) =


(αh + µh)Eh

−αhEh + (γh + δh + µh)Ih

µmIm


Taking the Jacobian matrix of F (x) and V (x) we have

JF =


0 0 βhSh

0 0 0

0 βmSm 0



JV =


αh + µh 0 0

−αh γh + δh + µh 0

0 0 µm


At the disease free equilibrium, E0

JFE0 =


0 0 βhΛh

µh

0 0 0

0 βmΛm

µm
0



JVE0 =


αh + µh 0 0

−αh γh + δh + µh 0

0 0 µm


Now we compute the inverse of JVE0 as,

JV (E0)−1 =


1

αh + µh
0 0

α

(γh + δh + µh)(αh + µh)

1

γh + δh + µh
0

0 0
1

µm


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JF (E0)× JV (E0)−1

=


0 0

βhΛh

µh

0 0 0

0
βmΛm

µm
0




1

αh + µh
0 0

α

(γh + δh + µh)(αh + µh)

1

γh + δh + µh
0

0 0
1

µm



=


0 0

βhΛh

µhµm

0 0 0
βmΛmαh

µm(δh + µh)(γh + δh)

βmΛm

µm(γh + δh + µh)
0

 . (3.3.1)

The basic reproduction number is the spectral radius of (3.3.1) and is given as

R0 =
ΛhΛmαhβhβm

(αh + µh)(γh + δh + µh)µ2
mµh

.

Theorem 3.3.1. The disease-free equilibrium, E0, of (3.1.1) is locally asymp-

totically stable in D if R0 < 1.

Proof. Taking the Jacobian matrix of the malaria model (3.1.1) we have

J =



−βhIm − µh 0 0 ω 0 −βhSh

βhIm −αh − µh 0 0 0 βhSh

0 −αh −γh − µh − δh 0 0 0

0 0 γh −ω − µh 0 0

0 0 −βmSm 0 −βmIh − µm 0

0 0 βmSm 0 βmIh −µm


.

At the disease free equilibrium point E0, J becomes,
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J(E0) =



−µh 0 0 ω 0 −βhΛh

µh

0 −αh − µh 0 0 0 βhΛh

µh

0 αh −γh − µh − δh 0 0 0

0 0 γh −ω − µh 0 0

0 0 −βmΛm

µm
0 −µm 0

0 0 βmΛm

µm
0 0 −µm


.

Taking the eigenvalues of J(E0), the following results are obtained

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µh − λ 0 0 ω 0 −βhΛh

µh

0 −A− λ 0 0 0 βhΛh

µh

0 αh −B − λ 0 0 0

0 0 γh −ω − µh − λ 0 0

0 0 −βmΛm

µm
0 −µm − λ 0

0 0 βmΛm

µm
0 0 −µm − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

(3.3.2)

where A = αh + µh and B = γh + µh + δh. Reducing (3.3.2), we have;

(−µh − λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−A− λ 0 0 0 βhΛh

µh

α −B − λ 0 0 0

0 γh −ω − µh − λ 0 0

0 −βmΛm

µm
0 −µm − λ 0

0 βmΛm

µm
0 0 −µm − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(3.3.3)

Now reducing (3.3.3), we have
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(−µh − λ)(−µm − λ)

∣∣∣∣∣∣∣∣∣∣∣∣

−A− λ 0 0 βhΛh

µh

αh −B − λ 0 0

0 γh −ω − µh − λ 0

0 βmΛ
µm

0 −µm − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

(3.3.4)

Now,reducing (3.3.4)

(−µh − λ)(−µm − λ)(−ω − µh − λ)

∣∣∣∣∣∣∣∣∣
−A− λ 0 βhΛh

µh

αh −B − λ 0

0 βmΛm

µm
−µm − λ

∣∣∣∣∣∣∣∣∣ = 0.

It is therefore obvious that −µh, −µm and −ω−µh are negative eigenvalues. To

obtain the remaining eigenvalues, we solve for the determinant,∣∣∣∣∣∣∣∣∣
−A− λ 0 βhΛh

µh

αh −B − λ 0

0 βmΛm

µm
−µm − λ

∣∣∣∣∣∣∣∣∣ = 0

whose characteristic equation is obtained as

λ3 + a2λ
2 + a1λ+ a0 = 0, (3.3.5)

where

a2 = A+B + µm

a1 = Aµm +Bµm + AB

a0 = ABµm −
αhβhβmΛhΛm

µmµh
.

Next, we use Routh-Hurwitz criterion to establish that all roots of (3.2.8) have

negative real part. By Routh-Hurwitz criterion, the roots of (3.2.8) have negative

real parts if and only if a0, a2 are positive and a2a1 > a0.

Obviously, a1 > 0, a2 > 0, and

a0 = ABµm −
αhβhβmΛhΛm

µmµh

= ABµm −
(
αhβhβmΛhΛm

ABµ2
mµh

)
ABµm

= ABµm −R0ABµm

= (1−R0)ABµm > 0 provided R0 < 1.
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Next, we check for a2a1 > a0.

a2a1 − a0 = (A+B + µm)(Aµm +Bµm + AB)− (1−R0)ABµm

= A2(B + µm) +B2(A+ µm) + 3ABµm + µ2
m(A+B)

+ (2 +R0)ABµm > 0.

Thus, the Routh-Hurwitz criterion is satisfied provided R0 < 1. Implying that

all the eigenvalues have negative real parts when R0 < 1. Therefore, the disease-

free equilibrium point E0 is locally asymptotically stable when R0 < 1. The

biological implication of this is that the disease will completely die out of the

population whenever the basic reproduction number, R0 is below unity.

3.4 Sensitivity Analysis

In order to determine the parameters or factors most essential in the transmis-

sion dynamics and spread of malaria, we perform a sensitivity analysis of the

formulated model (3.2.1) in the sense of Chitnis et al (2008).

Definition 3.4.1. The normalized forward sensitivity analysis index, of a vari-

able, v to a parameter p denoted by Υv
p, is denoted as a ratio of the relative

change in the variable to the relative change in the parameter

Υv
p =

∂v

∂p
× p

v
.

The detailed sensitivity indices of R0, using the parameter values provided

in Table 1 are computed thus

ΥR0
αh

=
∂R0

∂αh
× αh
R0

=

[
C1

αh + µh
− C1αh

(αh + µh)2

]
× αh

αh

αh+µh
C1

where C1 =
ΛhΛmβhβm

(γh + δh + µh)µ2
mµh

=

[
1

αh + µh
− αh

(αh + µh)2

]
(αh + µh)

= 1− αh
αh + µh

= 0.0009307
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ΥR0
βh

=
∂R0

∂βh
× βh
R0

= C2 ×
βh
βhC2

where C2 =
ΛhΛmαhβm

(αh + µh)(γh + δh + µh)µ2
mµh

=
C2βh
βhC2

= 1

ΥR0
βm

=
∂R0

∂βm
× βm
R0

= C3 ×
βm
βmC3

where C3 =
ΛhΛmαhβh

(αh + µh)(γh + δh + µh)µ2
mµh

=
C3βm
βmC3

= 1

ΥR0
γh

=
∂R0

∂γh
× γh
R0

=
[
−C4(γh + δh + µh)

−2
]
× γh

(γh + δh + µh)−1C4

where C4 =
ΛhΛmαhβhβm

(αh + µh)µ2
mµh

=
(−C4(γh + δh + µh)

−2)γh
(γh + δh + µh)−1C4

=
−γh

γh + δh + µh
= −0.97934

ΥR0
δh

=
∂R0

∂δh
× δh
R0

=
[
−C5(γh + δh + µh)

−2
]
× δh

(γh + δh + µh)−1C5

where C5 =
ΛhΛmαhβhβm

(αh + µh)µ2
mµh

=
(−C5(γh + δh + µh)

−2)δh
(γh + δh + µh)−1C5

=
−δh

γh + δh + µh
= −0.0195867969.

The sensitivity indices are summarized in Figure 3.2.

It is obvious that intervention strategies are best built around human-to-

mosquito transmission rate (βh), mosquito-to-human transmission rate (βm) and

recovery rate of humans (γh), therefore, the following could be adopted:
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Figure 3.2: Sensitivity indices

(a) Public health sensitization of the population. The population should be

informed to go for regular medical check-up and treatment where necessary.

This will help to increase the knowledge in the populace about the disease,

and also improve on the number of treated infectious individuals.

(b) Use of active insecticides to help eradicate mosquitoes in residential areas

thereby decreasing mosquito-to-human transmission rate.

(c) Removal of breeding grounds (eg stagnant water) for mosquitoes. Removal

of these breeding grounds leads to the reduction of mosquitoes and preven-

tion of malaria.

(d) Use of effective antimalaria drugs. When malaria has been discovered in the

system of a human, the right adminstration of the drugs help improve on

the recovery from malaria.

(e) Use of treated mosquito nets. Mosquito nets are important in preventing

the spread of malaria. Proper treatment of the mosquito nets help them

stay effective against mosquitoes.
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Chapter 4

SIMULATION AND
DISCUSSION OF RESULTS

In this chapter, model (3.1.1) is solved numerically using fourth order Runge-

Kutta method. All simulations were done using Maple 15 software (see Appendix

for the codes). Using parameter values in Table 3.1, we solve model (3.1.1) to

 

Figure 4.1: Time responses of Sh and Rh when R0 > 1

obtain Figures 4.1−4.3. In this case, R0 > 1.

Figure 4.1 shows that susceptible class Sh decreases over time while the recov-

ered class Rh increases over time. In Figure 4.2, the exposed class Eh decreases

then appears constant over time and the infectious class Ih decreases and also

appears constant over time. Figure 4.3 shows that both the populations of sus-

ceptible mosquitoes Sm and infectious mosquitoes Im remain in the ecosystem
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when R0 > 1 . Figures 4.1−4.3 show that disease persists in the population

when R0 > 1 and also suggest that the model has a stable endemic equilibrium

point when R0 > 1.

 

Figure 4.2: Time responses of Eh and Ih when R0 > 1

Figure 4.3: Time responses of Sm and Im when R0 > 1
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Figure 4.4: Time responses of Sh and Rh when R0 < 1
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It was noted in Theorem 3.3.1 that the disease-free equilibrium point is lo-

cally asymptotically stable when R0 < 1. Next we investigate this numerically.

To arrive at the conditions that make R0 < 1, we refer to Section 3.4. The

sensitivity analysis in Section 3.4 reveals that human-to-mosquito transmission

rate (βh), mosquito-to-human transmission rate (βm) and recovery rate of hu-

mans (γh). It is therefore necessary to build controls around these parameters

for quick elimination of the disease. For our simulation, we choose βh such that

R0 < 1. The effect of this is shown in Figures 4.4−4.6.

Figure 4.4 shows that there is an increase in the susceptible class Sh and and

also shows a decrease in the recovered class.the decrease in the recovered class

is as a result of decrease in the number of infection in the population and this

also explains the increase in the number of susceptible individuals. .Figure 4.5

shows that there is a decrease in the infected class Ih and the exposed class Eh

decreases over time. Figure 4.6 shows that there is an increase in the susceptible

class of mosquitoes Sm leading to a decrease in the infectious mosquitoes Im.
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Figure 4.5: Time responses of Eh and Ih when R0 < 1
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Figure 4.6: Time responses of Sm and Im when R0 < 1
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Chapter 5

CONCLUSION

In this project, an SEIRS model is used to study the transmission dynamics

between human and mosquito populations. Next generation matrix technique

is used to obtain the basic reproduction number which is then used to establish

the asymptotic stability of the disease-free equilibrium. The disease free equilib-

rium point is found to be locally asymptotically stable if the basic reproduction

number R0 is less than one and unstable if R0 > 1.

Sensitivity analysis was carried out to understand the impact of some param-

eters in the transmission of malaria. It was discovered that human-to-mosquito

transmission rate (βh), mosquito-to-human transmission rate (βm) and recov-

ery rate of humans (γh) are most influential in the spread of the disease. The

numerical simulations are done by fourth order Runge-Kutta method in Maple

15 environment. It was shown numerically that the disease persists in both hu-

man and mosquito populations when R0 > 1 but vanishes when R0 < 1. Our

model suggests that if necessary control measures are built to reduce human-to-

mosquito and mosquito-to-human transmission rates, the spread of the disease

could be curtailed.

The results of this work should be interpreted with caution for the following

reasons:

(i) consideration was not made for the case of drug resistant part of the popu-

lation i.e people who do not recover from malaria by a single administration

of drugs

(ii) the work does not include the case of a genetic resistant part of the popu-
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lation i.e part of the population that is naturally not prone to the disease

because of a natural immunity.

(iii) local stability does not imply global stability, therefore further investigation

needs to be done on the global stability of the disease-free and endemic

equilibrium points of the model.
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Appendix

Codes in Maple 15 that produced Figures 4.1−4.6
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