
i

DEVELOPMENT OF A REPORTING SYSTEM FOR FACILITATING

ONLINE ANALYTICS OF STUDENT ACADEMIC RECORDS

By

ADEOTI, FAITH OLAMIDE

17010301040

A PROJECT SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND MATHEMATICS, COLLEGE OF BASIC AND APPLIED SCIENCES,

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE

AWARD OF DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

2021

 ii

DECLARATION

I hereby declare that this project has been written by me and is a record of my own

research work. It has not been presented in any previous application for a higher degree

of this or any other University. All citations and sources of information are clearly

acknowledged by means of reference.

ADEOTI, FAITH OLAMIDE

Date

 iii

CERTIFICATION

This is to certify that the content of this project entitled ‘Development of a Reporting

System for Facilitating Online Analytics of Student Academic Records’ was

prepared and submitted by ADEOTI FAITH OLAMIDE in partial fulfillment of the

requirements for the degree of BACHELOR OF SCIENCE IN COMPUTER

SCIENCE. The original research work was carried out by him under by supervision

and is hereby accepted.

 ____________________________ (Signature and Date)

Mr. J.A Balogun

Supervisor

 ____________________________ (Signature and Date)

Dr. M.O. Adewole

Coordinator, Department of Computer Science and Mathematics

 iv

DEDICATION

I dedicate this work firstly to God who has made it possible to have achieved such great

feat amidst significant challenges. I also dedicate it to my parents who have put in their

all to ensure that I get the best possible in my academic pursuit. Finally, I dedicate this

to my biggest support system Olaiya Oreoluwa who was there to give me the

encouragement I needed at times when strength failed me. Immense appreciation and

recognition also go to Ajibade Benjamin who selflessly sacrificed his convenience to

guarantee the completion of this work in record time.

 v

ACKNOWLEDGEMENTS

All thanks to God almighty, who is the source of my strength, wisdom and in

whom I have my being. He alone has mercifully made it possible to take on such

meaningful endeavor and deliver it appropriately. To him alone who doeth great

wonders, for his mercies endures forever.

I sincerely appreciate the management and staff of Mountain Top University

from the Chancellor in person of Dr. D.K Olukoya down to everyone who has

contributed to this journey towards achieving success in my academic pursuit. Special

recognitions go to Mr. J.A Balogun whom under his supervision and careful guidance

I was able to surmount my fears and approach this project with the right mindset. I also

recognize Professor, I.O Akinyemi, Mr. I.O Ebo, Dr. Funmilayo Kasali, Mr. O.J Falana,

Mrs. Olutosin Taiwo and Late. Dr. M.O Oyetunji who through actions and good deeds

have encouraged me and provided assistance to me in times of dire need.

Finally, my highest level of gratitude goes to my parents and siblings who have

painstakingly invested so much in me in diverse ways than I can mention. For your

financial support, spiritual counsels, moral and emotional support I cannot thank you

enough. Only the good lord can reward you but I will definitely make you proud.

 vi

ABSTRACT

This study identified an existing challenge in the area of analysis of student

records and the use of reports for decision making process in higher institution. It

thereafter developed a computerized web-based online reporting system that can be

adopted by academic institutions to assess and review academic performance based on

student academic records by identifying the requirements of the system, specifying the

design and implementing the designed system.

In order to meet the outlined objectives, a review of literature was carried out to

understand the existing systems and their limitations after which informal interviews

were conducted with prospective users so as to identify the requirement of the system

which was the designed using appropriate unified modelling language (UML)

diagrams. Finally, the system was implemented with Microsoft’s ASP.NET MVC

framework for the frontend, Microsoft SQL Server for the database and C# as the

scripting language.

This study at the end of its implementation delivered a web-based reporting

system that allows users of three varying roles to access different levels reports of

academic performance of student based on their roles dashboards as well as allow

course lecturers to create and administer online quizzes to student which results will

then be used to generate different new reports on the dashboard.

The study is then concluded with a summary of the result and recommendation of

future actions in relation to this study

Keywords: Reporting system, Online analytics, Academic records

 vii

TABLE OF CONTENTS

 Page

TITLE PAGE i

DECLARATION ii

CERTIFICATION iii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xii

CHAPTER ONE: INTRODUCTION 1

1.1 Background of Study 1

1.2 Statement of Problem 2

1.3 Aim and Objectives 3

1.4 Proposed Methodology 4

1.5 Significance of Study 4

1.6 Scope and Limitation 5

1.7 Definition of Terms 5

CHAPTER TWO: LITERATURE REVIEW 7

2.1 Information Systems 7

2.1.1 Concept of information management 9

2.1.2 History of information systems 11

 viii

2.1.3 Types of information systems 13

2.2 Student Information Systems 16

2.2.1 Concept of student 17

2.2.2 Academic records 17

2.2.3 Reporting systems 19

2.2.4 Online analytics 21

2.2.5 Dashboard and visualizations 22

2.2.6 Common visualization techniques 22

2.2.7 Different visualization tools 23

2.3. Software Development Life Cycle (SDLC) 25

2.3.1 Software Development Life Cycle (SDLC) phases 26

2.3.2 Software Development Life Cycle (SDLC) models 28

2.3.3 Extreme programming 33

2.4 Unified Modelling Language (UML) 35

2.4.1 UML diagrams 36

2.4.2 Types of UML diagrams 36

2.5. Model-View-Controller Architecture 40

2.6 System Development Tools 42

2.6.1 ASP.NET 43

2.6.2 Microsoft SQL server 43

2.6.3 C# 44

 ix

2.7 Related Works 44

CHAPTER THREE: METHODOLOGY 48

3.1 Method of Identification of User and System Requirement 48

3.1.1 Identification of system requirement 48

3.1.2 Identification of user requirement 50

3.2 System Design Method 51

3.2.1 System architecture 51

3.2.2 Use case diagram 51

3.2.3 Sequence diagram 60

3.2.4 Activity diagram 72

3.2.5 Class diagram 51

3.3 System Implementation 76

3.3.1 Database implementation 76

3.3.2 Front-end implementation: 77

CHAPTER FOUR: IMPLEMENTATION AND RESULT 79

4.1 Database Implementation 79

4.2 Front-end Implementation 83

4.3 Discussion of Result 94

CHAPTER FIVE: SUMMARY, CONCLUSION AND RECOMMENDATION

5.1 Summary 99

5.2 Conclusion 99

5.3 Recommendation for Further Study 100

 x

References 101

 xi

LIST OF TABLES

Table Page

3.1 Description of assign roles use case 55

3.2 Description of delete users use case 56

3.3 Description of view programme dashboard use case 57

3.4 Description of view department dashboard use case 58

3.5 Description of view courses dashboard use case 59

3.6 Description of view student performance use case 61

3.7 Description of view course assessment dashboard use case 62

3.8 Description of take assessment use case 63

 xii

LIST OF FIGURES

Figure Page

3.1 System Architecture 52

3.2 Use Case Diagram 53

3.3 Sequence Diagram (login) 64

3.4 Sequence Diagram (create assessment) 66

3.5 Sequence Diagram (reports by course) 67

3.6 Sequence Diagram (reports by programme) 68

3.7 Sequence Diagram (reports by department) 70

3.8 Sequence Diagram (reports by level) 71

3.9 Sequence Diagram (reports by assessment) 73

3.10 Activity Diagram 74

3.11 Class Diagram 75

4.1 Users Table 80

4.2 Roles Table 81

4.3 Students Table 82

4.4 Courses Table 84

4.5 Quiz Table 85

4.6 Questions Table 86

4.7 Choices Table 87

4.8 Login Interface 88

4.9 Admin Dashboard 89

4.10 Examination Officer Dashboard 91

4.11 Lecturer Dashboard 92

4.12 Create Assessment Interface 93

 xiii

4.13 E-Test Login Interface 95

4.14 Quiz Interface 96

4.15(a) Quiz Interface (right option) 97

4.15(b) Quiz Interface (wrong option) 97

 1

CHAPTER ONE

INTRODUCTION

1.1 Background of Study

Student academic records refer to the information that relates to a student's

admission and academic performance in a college or a university. These records include

the information that is contained in an original transcript, in electronically stored

records, and the official student academic record, as it is maintained by the office of the

school registrar. An education record contains information directly related to a student;

this means that the record is personally identifiable with and is maintained in various

types of means including handwritten or printed documents, microfilm/fiche, a

computer's main memory, magnetic tape, cassette, and disk or diskette. These records

are used to assist offices in support of basic institutional objectives and to document

every student's progress and achievement in the academic aspect within the institution.

In the academic field, there has always been the cogent need to harness data and

infer meaningful insights through various analytic processes. Due to the diversity and

peculiarity of the types of data gotten from the field, there is only so much progress

made with the use and adoption of various techniques such as business analytics,

educational data mining, academic analytics, predictive analytics, action analytics,

learning analytics (LA) or online analytics. Online analytics is also known in some

contexts as web analytics poses as the solution to the need for better analysis and

consequent use of data by administrators, lecturers, and other stakeholders in academics

in an easily accessible and comprehensible manner.

While learning analytics applications typically focus attention on individual

courses and learners, there is a growing need and market for institution-wide analytic

 2

applications which offer online analytics solutions that allow institutional researchers

and other administrators access to data and dashboards that compare student activity

and learning metrics within and between courses, departments, and colleges across a

university. Doing so helps an institution develop reports concerning student

performance with respect to learning outcomes, departmental performance measures,

and instructor performance over time.

With online analytics techniques, the instructor no longer needs to wait until the

end of the course to download and analyze the data. The instructor also does not have

to wait for another employee to run these analyses. The instructor can download the

data anywhere he is, analyzes it, draw conclusions, and act on it immediately as learning

is happening. This possibility to act on instantaneous data places the instructor in an

ideal position in the quest to improve academic staff performance and student learning.

1.2 Statement of Problem

Despite the existence of several information systems for compilation and

processing of computation of academic records, there are no systems capable of

providing the much need reports that are relevant to both educators and the management

body in academic institutions from this pool of available data. In the academic field,

specifically higher institutions of learning there is a great divide between the sources of

data generation and collation which majorly consists of the student's academic record,

student's personal details, the lecturer's course content among many other things, and

the stakeholders in this field. This divide is a result of the non-existence of a unified

and holistic data collation, analysis, and reporting system which will collate the various

data and analyze it using statistical or inferential methods and generate a timely and

comprehensive report that can be adopted by lecturers, examination officers,

 3

management bodies and educational agencies at large to make new policies or adjust

existing ones to achieve the primary goal of improving academic performance.

This study evolved from the initial investigation into the existing systems used

to report student academic records and subsequently the decision-making infrastructure

or process in universities. Generally, these universities just take a few samples of the

academic records in this case test or examination results, and make assumptions upon

which decisions to adopt new curriculum and knowledge delivery techniques or

continue with existing ones are taken. This method is vague and does not represent an

effective means of deriving knowledge from data. Identification of this need and the

drawbacks of the existing system leads to the development of a web-based system that

will easily collate all academic records and perform appropriate statistical analysis to

generate reports displayed on user-friendly interfaces. The proposed system can easily

be integrated with existing learning management systems (LMS) with permission to

use the academic records provided by the LMS.

1.3 Aim and Objectives

This study aims to develop a computerized information system that can be used

by academic institutions, management, and staff alike to assess and review the

performance based on student's academic records. This study uses descriptive statistical

methods to analyse student academic record with focus on performance records of

individual students and groups of students. The objectives of the study are to;

i. identify the requirements of the system

ii. specify the design of the system

iii. implement the system

 4

1.4 Proposed Methodology

In order to meet up with the aforementioned objectives of the study, the

following methods will be adopted:

a. A review of pieces of literature will be done to identify and understand existing

systems

b. The user and system requirements of the system will be identified from the system

users via informal interview

c. The system design will be specified using the unified modelling language (UML)

diagrams such as Use case, Sequence diagram, Class diagram, etc.

d. The frontend will be implemented using ASP.NET (MVC) framework with the razor

syntax and C# as the scripting language for the application logic

e. The database will be implemented using relational database technology via Microsoft

SQL Server.

1.5 Significance of Study

The review of existing works in the area of academic record processing shows

that there is existing reporting system that make use of traditional reporting methods

especially table but cannot be used to facilitate the decision-making process in

academic institutions efficiently. Hence, this study is significant in several ways which

include:

a. It will improve the decision-making process in academic institutions by providing

useful information derived from the analysis of student academic records and

presented using modern reporting techniques

b. It will spur responsiveness to pertinent issues that are recognized in academic record

patterns from relevant stakeholders and concerned individuals.

 5

c. It will increase the efficiency of the delivery of learning services within academic

institutions by allowing the measurement of the lecturer's performance based on the

performance of his student in each course.

1.6 Scope and Limitation

This study aims to develop a web-based application and is primarily focused on

the generation of reports through statistical analysis of student's academic records of

students in the Department of Computer Science and Mathematics, Mountain Top

University. Specifically, this study focuses on the development of the proposed system

that covers only the following modules: Module for Assessment, Module for Manual

grade submission, Module for report generation and extraction.

Due to the time available for this study, it will only implement a test case for the

academic record of students in the aforementioned department which validates the

possibility of application of the system across other departments in the institution.

1.7 Definition of Terms

Lecturer: a lecturer is a member of the academic staff who is responsible for authoring

unit content, including lectures and workshops, presenting the weekly lectures and

some of the workshops (most units have multiple workshops due to class sizes).

Unit: a unit is a subject that is taught over the period of a semester, with a semester

encompassing 12-13 teaching weeks normally followed by an examination.

LMS: LMS is an acronym for Learning Management System which is a software

application for administration, documentation, tracking, reporting, automation, and

delivery of educational courses, training programs, or learning and development

programs

 6

ASP.NET: .NET is a developer platform made up of tools, programming languages,

and libraries for building many different types of applications. ASP.NET extends

the .NET developer platform with tools and libraries specifically for building web apps.

MVC: The Model-View-Controller (MVC) is a software architectural design pattern

that separates an application into three main interconnected logical components:

the model, the view, and the controller.

UML: UML is an acronym for Unified Modelling Language which is a standardized

modelling language consisting of integrated sets of diagrams for specifying,

visualizing, constructing, and documenting the structure and design of a system.

SQL: Structured Query language is a standard domain-specific language used in

programming and is mainly designed for managing data held in a relational database

management system.

 7

CHAPTER TWO

LITERATURE REVIEW

2.1 Information Systems

According to Rosca, Banica and Mirela (2010), Information systems are

deployed within an organization with the goal of increasing the effectiveness and

efficiency of that organization,” The amount to which that objective is realized is

determined by the capabilities of the information system, as well as the features of the

organization, its work processes, its people, and its development and implementation

methodologies.

An information system is everything within an organization that contribute to

the flow and management of information primarily consisting of modes that hold

information, channels that distribute information and actors that continuously act upon

the information. The actors in which case are human are parts of the information rather

than users of the information system. Hersh (2002) characterized an information system

as a human activity system that is a summarized function of an organization, it’s people

and its’ technological assets.

 Information systems can be broadly defined in terms of their structure as a

cohesive system consisting of a collection of people, processes, data, models and

technology that is used to meet a specific organization function and in terms of their

function as a technological means developed for the purpose of capturing, storing and

distributing “linguistic expressions” and also provide the necessary support for

inference derivation. All information system performs three major activities that

provides organizations with the information necessary for informed decision making

namely; Input, Processing and Output. The input activity takes data in various formats

 8

from within the organization and its external environment, which the process activity

then turns into meaningful information based on the organization's rules as well as

current conditions and limitations. In an information system, the output activity takes

the meaningful information generated from processing and gives it to the users as

feedback in the form of textual, graphical, or multimedia reports.

Information systems are defined by Buckingham, Hirschheim, Land and Tully

(1987) as a system that collates, stores, processes, and retrieves information relevant to

an organization (or society) in a manner that the information is accessible and relevant

to those who wish to use it, including managers, staff, clients, and citizens. A human

activity (social) system that may or may not include computer systems is called an

information system.

Information system was also described as a collection of people, machines,

and/or methods for gathering, processing, transmitting, and disseminating data, whether

automated or manual. Data is acquired, stored, manipulated, managed, displayed, sent,

or received using information systems. Both hardware and software are included. An

information system is a work system that is dedicated to processing information, such

as recording, sending, storing, retrieving, modifying, and presenting data.

Behavioral science and design science are two concepts that describe most of

the study in the IS field. The behavioral science paradigm aims to create and test ideas

that may be used to explain or predict human or organizational behavior. By creating

new and innovative artifacts, the design science paradigm aims to push the boundaries

of human and organizational capabilities. (Henver,March,Park,and Ram, 2004) Natural

science research methods are at the heart of the behavioral science paradigm. Its goal

is to create and validate ideas that explain or anticipate organizational and human

 9

events. The design science paradigm has its origins in engineering and artificial

intelligence science. It is basically a problem-solving paradigm that aims to develop

innovations that define the concepts, processes, technological capabilities, and products

that may be used to effectively and efficiently analyze, design, execute, manage, and

use information systems. (March and Smith 1995).

All these definitions present a conceptual point-of-view of an information

system with reference to the human and behavioural components but with the

popularity of computer systems came computer-based solutions to replace information

systems that are completely human driven. Monika and Anju (2013) in their work titled

“Information Systems and Software Development Life Cycle” categorized information

systems into Computer information systems (CIS) and Business information systems

(BIS) which collectively merge their peculiarities to develop the computer-based

information system (CBIS). This computer-based information system (CBIS) attempt

to eliminate or at least reduce the dependency of existing technologies on human input

allowing them to perform most of the intended tasks without human intervention.

A computer-based information system is one that employs computer technology

to fulfil part or all of its intended tasks. Information System as in narrow sense, is the

specific application software used to record in computer systems and automates some

information-processing operations of the organization. It refers to a data-processing

system that is used for data records. CBIS (Computer Based Information System)

encompasses the following types of information and support systems at various

management levels. Data is processed using human efforts in an information system,

which is a type of information and communication technology (ICT).

2.1.1 Concept of information management

 10

Information management (IM) is the collection and management of information

from one or more sources and the distribution of that information to those who have

right to it (Robertson, 2005). Henczel, (2000) and Ravi, (2011) define information

management as the systematic, imaginative, and responsible management of

information in order to create and use information that contributes strategically to the

achievement of an organization's goals and ensures that groups and individuals have

efficient access to and make effective use of the information they need to do their work

and to achieve their goals.

Technically, information management encompasses all systems and processes

that support information management programs, such as web content management,

document management, records management, digital asset management, learning

management systems, and enterprise search (the technical infrastructure) (Reddy,

Srinivasu, Rikkula, and Rao, 2009).

Robertson (2005) defines information management as the organizational, social,

cultural, and strategic elements that must be considered in order to enhance information

in organizations from a management standpoint. The importance of managerial and

technical duties in any effective information management plan is highlighted by this.

Earl (1989) divides the history of information management into two periods: the

conventional era and the technology era. The traditional era encompasses the time when

information was managed manually, with the use of human minds and hands, cabinets,

papers, and pens and pencils. The technological era, on the other hand, is the time when

information technology is incorporated into the administration of information programs

in order to address some of the inherent issues with the manual method.

 11

Kahraman and Cevilecan (2011) conducted a research in Turkey on intelligence

decision systems in corporate information management. Intelligence approach was

recognized as a novel tool for information management in the study. Intelligence

techniques are characterized as systems that aid decision-making by gathering,

analyzing, and diagnosing issues, as well as suggesting and assessing probable causes

of actions. The research stressed the need of integrating cross-functional strategies for

efficient information management, and that investment in information management

should be led by both intelligence approaches and business strategy and needs.

 The importance of the link between information as a resource and organizational

success cannot be overstated. Esterhuizen, Schutte, and Du Toit (2012) investigated the

influence of an information management framework on innovation capability. The

research chose five industry and subject theory experts to assess the framework's

applicability and appropriateness. It was discovered that organizations may utilize

information/knowledge management technologies to foster innovation and growth,

which can lead to increased organizational performance.

2.1.2 History of information systems

According to Gil, Dario and Raul (2010), Since the introduction of the first

computer, information systems have been used in businesses as a vital and powerful

instrument for optimizing and improving managerial functions. Herman Hollerith's

census tabulator was the first large-scale mechanical information system. Hollerith's

machine, which was developed in time to handle the 1890 U.S. census, was a major

step forward in automation as well as an inspiration for the development of

computerized information systems. (Zwass, 2020)

 12

At the advent of information systems, they were merely reckoned for use in

electronic data processing (EDP) powering simple data processing activities such as

record-keeping, accounting and transaction processing. They were then referred to as:

Automatic data processing system, transactions processing system or information

processing system among many other things. In the 1960s, the addition of the role of

data processing into useful report was introduced to computers, thereby raising the need

to develop business application that will utilize this new role and provide managerial

end user with a set of predefined reports from the available data resources and this

marked the birth of Management Information System (MIS). This MIS soon became

insufficient to support the decision-making need of organizations with it pre-specified

management reports such as: sales analysis, cost and production trend reporting systems

and gave birth to the concept of decision support systems.

Decision Support System (DSS) came into use in the 1970s providing

interactive support of their decision-making processes through display of information

such as profitability prediction charts, risk analysis, product pricing etc. The

introduction of micro-computers and the increase in computing resources needed by

organizations and their personnel called for the development of a system that could

provide direct support through a decentralized information service. Executive

Information Systems (EIS) came into to meet the aforementioned need by harnessing

critical information from MIS reports and DSS analytical models specifically designed

to meet the information need of organizational executives. The EIS was soon improved

on following breakthroughs in artificial intelligence techniques in business allowing

most information systems to be able to perform their primary tasks with little or no

human intervention. This new breed of knowledge-based information systems was

 13

called Expert Systems and were adopted by many organizations as consultants in

limited subject areas.

2.1.3 Types of information systems

a. Transaction Processing Systems (TPS)

 TPS is a system that gathers and controls information about transactions. This

is a computerized system that processes and records a company's everyday transactions.

Billing systems, payroll systems, manufacturing and purchasing systems, stock

management systems, and other regular operations are all processed swiftly and

correctly. TPS are made up of four primary components: inputs in the form of

transactions and events, processing activities such as filtering, indexing, merging, and

updating, and outputs in the form of reports as well as users who are operational staff

of the system. The primary responsibility of a transaction processing system is to

process data created by transactions, maintain data correctness, and ensure timely

delivery of documents and reports.

b. Management Information Systems (MIS)

 MIS is concerned with the information required to manage various

organizational operations. It is the most robust information system for managing

organizational resources such as people, technology, and information. Management

information systems, according to O'Brien (2003), involves three key resources: people,

technology, and information or decision making. Management information systems

differ from other types of information systems in that they are used to assess the

organization's operational activities.

c. Office Automation Systems (OAS)

 14

 Office Automation systems are computer systems that are used to generate,

collect, store, and alter office data that is required to complete tasks such as Archiving

of raw data, electronic information exchange, and digital information organization,

among other things. OAS streamlines office processes, improves communication at all

levels, and boosts productivity. OAS assists anybody in efficiently preserving personal

records utilizing basic computer-based tools such as spreadsheet applications, text and

picture processing systems, database systems, and so on. Electronic document

management systems, teleconferencing and videoconferencing systems, text

processors, are common examples of OAS.

d. Expert Systems (ES)

 An expert system is a computer method or software that is used to simulate

calculations and heuristics by gathering information from human experts for decision

making. “An expert system has a distinctive structure, different from standard

programs,” (Stella and Chuks, 2011) It is separated into two parts: an inference engine,

which is fixed and independent of the expert system, and the knowledge base, which is

changeable. To run an expert system, the engine thinks like a person about the

knowledge base. The knowledge base stores information on facts and rules used by the

expert system and the inference engine being the process by which the system draws

conclusions based on the rules and facts that apply to various problem domains.

e. Decision Support Systems (DSS)

 DSS is a computer-based information system that supports decision-making

activities in an organization. It is an interactive and agile decision-making tool that is

best utilized at the tactical and strategic levels of an organization and has a low

frequency but great potential impact. DSS is made up of a data management database,

data management models, and a user interface. “The idea of decision support has

 15

emerged from two primary areas of research: theoretical studies of organizational

decision making and technological work on interactive computer systems,” according

to Keen and Morton (1978).

Decision support systems are meant for use by a single manager or, more

commonly, a group of managers at any organizational level in the process of making a

quasi-structured decision (Asemi, Safari and Zavareh, 2011). “An interactive, flexible,

and adaptive computer-based information system (CBIS) particularly created for

assisting the solution of a non-structured management challenge for enhanced decision

making,” Turban and Aronson describe DSS. Decision-support systems, according to

Khanore, Patil and Dand (2011), are especially intended to assist management in

making decisions in situations when the probable results of such decisions are

unknown. It aids an organization's mid- and high-level management by analyzing large

amounts of unstructured data and compiling information into thorough reports that may

aid problem solving and decision-making.

The components of a decision support system are: Hardware resources,

Software modules and application packages, Data resources which is basically a

database containing all data and information used by the system, Model resources

including mathematical and analytical techniques in form of programs and subroutines

and User interface which includes all the tools that help the user of the DSS to navigate

through the system.

i.Alter (1980) identified three major characteristics of DSS as

ii.It is designed specifically to facilitate decision processes,

iii.It supports rather than automate decision making, and

iv.It should be able to respond quickly to the changing needs of decision makers.

 16

2.2 Student Information Systems

According to Evangelista (2008), A Student Information System (SIS) is a

secure, web-based interactive computer system that allows users to provide and view

information such as grade reports, transcripts, class schedules, and remaining semester

balances, as well as allow students to register for classes online by issuing students

unique identifying number through the system which would be used for all data sent

and received by the university.

According to Wang and Strong (1996), a School Information System (SIS) is a

web-based application software developed to create a conducive and organized

information dissemination environment for integrating students, parents, instructors,

and school or college administration. Desousa (2008) emphasized the use of web-based

application for student information systems, highlighting four major benefits that it has

namely: Compatibility, Efficiency, Security of live data and Cost Effectiveness.

Student information systems, according to Benguet State University Online-

Student Information System (2013), are a novel technique of record management and

transaction processing that will improve the efficiency of processing student

information. Administrative employees, academic professionals, stakeholders, and

students would benefit greatly from it in terms of updating, retrieving, and creating

student data.

Tertiary institutions use school information systems to collect and organize all

student academic data in order to provide useful information that influences decision-

making. Student information systems are frequently used to assist administrators in

making decisions. To improve quality, administrators in tertiary institutions think that

 17

various data on student performance and enrolment should be included in student

information systems.

2.2.1 Concept of student

A student as defined by Nandutu (2016). is “an individual who is registered for

university credit course or program.” A student record/data contains information

directly related to a student, which means that the record is personally identifiable.

Student name, student ID, student address, parent/family member names, and a list of

personal traits are all examples of personal identifiers that may be used to link a record

to a student.

A student is any person who is enrolled in any educational institution with the

primary goals of acquiring knowledge, developing skills or profession and achieving

employment through continuous learning.

Handwriting, print, microfilm/fiche, computer main memory, magnetic tape,

cassette, disk, or diskette might all be used to keep track of students. Student records

and data may be provided by the student, submitted on their behalf, or generated by the

university.

2.2.2 Academic records

Ap-azli, Safawi, Mohd Razilan, Mohd and Mohd (2016) defines academic

records as data or information relating and concerning a student either in paper or

electronic formats that presents evidence of events and actions that has occurred during

the period of the students’ academic engagement

There are different types of academic records based on the interested party,

office or the context in which it is discussed. Society of American Activists (SAA)

identified some types of academic records which include: enrolment records, class

 18

schedules, graduation rosters which are usually kept the office of the registrar, minutes,

reports and sample test questions, assessment scores and grades that are kept by the

department.

Student information system deals with all these kinds of student details,

academic related reports, college details, course details, curriculum, batch details,

placement details and other resource related details too. It keeps track of all of a

student's information, which may be utilized for reporting, attendance monitoring,

course progress, semester completion, and year of completion. Academic institutions

have access to a lot of student performance data, but they often lack the training and

support they need to accurately interpret and apply those data to make the difference

needed.

Killion and Bellamy (2000) stated: “Understanding and using data about school

and student performance are fundamental to improving schools. Schools are unlikely

to recognize and address problems that require attention, discover effective methods to

address those problems, or know how they are going toward achieving their objectives

and goals without analyzing data and transmitting intelligence. Reform is powered by

data.”

Administrators must recognize that as the need to improve student achievement

increases, the need for access to data in real-time grows. Academic institutions,

particularly lecturers need immediate access to student performance data to determine

the growth of individual students and subgroups of students to help create site-driven

school improvement plans if they are going to better prepare students for the 21st

century. In this context, academic institution management and lecturers need to be able

 19

to change their policies and instructional practices based on the reports of performance

data from a variety of ongoing, summative assessments.

2.2.3 Reporting systems

Reporting systems, simply stated are software systems that are used to transform

data into useful information. It uses an arrangement of data, processes, and an interface

that interact to support and improve day-to-day operations in an organization as well as

support the problem solving and decision-making needs of management and users.

Laudon (2002) defines reporting systems technically as a set of interrelated components

that collect (or retrieve), process, store, and distribute information to support decision

making, coordination, and control in an organization. In the field of finance, Similarly,

a financial reporting system is described as an information system that consists of a

collection of interconnected parts that are responsible for external financial reporting.

Organizations are being pushed to acquire, interpret, and utilize data in order to make

practical decisions in order to enhance company operations. Reporting systems

leverage on existing data repository or databases containing data that are unexplored

and perform a primary function of aggregation after which analytical and/or statistical

methods are applied to identify relevant information that needs to be reported.

Reporting systems have evolved from the conventional display of an unending

list of records that are scarcely helpful for anything other than browsing into a

technology whose relevance cannot be overstated. A modern technology popularly

employed in commercial reporting systems is dashboards. A dashboard is used to

manage information overload by summarizing key performance metrics to

communicate performance against short and long-term interests. In research

from Abduldaem and Gravell (2019) it stated that a dashboard implements the visual

display of only the most important information from a vast collection of information

 20

corresponding to a set of objectives and arranges them in an organized manner so that

it fits on a single screen and the information can be monitored and interpreted at a

glance. Ioana et al. (2014) explained that dashboards present key performance indicator

as well as key risk indicators using charts, graphs, and scorecards.

In academic institutions different reports can be generated based on vast options

related to students, batch, course, faculty, exams, semesters, certification and even for

the entire institution. The generated reports suggest several other areas for possible

investigation and makes a number of other observations and recommendations.

(Budhrani et al., 2018). Hamilton et al. (2009) highlighted the effects of using student’s

data systematically through analysis and reporting among which are:

a. prioritizing instructional time;

b. targeting additional individual instruction for students who are struggling with

particular topics;

c. more easily identifying individual students’ strengths and instructional

interventions that can help students continue to progress;

d. gauging the instructional effectiveness of classroom lessons;

e. refining instructional methods; and

f. examining school-wide data to consider whether and how to adapt the curriculum

based on information about students’ strengths and weaknesses.

The adoption of reporting systems using the power of data to manage our

decisions indicates that fact-based decision making is increasingly important within

organizations (Mandinach, 2012).

 21

2.2.4 Online analytics

Online analytics refers to the general activity of querying and presenting text

and number data from data warehouses and/or data marts for analytical purposes.

Online analytics tools are "read only" since they are only used to retrieve data from

databases or repositories for use in decision-making. Online analytics is the real time

extraction and analysis of data from one or more manual or automated systems, such as

the CMS or a student information system with the primary aim of inducing goal-specific

actions. The data, which may be stored in a data warehouse for ongoing use, is analyzed

using statistical software, and a mathematical model is generated which could be

presented either as a table of values or a visual representation of these values using

chart or graphs. Based on the model a particular action may be triggered.

Online analytical tools allow users to swiftly analyse and comprehend data that

has been collected and formatted particularly for analysis, and then make fact-based

decisions. The word "online" as employed in the term “online analytics”, has nothing

to do with the Internet or the World Wide Web. However, “online” merely refers to a

form of computer processing in which the computer responds to user requests

immediately (or extremely rapidly A typical business keeps and uses a variety of

operational data sources. Databases and other data repositories that support the

organization's day-to-day activities are examples of operational data sources. Online

analytics can be used to analyze students’ different academic attributes to extract and

display any hidden pattern in students’ academic performance. This knowledge can

help educational institutions to improve their teaching or other approaches to the

student which on the one side will improve students’ academic performance as well as

career and on the other side will benefit all the other stakeholders of the institutions

 22

2.2.5 Dashboard and visualizations

Dashboard used to be a fancy name for Executive Information Systems (EIS)

when it was first developed in the 1980s with the main purpose of displaying a number

of financial measures on a simple interface in a way that could be easily understood by

the executives.

A dashboard is a visual representation of the most essential data necessary to

achieve one or more goals, aggregated and displayed on a single screen so that the data

may be watched at a glance using compact, precise, succinct, and intuitive display

methods. The true value of dashboard solutions comes from their capacity to replace

manual data collection with a constant, adaptive information flow mechanism. Data

repositories are transformed into usable information through dashboards.

Dashboards and visualization are perceptual tools that help you get a better span of

control over a large amount of data in your organization. These technologies assist

individuals in seeing trends, correlations, and deviations visually, reasoning about what

they see, and making successful judgments. As a result, these technologies must take

advantage of people's visual ability. For users, dashboards often provide three

fundamental functions:

a. They keep an eye on and track key metrics.

b. They provide analysis to determine trends and exception conditions.

c. They report information to aid study and diagnosis and indicate corrective activities

as appropriate.

2.2.6 Common visualization techniques

a. Bar graphs

 23

A bar graph is a graphical representation of qualitative data presented using a

frequency distribution. On the graph's horizontal axis, labels for the qualitative

variable's categories are displayed. A bar is placed above each label, with the height of

each bar corresponding to the amount of data values in the category.

b. Pie charts

Pie chart is another graphical device for summarizing qualitative data. The size

of each slice of the pie is proportional to the number of data values in the corresponding

class.

c. Histogram

A histogram is a graphical representation of quantitative data presented in a

frequency distribution. On the horizontal axis, the values of the quantitative variable

are shown. Above each class, a rectangle with the base equal to the width of the class

interval and the height proportionate to the number of data values in the class is

displayed.

d. Line graph

A line graph, also known as a line plot, is a type of graph that shows data as a

sequence of 'markers' linked by straight line segments. It's a simple chart that may be

seen in a variety of areas. The measurement points are sorted (usually by their x-axis

value) and connected by straight line segments, similar to a scatter plot. A line chart is

frequently used to show a data trend over time periods.

2.2.7 Different visualization tools

a. Tableau

 24

Tableau is a visual analytic platform that allows organizations and individual

users to securely integrate visualization into their application using data from their local

databases or one that is provisioned over the internet.

b. Microsoft excel dashboard

Excel dashboards contain different components that aid in the presentation of

data, such as charts, tables, figures, and gauges. They may manage data from a variety

of sources and for a variety of reasons, and the data can be utilized for marketing,

financial, or other initiatives. The dashboard is particularly useful for big amounts of

data because it would be difficult to sift through such vast amounts of data otherwise.

c. Microsoft power BI

Microsoft's Power BI is a business analytics service. Its goal is to deliver

dynamic visualizations and business intelligence capabilities through an easy-to-use

interface that allows end users to generate their own reports and dashboards.

d. D3 JS

D3.js is a JavaScript framework that allows web browsers to create dynamic,

interactive data visualizations. Scalable Vector Graphics (SVG), HTML5, and

Cascading Style Sheets (CSS) are all used. It creates visualizations by binding the data

and graphical elements to the Document Object Model.

e. High charts JS

High charts JS is an SVG-based JavaScript charting toolkit featuring VML and

canvas fall-backs for older browsers. Other than normal charts, it also offers a different

package for stock charts called High Stock which is also feature rich. It allows exporting

charts in PNG, JPG, SVG and PDF.

f. Chart JS

 25

Chart.js is a free open-source JavaScript data visualization toolkit that supports

eight different chart types: bar, line, area, pie, bubble, radar, polar, and scatter.

2.3. Software Development Life Cycle (SDLC)

 Software development life cycle (SDLC) is a framework that provides a

sequence of activities to be carried out by software designers, developers and other

parties involved in the entire process of software development. SDLC is described as a

highly structured step-by-step technique used for the development of any software. The

software development life cycle is a set of processes for the entire design, development,

and ultimate maintenance of software projects, which includes every action taken to

gather customer requirements and guarantee that they are met. It is made up of several

different phases that are well defined in terms of planning, designing, developing,

testing, and deploying software systems.

According to Ruparelia (2010), Herbert Benington presented the first clear

representation of the SDLC model in 1956, from which many other software

development life cycles have been formed and redefined. The SDLC's main goal at the

time was to create a structured process for producing high-quality software systems that

meet or exceed customers' expectations based on the system's requirements, hence the

approach of moving software projects through clearly defined phases, usually within

specific time frames.

From conception, analysis, design, implementation, and maintenance through

disposal, the system development life cycle is the whole process of creating,

implementing, and decommissioning information systems. Although there are many

distinct SDLC models and methodologies, they all have a set of clearly defined stages

or phases in common. All software projects go through the phases of requirements

 26

gathering, business analysis, system design, implementation, and quality assurance

testing. (Klopper, Gruner and Kourie, 2007)

2.3.1 Software Development Life Cycle (SDLC) phases

SDLC phases (also called SDLC processes) are logical collections of activities

involved in software development life cycle in a manner that each collection interleaves

the other. Nugoro, Waluyo and Hakin (2017) stated five general SDLC phases that cuts

across various SDLC methods or models: They are:

a. System planning

This process involves activities such as problem identification, feasibility study,

team consolidation and scope definition. This process identifies the problem that calls

for a software solution and undergoes a preliminary investigation of the problem and

proffers a suitable solution. It also entails weighing the solution's costs and benefits, as

well as determining whether to enhance a current system or create a completely new

one.

b. System analysis

An analysis of the existing system is also carried out through interviews and

examination of existing documents as well as with items such as questionnaires and

forms. The goal of this phase is to first identify the client's real requirements, capture

the details of each requirement, and ensure that everyone knows how each requirement

will be met. The deliverable artifact of this process is a Software Requirement

Specification (SRS) document.

c. System design

In this process the core objective is to transform the requirement specification

in an action plan and create a basis to build a system that satisfies these requirements.

 27

This process delivers a logical design that can be sketch on a paper or on a computer

and physical design of elements of the software system. Structure and formats to be

used in the software are designed during this process with considerations on how data

is to be manipulated in the system. The storage devices, input and output procedures,

database structure and testing standards to be adopted by the software system are also

stated in the design.

 The technical specifics of the design are addressed with stakeholders, and many

criteria such as risks, technologies to be employed, team capability, project limitations,

time, and cost are examined before the optimal design strategy for the product is chosen.

(Barjtya, Sharma and Rani. 2017). This process entails activities such as specific input

and output descriptions, database schema, forms and reports design, system platforms

(hardware and software), application architecture design, user interface design, system

interface design, and system control design. The output of this process is a Software

Design Document (SDD)

d. System implementation

This phase entails the development of the actual software system to suit the

design specification defined in the system design phase. It also involves testing

activities to validate that the system meets the user, business and system requirements.

Software developer, engineers and testers work together in this phase creating the

database to suit the database scheme, creating programs and application according to

the system design as well as debugging the created programs and applications. Tests

are used to identify system flaws and faults that need to be addressed. In case of

software systems, after coding the whole programs, a test plan is developed and run on

a given system.

 28

For this aim, a variety of testing procedures are utilized. Two among many of

such tests are: Black Box testing and White Box Testing. IEEE Standard Glossary of

Software Engineering Terminology (1990) defines Black box testing (also called

functional testing) as testing that ignores a system's or component's underlying

mechanisms and focuses exclusively on the outputs produced in response to certain

inputs and execution circumstances. and White box testing (also known as structural

testing or glass box testing) is defined as testing that considers a system's or

component's internal mechanism.”

e. Software deployment and maintenance

Users are taught on the system and begin to utilize it during this phase. The

system is reviewed to determine its full capabilities. During this phase, needed

adjustments for new needs are identified, and performance is assessed in terms of

quality and efficiency. The system's developer supplies the organization with two types

of documentation related to the system. These are:

i. Operator/user document: In this document, the user is provided a comprehensive

description of the system, including how to run it, what error messages may arise,

and how to resolve them.

ii. System document: This document provides the specifics of the system design,

process flows, and other information that helps the organization understand the

system and the modifications that need to be made, as well as the permissions

given for those changes, in order to meet new user demands.

2.3.2 Software Development Life Cycle (SDLC) models

SDLC model is a theoretical outline of all the activities to be carried during

software development usually stratified into phases. A software life cycle model is

either a descriptive or prescriptive definition of how software is or should be created.

 29

(Gajalakshmi P., 2006). It was pointed out that a descriptive model tells the story of

how software is developed, providing a foundation for understanding the system's

complexities and functions, as well as how the processes involved in software

development can be improved, whereas prescriptive models suggest how software

systems should be developed and serve as a guideline for managing and carrying out

software development projects.

Different SDLC models have been developed to suit the various need of specific

type of software taking into considerations the existing conditions and constraints. The

most difficult task is to identify the model which suits the organization structure, for

this every organization need to know the model and its real time application so the user

can relate, understand and find out how its actually working. Every model in SDLC is

the combination of various steps, which step leads to what and what is the basic

requirement of that step that needs to be understood. Waterfall, RAD, spiral,

incremental, V-shaped, and other SDLC models are employed in diverse companies

based on the conditions that exist there. Each of these software development methods

has its own set of benefits and drawbacks.

a. Waterfall model

Waterfall Model often termed as a linear sequential development model has

been used widely in the last few decades. Waterfall model was proposed by Royce in

1970 which is a linear sequential software development life cycle (SDLC) model. The

requirements analysis, design, coding, testing, and implementation phases are followed

in such a way that the phases are not repeated and the development does not move on

to the next phase until the previous phase is completely completed. (Roger, S.)

 30

This model has a strict structure that necessitates the definition of all system

requirements at the outset of a project. The design and development stages might then

commence. In a waterfall model, each phase must be completed (completed) before the

next one can begin, and the phases do not overlap. The development process is

completed on a single project under this model, and the requirements must be known

in advance, thus there is no room for change once the project development begins. As

a result, the waterfall paradigm is not adaptable to changing requirements.

Waterfall technique spends the most of its time in the first phase, documenting

the project, and the implementation phase also consumes a substantial amount of time,

whereas extreme programming approach spends the most time in the testing phase.

(Pooja and Nitasha, 2016)

Lewallen (2005) stated “This model is only used when the requirements are

highly exceptional, clear, and unchanging, the product description is consistent,

technology is well-understood, there are no ambiguous requirements, enough resources

with needed expertise are readily available, and the work is brief. ”

b. Spiral model

The spiral model was defined by Barry Boehm in his 1988 article A Spiral

Model of Software Development and Enhancement. The spiral model is like the

incremental model, with more attention put on risk analysis. According to Boehm,

2000, the Spiral model has four phases, being: planning, risk analysis, engineering, and

evaluation.

Iterations of these phases are repeated throughout a software project (called

Spirals in this model). Starting with the planning phase, the baseline spiral collects

 31

requirements and evaluates risk. The baseline spiral is built upon in each spiral that

follows.

i. Planning phase

During the planning phase, requirements are gathered. Business Requirement

Specifications (BRS) and System Requirement Specifications (SRS) are examples of

requirements gathered during this phase.

ii. Risk analysis

A procedure is conducted in the risk analysis phase to identify risk and

alternative solutions. At the conclusion of the risk analysis phase, a prototype is created.

Alternative solutions are offered and executed if any risks are discovered during the

risk analysis.

iii. Engineering phase

 Software is produced during this phase, which is followed by testing. As a

result, development and testing are completed during this period.

iv. Evaluation phase

This phase allows the client to assess the project's output thus far before moving

on to the following spiral.

c. Iterative model

The incremental model is a step forward from the waterfall paradigm. The

waterfall model's phases are used in such a way that the output of each increment is

used as the input for the following increment. As a result, with each iteration, some

client feedback is included into the development of the following incremental product.

After the first increment, the client receives a core product that is ready to use. A plan

for the next increments is developed based on customer feedback, and changes are made

 32

as needed. The issues that arise in the waterfall approach, according to Munassar and

Govardhan (2010), created a desire for software development models that may produce

faster outcomes, require less information, and offer better flexibility, all of which are

offered by the iterative model.

An iterative life cycle model is a type of systems development life cycle model

that does not start with a complete set of requirements. Rather, development begins

with identifying and implementing a small portion of the product, which may then be

tested to identify additional requirements. This method is then repeated, resulting in a

new variation of the product for each model cycle. (Rastogi, 2015).

d. V-shaped model

The V-model is a software development method in which processes are

executed sequentially in a V-form. The v-model (also known as verification and

validation model) follows a fairly rigorous approach, with the next phase starting only

when the previous one has finished. Gupta, Taya, Jai and Mukand (2012) described the

V-model to be an extension of the Waterfall model that maps test phases to the general

phases of development. The link between each development life cycle and the

corresponding testing phase is shown by the V-shape. The V-shaped model is

associated with three core phases that consists of set of activities in them. These phases

are: Verification phase, Coding phase and Validation phase. After the coding phase, the

V-model SDLC process stages are turned upwards. The verification phase consists of

five activities namely: Business requirement analysis, System requirement analysis,

Architecture engineering, Design and Detailed specification while the Validation phase

is also made up of five testing activities which are: Unit testing, Component testing,

System integration testing, System testing and Acceptance testing.

e. Agile model

 33

The waterfall methodology is the polar opposite of agile. Instead of considering

requirements, design, and testing as discrete phases, an agile approach treats them as

continuous processes requiring participation from developers, management, and

consumers. Agile software development promotes adaptable planning, evolutionary

development, and continuous improvement, as well as quick and flexible change

reaction. It emphasizes user satisfaction, simplicity, and the developers' and consumers'

constant attention. The word "agile" has been used in software development to denote

the capacity to adjust to changes — changes in requirements, technology, and people.

Agile development, according to Pilgrim (2012), is a social event involving

programming-driven methods that focus on simplifying the SDLC. A significant

portion of the displaying and documenting overhead is eliminated, in favor of extremely

tight communication. Every accentuation is a finished process of programming

endeavors, including orchestrating, requirements examination, layout, coding, testing,

and documentation, in which an augment complements clear, iterative application

progression.

A team of software developers published the Agile Manifesto in 2001,

highlighting the importance of the development team, accommodating changing

requirements and customer involvement.

2.3.3 Extreme programming

Extreme Programming (XP) made its debut in the software world in 1999,

thanks to Kent Beck's book "Extreme Programming Explained." Extreme programming

is a software development technique that is iterative. XP stands for "extreme

programming," a flexible agile approach that emphasizes the connectivity of the

proposal and implementation stages. Extreme programming is a software development

 34

approach that focuses on improving product quality and being responsive to changing

client needs. It's a form of agile software development that promotes rapid development

cycles and frequent releases. These releases are designed to increase software

productivity and quality by using specific procedures that focus on establishing

checkpoints at which client needs may be accepted and satisfied.

Tchidi and He (2010) define extreme programming as a rigorous approach to

software development. The iterative life-cycle employed by XP includes the phases of

analysis, planning, designing, implementation, and delivery. All of these steps are

completed according to XP best practices. Extreme Programming (XP) was created to

meet the unique challenges of small teams developing software in the face of

ambiguous and shifting requirements.

Planning, Design, Coding, and Testing are the four key phases of the XP cycle.

Oral communication, regular testing, code review, and design are all essential. Short

development cycles, incremental planning, evolutionary design, and the flexibility to

respond to changing business demands are all characteristics of the XP method. The

approach is based on a series of practices that appear to be simple to grasp. Iterations

are emphasized in XP, which allows for changes in needs even after the original

planning is finished.

The XP approach, according to Beck (2000) and Lippert and Roock (2001), is

designed to fulfill the demands of a competent small team of less than 10 developers

working in a co-located office with the client building non-safety-critical software on

an object-oriented technology. An XP project typically results in a software project in

which software development begins immediately, virtually no documentation artifacts

are created (except for “user stories” written on index cards), and the project proceeds

 35

in an iterative fashion in which prototypes are created daily with the direct input (and

sometimes help) of stakeholders until the desired effect is achieved.

2.4 Unified Modelling Language (UML)

Object Management Group (OMG) specification of the UML states that The

Unified Modelling Language (UML) is a graphical language for visualizing, specifying,

constructing, and documenting the artifacts of a software-intensive system. The UML

offers a standard way to write a system's blueprints, including conceptual things such

as business processes and system functions as well as concrete things such as

programming language statements, database schemas, and reusable software

components.

The Unified Modelling Language (UML) is an object-oriented modelling

language that was created in 1994 and 1995 by Rational Software's talented software

engineers Grady Booch, Ivar Jacobson, and James Rumbaugh. It was in the works until

1996. The Object Management Group (OMG) designated UML as a standard in 1997.

Since its adoption as a standard, the Object Management Group has been in charge of

managing UML.UML was recognized as an ISO standard by the International

Organization for Standardization in 2005. It's used to create object-oriented models in

a variety of sectors.

The UML is a language for visualizing, specifying, building, and documenting

software-intensive system artifacts. UML relies significantly on graphical constructs to

form the foundation of the numerous UML diagrams as a visual modelling language.

The development of UML version 1.0 began in 1994 and continued through 1996,

ending in the release of UML version 1.0 in January 1997. (Booch, Rumbaugh and

Jacobson, 1999). In November 1997, the Object Management Group (OMG) approved

 36

UML 1.1 as a standard modellIng language. The most recent version is 2.5.1, which

was released in 2017.

UML 1.x defines nine diagramming techniques: Class diagram, Object diagram,

Component diagram, Deployment diagram, Use Case diagram, State-chart diagram,

Activity diagram, Sequence diagram, and Collaboration diagram (Booch et al., 1999).

Class Diagram, Object Diagram, Component Diagram, Composite Structure Diagram,

Package Diagram, Deployment Diagram, Use Case Diagram, Sequence Diagram,

Communication Diagram, State Diagram, Activity Diagram, Timing Diagram, and

Interaction Overview Diagram are the thirteen diagramming techniques defined by

UML 2.x. (Booch et al., 2005).

2.4.1 UML diagrams

The Unified Modelling Language produces UML Diagrams. It's a visual

depiction of classes, objects, and their relationships. A UML diagram is a model that

depicts a system component. It is used to define a system's functioning or design. A

diagram must be clear and succinct in order for the viewer to understand it quickly. In

UML 2.5, UML diagrams are divided into three categories based on the view of the

system they represent: Behaviour diagrams, Structure diagrams, and Interaction

diagrams. In addition, there are 14 other types of UML diagrams that span these three

categories.

2.4.2 Types of UML diagrams

a. Class diagram

Class diagrams specify the system from both an analysis and design perspective.

They depict what the system can do analysis, and provide a blueprint showing how the

system will be built (Ambler, 2000). Class diagrams are self-describing, and include a

 37

listing of the attributes, behaviors, and responsibilities of the system classes. Class

diagrams that are properly described can be directly converted into actual program

code. Furthermore, well-designed class diagrams may aid in the software engineering

process by providing thorough system documentation. (Lago, 2000).

b. Object Diagrams

Object diagrams represent specific occurrences or instances of class diagrams,

and as such are generally seen as more concrete than the more abstract class diagrams.

c. Component Diagrams

Component diagrams depict the different parts of the software that constitute a

system. This would include the interfaces of and between the components as well as

their interrelationships. At a higher level, Ambler (2000) and Booch, Rumbaugh, and

Jacobson (1999) described component diagrams as class diagrams.

d. Composite Structure Diagrams

 Composite structure diagrams depicts the relationships and communications

between the functional parts of a system. These diagrams depict high level and abstract

views of the system being modeled.

e. Package Diagrams

Package diagrams are a subset of class or object diagrams. They are used to

represent or demonstrate a collection of linked UML elements. Package diagrams make

it simpler to see relationships between various components of the represented system

(Pilone and Pitman, 2005). As a result, Package diagrams provide a high-level

perspective of the systems being modelled, making them an excellent tool for

communicating with users and other interested parties.

f. Deployment Diagrams

 38

Deployment diagrams are a subset of class diagrams. The diagram depicts how

the run-time processing units are coupled and collaborate in this case. The main

distinction between component and deployment diagrams is that component diagrams

focus on software components, whereas deployment diagrams represent the proposed

system's hardware layout.

g. Use-case Diagrams

While class models and diagrams are the foundation of object -oriented

programming, use case models and diagrams depict the system from the perspective of

an end-user, and represent tasks that the system and users must do in order to fulfil their

duties (Pooley and Stevens, 1999). Actors (those people or systems outside the system

of interest who need to interact with the system under development), use cases, and

interactions between the actors and use cases are all included in use case models and

the accompanying use case diagrams.

 Developers should initiate the analysis process with use cases, according to

Booch, Rumbaugh, and Jacobson (1999), by interviewing end users, going over basic

historical system documentation, and so on, and then developing use cases from those

interviews and documents to drive the development of the class model and other system

models. Use Case Narratives, which are textual explanations of Use Cases, are also

widely used by developers to help in the assembly and comprehension of Use Case

Diagrams, according to Dobing and Parsons (2006).

h. Activity Diagrams

Activity diagrams model the flow of control through activities in a system and,

as such, are really just flow charts. In addition, activity diagrams are special instances

of state chart diagrams.

i. State Machine Diagrams

 39

State machines are used to simulate the transition between states inside an item,

as well as the signals or events that cause or induce the change in state from one value

to another (Booch, Rumbaugh and Jacobson, 1999). A thermostat, for example, is

triggered by a change in air temperature to activate a heating or cooling system that

adjusts the temperature in a room or building. The thermostat would detect an increase

in air temperature in this scenario, causing the cooling system to switch from inactive

(or idle) to active and begin the cooling process. When the ideal temperature is attained,

the thermostat detects it and switches the cooling system back to inactive mode.

j. Sequence Diagrams

Sequence diagrams represent and verify the logical stages of use cases in depth

(Ambler, 2000). The temporal ordering of communications between objects in the

system is depicted in sequence diagrams, which feature lifelines for the objects

participating in the sequence as well as the concentration of control at various points in

time (Booch, Rumbaugh and Jacobson, 1999).

k. Communication Diagrams

 Communication diagrams rather than depict the sequence and control flows,

represents the objects engaged in the interactions. Because one may readily convert to

the other, there is some amount of interdependence between Communication and

Sequence Diagrams. The mapping, however, is not one-to-one. In other words, while

converting from Sequence Diagrams to Communication Diagrams, certain information

may be lost.

l. Timing Diagram

Timing diagrams are most commonly employed with real-time systems and aim

to express the timing aspect linked to the messages being passed across the modelled

system. Timing Diagrams depict a lifeline and the events that take place over time when

 40

the system runs. The elements indicated in these diagrams represent the specifics of

time restrictions provided in messages.

m. Interaction Overview Diagram

This is a simplified version of Activity Diagrams and a sub-type of them. These

diagrams can help a user comprehend how a system works, but they hide the specifics

of the messages and information that the messages carry between objects. These are

high-level diagrams that aren't meant to explain the nuances or subtleties of how one

system interacts with another.

2.5. Model-View-Controller Architecture

The model view controller (MVC) pattern is a web-based application

architecture paradigm. Trygve Reenskaug, who worked at Xerox Parc in the 1970s, was

the first to think of the MVC design pattern. “The primary aim of MVC is to bridge the

gap between the mental model of the human user and the digital model that resides in

the computer,” he says. Krasner and Pope later defined the MVC paradigm in full in

their paper “A cookbook for utilizing the model-view controller user interface paradigm

in Smalltalk-80” published in the Journal of Object-Oriented Programming in 1988.

The model of the major application area, the display of data in that model, and user

interaction are the three key categories of an application. The MVC pattern divides

tasks into three primary roles, enabling for more effective cooperation. This pattern is

used to create applications in most languages, including Java, PHP, Python, C#, and

others. Spring-MVC framework is known in Java, Cake PHP is known in PHP, and

Microsoft has a framework called ASP.Net MVC, and so on. MVC provide three types

of classes that represents the three primary layers.:

Model: The model layer of an MVC application is crucial. It keeps track of

information in the form of data, which is then utilized to display the result using views.

 41

It is a representation of the database records. It is in charge of the application's data. It

primarily consists of application data, logic definition, function specification, and

business rule participation. A model can either be a single item or a collection of things.

This layer is responsible for data management as well as database communication,

which includes inserting, retrieving, and updating data in the database. The Model is a

class that contains variables of various data kinds, as well as getter and setter methods.

It doesn't connect to a database and just manages data. The major task of the model

class is to respond appropriately to the request of the view's class and the controller's

instruction.

View: Our application's user interface is built using views. Users engage with

our web sites while utilizing the user interface. The outcomes of the data in the model

are displayed in the view. A view is responsible for displaying all of the model's data.

It only displays needed characteristics and conceals those that aren't. As a result, we get

the benefit of presentation encapsulation. It uses script-based tags such as JSP, ASP,

and PHP, and it's extremely easy to combine with AJAX. The view class's primary role

is to provide graphical user interface output for model components that are especially

intended for client needs. The data is contained in the View (the database records). A

model's answer must be translated into an output form. It displays data in a certain

format, such as JSP, ASP, or PHP.

Controller: The user's requests are handled by the controller layer. The

controller will carry out the actions that the user has requested. The user and the system

are connected by a controller. The Controller is in charge of both the Model and the

View. It regulates the flow of data in the model and updates the display as the data

changes. The distinction between the Model and the View is what it is. The controller

gets the data, processes it, and then executes the code that changes the state of the data

 42

model. These components work with the model layer to choose the appropriate view to

display to the user based on the user's requests.

The controller reacts to the user when a request is released. Controllers can read

data from a view, control user input, transfer data to the model, and make model and

view modifications. All of the controls are matched up with view and model classes in

the controller class. The Controller binds all application logic and combines the display

in the View with the functionality in the Model. It is in charge of retrieving data from

the View and determining the application's execution route. The Controller will use the

Model functionality to retrieve the data and parse it so that the View can show it. It is

also in charge of error handling. 2011 (Freeman and Sanderson)

The MVC pattern architecture allows us to follow the separation of concerns

principle by allowing us to implement the code in the model, views, and controller

layers of the applications separately. Testing these components is much easier

because we divide the logic of our program into three tasks (input logic, business logic,

and interface logic). Since we can use any unit testing framework that is compatible

with the MVC framework, testability is very quick and flexible.

The MVC design pattern is ideal for web application development since it

combines a number of technologies that are often separated into layers. MVC-specific

behavior could also include sending various views to different sorts of user-agents.

2.6 System Development Tools

This section discusses various system development tools that are to be adopted

during the course of this study. It gives a clear understanding of the .NET framework,

Microsoft SQL Server, C# and other related technologies.

 43

2.6.1 ASP.NET

The.NET Framework (pronounced "dot net") is a Microsoft software

framework that runs largely on Microsoft Windows. It contains the Framework Class

Library (FCL), which is a big class library that allows language interoperability (each

language may utilize code written in other languages) across a number of computer

languages. The Common Language Runtime (CLR), an application virtual machine that

offers services like as security, memory management, and exception handling, executes

programs developed for the.NET Framework in a software environment (as opposed to

a hardware environment). The.NET Framework is made up of two components: FCL

and CLR. ASP.NET is a free to use server-side Web application framework that is used

to create dynamic Web pages. Microsoft created it to help programmers create dynamic

web pages, online applications, and web services.

The initial version of ASP.Net MVC was launched in May 2009, and it has since

evolved to version 6.0, with the open-source version of ASP.Net Core MVC 1.0 being

released in May 2016. In the ASP.NET web development framework, C# and VB.Net

are utilized as code behind languages. ASP.NET is built on top of the HTTP protocol,

and it makes use of HTTP commands and rules to establish bidirectional

communication and collaboration between the browser and the server.

2.6.2 Microsoft SQL Server

Microsoft SQL Server is a relational database management system that

Microsoft presently develops. It is a database server, which is a software product whose

principal job is to store and retrieve data as required by other software programs, which

may operate on the same computer or on a networked computer (including the Internet).

It is used in corporate IT settings to handle a wide range of transaction processing,

business intelligence, and analytics applications. The SQL Server Database Engine is

 44

the heart of Microsoft SQL Server, controlling data storage, processing, and security.

It consists of a relational engine for processing instructions and queries, as well as a

storage engine for managing database files, tables, pages, indexes, data buffers, and

transactions. The Database Engine also creates and executes stored procedures,

triggers, views, and other database objects.

2.6.3 C#

C# (C Sharp) is a Microsoft-developed general-purpose programming language

that runs on the.NET Framework that is popularly used for creating mobile apps, games,

and Windows programs. It is a type-safe, contemporary, object-oriented programming

language that enables developers to create a wide range of safe and reliable applications

for the.NET environment. C# comes from the C family of languages. It was first

developed by a team led by Anders Hejlsberg at Microsoft in 2002 and was later

approved by ECMA as standard. Its’ first version C# 1.0 was launched with .NET 1.0

in the same year. Some of its major features include: Classes, Interfaces, Structs,

Events, Properties, Operators and Expressions etc.

2.7 Related Works

There have been several studies on information systems used to manage student

academic records as well as reporting systems some of which are reviewed in this study.

Maria and Dave (2016) developed an automated academic record management

system using the business intelligence approach. The system used enterprise reporting,

particularly the tabular type of business intelligence reporting. The system integrated

business intelligence specifically in the query and reporting component. All the reports

are dynamic and update in real-time if there are any transactions to be done by the users.

Each report is generated by joining more than one table in the connectivity of the

 45

database. This ensures the accuracy and consistency of the data in the report. It is a web

application built with C# through the Microsoft visual studio integrated development

environment and hosted on windows Server 2008 R2. Microsoft SQL Server 2008 - It

was used in the connectivity of databases in the programming application of the

proposed system.

Dada et al. (2017) designed and implemented an integrated software system for

result processing and transcript generation specifically for a networked environment.

The work presented a system that can be used to check the performance of each student

in various courses. It reduced the waiting time involved in the manual method of

processing and generating results. The software delivered from the work was built on

the web platform using HTML, CSS, and JavaScript for the frontend, PHP as the

scripting language for the application logic, and MySQL for the database system. This

work limited its research and solution to automating result processing specifically

student grading as it made no effort to analyse the results and generate reports that may

be useful for the management-level decision-making process.

Orobor (2015), adopted a new approach of cloud computing model for student

result computation to replace traditional software that is usually installed locally on

computer systems within the institution. The research developed a student result

computational system as a cloud computing service which is a variant of the Software

As A Service (SAAS) model. Thereby reducing the cost of owning a result computation

system and the complexity of accessing the service locally. The research leveraged the

Microsoft Azure Platform for hosting the result computation system making it available

remotely to multiple institutions.

 46

Obiniyi and Ezugwu (2010), in their work, identified the causes associated with

delays in student's results processing and in extension the release of the result. They

designed and implemented a student information system for tertiary institutions that

made use of the neural network for processing results for designated departments

through an improved centralized database system. Their work made use of Apache web

server alongside PHP for server-side scripting to implement the system as well as an

open-SSL library to ensure proper data encryption and role-based authentication.

After reviewing the aforementioned works, it is evident that different research and

studies have developed different information systems for student's academic records to

meet different purposes as their areas of interest demand. The use of various

technologies and approaches including, web applications, cloud computing models, and

neural networks justifies the need for information systems that are available remotely

as against local stand-alone applications. Hence this work will develop a web

application using Microsoft’s ASP.NET MVC framework that will be hosted through

IIS server making it accessible from any location as well as integrate a highly-scalable

relational database through which data can be retrieved, processed, and reported in real-

time.

In research from Hashim and Mohamed (2013), it developed a student

information system for storing and updating students’ data as well as creating reports

that are made available to lecturers concerning a students’ status. The study employed

the rapid application development SDLC methodology to create a local stand-alone

system that was developed based on the available features of an existing staff

information system and a Microsoft Access 2007 database to store all the needed

information on the system. It further recommended that future work in the area of

 47

student information systems adopt relevant technology to make the system available

remotely over a network to ease access to the system.

Ali (2018) faulted the manual methods of student information management in

Department of Student Affairs in the College of Medicine, University of Diyala and

subsequently design and implemented a student information management system using

the .Net framework environment of Microsoft Visual Studio 2010 and Microsoft SQL

Server 2008 R2. It then concluded that the adoption of the system enables

administrative users to efficiently update student data thereby increasing the speed of

task completion and aiding decision-making process across the college where it is

adopted.

 48

CHAPTER THREE

METHODOLOGY

3.1 Method of Identification of User and System Requirement

During this work, the user requirement as well as system requirements were

identified through informal interviews and review of other existing systems in the

related context. In gathering the necessary data for the analysis, design and consequent

effective development of the proposed system, the aforementioned techniques were

adopted. The functional and non-functional requirements were identified and defined

as well as roles needed to manage the system and the associated functions for each role.

The hardware and software requirements for the development and deployment of the

system were defined after which the design of the system was created using applicable

UML diagrams such as: use case, sequence, activity, etc. The MVC method of software

development was adopted to implement the front-end and database of the system using

relevant development technologies.

3.1.1 Identification of system requirement

This section discusses the functional and nonfunctional requirements of the

system, identifying the essential features that the system should provide. It covers the

data to be used by the system as well as the operations to be performed.

a. Functional requirement

These are the criteria that the end user expresses as essential features that the

system should provide. These are expressed or described as input to be provided to the

system, operation to be done, and expected output.

i. Registration and authentication: User should be able to register for the role

of lecturer (Basic user) and login using their valid email address and password

 49

ii. Role management and authorization: Admin user should be able to add roles

as well as assign roles to registered users as necessary and thereafter authenticated users

should be authorized to see dashboards for their specific roles.

iii. Dashboard management: Reports in form of charts (bar chart, pie chart, line

chart etc.) should be generated and displayed on the dashboard based on the specified

parameter (such as courses, programme, department, level etc.) and the current users’

role.

iv. Assessment management: Users with the “lecturer” role should be able to

create assessment for courses as well as administer the assessment to student and view

reports of these assessments

b. Non-functional requirement:

Non-functional requirements are a solution's qualitative attributes. They are

restrictions that apply to a set of functional requirements, allowing you to assess a

solution's characteristics rather than its functional behaviors. It supports the functional

requirements and determine how the system must fulfil them.

i. Email verification: The email provided by users during registration should be

verified to validate the authenticity of the entry.

ii. Assessment management for lecturer for only courses they manage: Users

with role “lecturer” should only be able to create and administer assessment for the

courses that they are assigned to

iii. Dashboard display based on roles: The dashboard parameters should be

available based on roles. For example: users with the “lecturer” role should only get

dashboard reports of the courses they are assigned to and their respective assessments

while users with the “Examination officer” role should get dashboard reports for all the

courses in their department across all levels.

 50

iv. Application response time: Each request processing and response must not

exceed a 10 seconds limit

v. Usability: Users should be able to display different dashboard view based on

filter made available through a list allowing seamless navigation between different

views.

vi. Data integrity: The data used in generating reports for all dashboard is

periodically refreshed to ensure that the system uses the update copy of the data present

in the database for its’ reports.

c. Hardware requirement:

Processor: x86 or x64, RAM: 512 MB (minimum), 1 GB (recommended), Hard disc:

up to 3 GB of free space may be required

d. Software requirement:

.NET framework: Minimum .NET 4.5.1 up to .NET 4.7, SQL Server 2008 Express or

higher, Windows server 2008 (Full server) or higher, Windows 8.1 operating system or

higher.

3.1.2 Identification of user requirement

a. System Admin requirement

In this work, an admin user account will be created with the highest privilege to

write and read data from any table in the system. The admin user should be able to

assign roles to other registered users and delete the records of users if necessary. The

admin should also have access to perform all other basic user functions such as view

dashboards, creating and administering assessments

 51

b. Basic User requirement

In this system the basic users are the users with either “examination officer” role

or “lecturer” role. The have different levels of privilege on the system. Basic users with

“examination officer” role have access to view dashboard of programme, courses and

levels in the department he/she oversees while basic users with “lecturer” role have

access to view dashboard of courses he/she is assigned to as well as assessments and

the performance of students registered for the courses.

3.2 System Design Method

The system was designed using UML diagrams such as use case diagram,

sequence diagram, class diagram and activity diagram. The system architecture was

also designed as shown in figure 3.1. The various UML diagrams used in designing the

system shows the system functions, interaction with users as well as processes involved

in performing various action in the system.

3.2.1 System architecture

The system shall be made available through hosting on IIS server which

supports the .Net framework, so that browser request to the URL of the system is

directed to the server which interfaces with controller classes and mediates between the

user requests from the browser and the application logic that is structured in classes

using the MVC architecture. As shown in figure 3.1 the database of the system shall be

managed using MS SQL server which holds all the tables and stored procedures used

by the system.

3.2.2 Use case diagram

The use case diagram as shown in figure 3.2 presents users of this system and

the various actions that they can perform. The users that make use of the system are:

 52

Figure 3.1: System architecture

 53

Figure 3.2: Use case diagram

 54

administrator, examination officer, lecturer and student. The actions that can be

performed on the system include: role assignment, user management, viewing

dashboards by programme, courses, department and student performance. Also,

students can take quizzes on the E-test module for courses that they are registered for.

a. Assign roles: The admin user is able to create accounts for users on the reporting

system as well as assign roles for each of the users when their accounts are created and

whenever there is a necessity to update the roles. This is further described in table 3.1.

b. Delete users: The admin user is also able to delete each user’s account in event of

the need to remove the account and its data from the system. This use case is fully

specified in table 3.2.

c. View programme dashboard: As described in table 3.3, the admin user and the

examination officers can view the dashboard that contains reports for programme. The

examination officer can only view reports on this dashboard that pertains to the

department he or she represents while the admin user can view for all programme.

d. View department dashboard: The admin user and examination officers can

access the dashboard that shows reports for departments. In which case the examination

officer can view reports for only his or her department while the admin user can view

reports for all departments. This use case is fully described in table 3.4

e. View courses dashboard: Lecturers, examination officers and the admin user

have access to the courses dashboard where they can view reports for each course. Each

lecturer can view reports for the courses which he or she is assigned to while the

examination officer can view reports for all the courses in his or her department and the

admin user can view for all courses. A full specification off this use case is given in

table 3.5

 55

Table 3.1: Description of assign roles use case

Use Case Name Assign roles

Participating Actors Admin

Flow of Events  The admin navigates to the role assignment page

 The admin selects a registered user

 The admin selects an available role to assign to the

user

Entry Condition The user must be logged in to his/her account

Exit Condition The admin successfully assigns the role to the user.

If the process does not complete successfully the admin

gets a response that the process was unsuccessful, why

it was unsuccessful and a message to try again

Quality Requirement The admin must successfully assign an available role to

an existing user without errors

 56

Table 3.2: Description of delete users use case

Use Case Name Delete users

Participating Actors Admin

Flow of Events  The admin navigates to the all-users page

 The admin selects a registered user

 The admin deletes users record from the system

Entry Condition The admin must be logged in to his/her account

Exit Condition The admin successfully deletes the user’s record.

If the process does not complete successfully the admin

gets a response that the process was unsuccessful, why

it was unsuccessful and a message to try again

Quality Requirement The admin must successfully delete an existing user ‘s

record without errors

 57

Table 3.3: Description of view programme dashboard use case

Use Case Name View programme dashboard

Participating Actors Admin, Examination officer

Flow of Events  The user navigates to dashboard page

 The user selects the “by programme” report

parameter

 The user views reports by programme on the

dashboard

Entry Condition The user must be logged in to his/her account and be of

role type admin or examination officer

Exit Condition The user must successfully view the programme

dashboard.

If the request is not completed successfully the user gets

a response that the process was unsuccessful, why it

was unsuccessful.

Quality Requirement The user must successfully view the dashboard for the

programme he presides over (in the case of an

examination officer)

 58

Table 3.4: Description of view department dashboard use case

Use Case Name View department dashboard

Participating Actors Admin, Examination officer

Flow of Events  The user navigates to dashboard page

 The user selects the “by department” report

parameter

 The user views reports by department on the

dashboard

Entry Condition The user must be logged in to his/her account and be of

role type admin or examination officer

Exit Condition The user must successfully view the department

dashboard.

If the request is not completed successfully the user gets

a response that the process was unsuccessful, why it

was unsuccessful.

Quality Requirement The user must successfully view the dashboard for the

department he/she presides over (in the case of an

examination officer)

 59

Table 3.5: Description of view courses dashboard use case

Use Case Name View courses dashboard

Participating Actors Admin, Examination officer, Lecturer

Flow of Events  The user navigates to dashboard page

 The user selects the “by courses” report parameter

 The user views reports by courses on the dashboard

Entry Condition The user must be logged in to his/her account

Exit Condition The user must successfully view the courses dashboard.

If the request is not completed successfully the user gets

a response that the process was unsuccessful, why it

was unsuccessful.

Quality Requirement The user must successfully view the dashboard for the

courses assigned to him/her.

 60

f. View student performance dashboard: This uses case as described in table 3.6

applies to lecturers, examination officers and admin users where the lecturer can only

view the performance of student in the courses he or she is assigned to while the

examination officers can view the performance of each student in the department in

each course. The admin user can view the performance of every student in each of their

courses.

g. View Course assessment dashboard: Lecturers, examination officers and admin

users can view the reports or assessment for their assigned courses, all the courses in

the department and all existing course respectively. A full description of this use case

is given in table 3.7.

h. Take assessment: Students can take assessments (quiz) for each of the courses

they register following a sequence of steps specified in table 3.8

3.2.3 Sequence diagram

Sequence diagram were used to illustrate the order of action for each process on

the system. It shows the internal component and the user involved in the process. Some

of the process designed with this diagram are: Login, Create assessment, View report

by course, view report by programme etc.

a. Login

Figure 3.3 shows the sequence of actions performed by users for the login

function on the system. The user is redirected to the URL of the login page once he/she

is not logged in and a request is sent to the login controller for the login view, the login

controller then fetches the login form entities and other attributes such as display name

and error message and sends the login view to the browser. The user fills the login form

with his/her login credentials and submits the credentials after which they are forwarded

to the controller as a post request. The credentials are sent to the login model to validate

 61

Table 3.6: Description of view student performance use case

Use Case Name View student performance dashboard

Participating Actors Admin, Examination officer, Lecturer

Flow of Events  The user navigates to dashboard page

 The user selects the “student performance” report

parameter

 The user views reports of student performance on

the dashboard

Entry Condition The user must be logged in to his/her account

Exit Condition The user must successfully view the student

performance dashboard.

If the request is not completed successfully the user gets

a response that the process was unsuccessful, why it

was unsuccessful.

Quality Requirement The user must successfully view the dashboard for the

student. In the case of examination officer, he views a

dashboard of students in his department across all

courses while for a lecturer he views a dashboard of

students’ performance in his courses only.

 62

Table 3.7: Description of view course assessment dashboard use case

Use Case Name View course assessment dashboard

Participating Actors Admin, Examination officer, Lecturer

Flow of Events  The user navigates to dashboard page

 The user selects the “course assessment” report

parameter

 The user views report of course assessments on the

dashboard

Entry Condition The user must be logged in to his/her account

Exit Condition The user must successfully view the course assessment

dashboard.

If the request is not completed successfully the user gets

a response that the process was unsuccessful, why it

was unsuccessful.

Quality Requirement The user must successfully view the dashboard for the

course assessment. In the case of examination officer,

he views a dashboard of course assessment of courses

in his department while for a lecturer he views a

dashboard of course assessments in the course assigned

to him/her only.

 63

Table 3.8: Description of take assessment use case

Use Case Name Take assessment

Participating Actors Student

Flow of Events  The user navigates to login page of the E-test

Module

 The user logs in and enters the secret code for the

quiz as made available by the lecturer

 The user attempts the questions in the quiz before

the time elapses

 The user submits quiz

Entry Condition The user must be logged in to his/her E-test account

Exit Condition The user must successfully attempt the test before the

time elapses else the system automatically submits on

the expiration of the given time

Quality Requirement The user must successfully view the questions in the

test and be able to attempt them and submit before the

set time expires.

 64

Figure 3.3: Sequence diagram for login process

 65

them with records in the database and if the credentials are valid a session token as well

as the user id is sent to the browser and the user is redirected to the dashboard

b. Create Assessment

Figure 3.4 shows the order of actions performed by a user logged in with the

role of lecturer for the create assessment function. The lecturer clicks on the Create

assessment button from the dashboard navigation menu, this sends a request to the

assessment controller for the create assessment form which consequently requests for

the data entities of assessments from the assessment model. Upon response from the

assessment model the assessment controller displays the assessment form in a view on

the browser and the user fills the form and submits, thereby sending a post request to

the assessment controller with the submitted details. The assessment controller sends

an insert query to the assessment model using the submitted details as the parameter

and the model executes the query and responds with a message if operation is

successful. Assessment successfully created message is then sent to the browser view

by the assessment controller.

c. View report by courses

Figure 3.5 shows the series of actions performed by a logged in user to view

reports by courses. The user selects the course whose report is to be shown from the

course list. This action sends a request for the course report view to the report controller

which maps the course data entities from the report model in JSON format to the report

view for the course selected by the user.

d. View report by programme

Figure 3.6 shows the series of actions performed a logged in user to view reports

by programme. In the case of the admin user, he/she selects the programme whose

report is to be shown from the programme list. This action sends a request for the

 66

Figure 3.4: Sequence diagram for create assessment

 67

Figure 3.5: Sequence diagram for view reports by course process

 68

Figure 3.6: Sequence diagram for view reports by programme process

 69

programme report view to the report controller which maps the programme report view

data entities from the report model in JSON format to the report view for the programme

selected by the user while for a user logged in as examination officer, the programme

list only contains programme in his/her department and once he selects the programme

from the programme list, the system then sends a request to the controller for the

programme report view which then maps the data entities and displays the view of the

selected programme.

e. View report by department

Figure 3.7 shows the series of actions performed a logged in user to view reports

by department. In the case of the admin user, he/she selects the department whose report

is to be shown from the department list. This action sends a request for the department

report view to the report controller which maps the department data entities from the

report model in JSON format to the report view for the department selected by the user

while for a user logged in as examination officer the system by default sends a request

to the controller for the department report view for the user’s department and maps the

data entities and displays the view for only that department.

f. View report by level

Figure 3.8 shows the series of actions performed a logged in user to view reports

by level. In the case of the admin user, he/she selects the level whose report is to be

shown from the level list. This action sends a request for the level report view to the

report controller which maps the level report data entities from the report model in

JSON format to the report view for the level selected by the user while for a user logged

in as examination officer, once he selects the level from the level list, the system by

default sends a request to the controller for the level report view for the user’s

 70

Figure 3.7: Sequence diagram for view reports by department process

 71

Figure 3.8 : Sequence diagram for view reports by level process

 72

department and maps the data entities and displays the view of the selected level for

only that department.

g. View report by assessment

Figure 3.9 shows the series of actions performed a logged in user to view reports

by assessment. The user selects the assessment whose report is to be shown from the

assessment list. This action sends a request for the assessment report view to the report

controller which maps the assessment report view data entities from the report model

in JSON format to the assessment report view for the assessment selected by the user.

3.2.4 Activity diagram

The activity diagram shown in figure 3.10 illustrated the flow of activity within

the system for all the roles existing in the system. A user must first log in with his/her

credentials which is then check if it is valid or not it is valid the user proceed to the

authorization process else the user has to retry the login. The authorization process

checks the role of the logged in user and directs the user to the functions that are allowed

for his/her role. A user with the admin role can then perform action such as role

assignment, deleting existing users, view dashboard for courses, programme,

departments and levels. A user logged in as an examination officer can view dashboards

for courses, programme and level while a user with the lecturer role can create quiz,

view the performance of student in quizzes and view a dashboard report of all

assessment for his/her courses.

3.2.5 Class diagram

The class diagram of the reporting system as shown in figure 3.11 shows the

classes for users (lecturer, examination officer and admin), students, quiz, course,

questions, assessment, option and optionSelected. The user class represents the model

 73

Figure 3.9: Sequence diagram for view reports by assessment process

 74

Figure 3.10: Activity diagram

 75

Figure 3.11: Class diagram

 76

of admin and basic user in the system with properties StaffID, FullName, Department,

Role, Email and password. The properties of this class form the columns of the user

table in the database used by the system. Methods for user registration, login and record

update are available for this class.

 The student class instantiates the record of each student used in the reports generated

by this system, it contains properties such as MatricNo, FirstName, LastName, Gender,

College, Department, Programme, Level, ModeofEntry, YearofEntry, CurrentCGPA

and LastGPA. Other classes such as quiz, course, option and optionSelected were used

to build a simple E-test module in the system that allowed quiz creation by lecturers

and attempt of the quiz by student registered for the course. The Quiz class has

properties: QuizID, QuizTitle and CourseCode.

3.3 System Implementation

The system was implemented using the following tools and techniques. The

database of the system was implemented using MS SQL server alongside entity

framework. The fronted of the application which comprises of the user interface as well

as the application logic were implemented using Microsoft’s ASP.NET MVC 5,

Microsoft ASP.NET Identity framework and visualization libraries such as Apex chart

JS, Chart JS etc.

3.3.1 Database Implementation

a. MSSQL server

The database of the system was developed using MS SQL server’s “.” instance

connected with Microsoft visual studio IDE via a configuration string that specifies the

server engine instance to connect to and the credentials. MS SQL server was used to

manage all database operation including, storage and retrieval of all records used by the

 77

system locally. It was also used to hold stored procedures for special queries that needed

guarantee of execution by returning a promise and prevention of SQL injection. The

database was also manually managed using MS SQL server management studio during

implementation and testing.

b. Entity Framework

Entity framework is an object-relation mapping framework that allows

development of system models and caters for the creating of tables that correlate to the

model automatically. It was used in the implementation of this system to manage table

creation in the database by running migration commands. It was also used to resolve

type checking and validation of the data sent from the user interface and the

corresponding column in the database

3.3.2 Front-end Implementation:

a. ASP.NET MVC

ASP.NET MVC was used as the framework for the development of the system.

It was used to structure the system functions into views, models and controllers. The

views were created as .NET files with “. cshtml” extension and were used to create the

pages of the system. The models and controllers were created as .NET files with “.cs”

extension containing C# classes for server-side data and data control and manipulation

respectively. Each web page in the system is a view returned by a controller and has a

corresponding model.

b. Razor

 Razor is markup syntax than is available in ASP.NET MVC. It was used to

embed server-side code into web pages (view files). It supports C# and uses @ symbol

 78

to transition between HTML markup and C# code so that it evaluates expressions

written in C# and renders the output in HTML.

c. Cascading Style Sheet (CSS)

This was used to style the markup written in the view files. This was done by

using the HTML link tag and ASP.NET script bundler to make style classes in the CSS

files to be accessible within the view file.

d. C#

C# was used as the scripting language in this project. It is one of the languages

supported in ASP.NET hence it was used to write the server-side code of the system

including the models and controller classes.

e. Apex charts

Apex charts is a JavaScript charting library that was used to create some

visualizations in the dashboards in the system. The library was used to create bar graphs

and pie charts in different dashboards by sending the data for the report in JSON format

to the appropriate class from the library.

f. Chart JS

Chart JS is another JavaScript library that was used in the system to create line

graphs and grouped bar charts on various dashboards. It received data from the report

controller in JSON and used them to create the chart.

g. ASP.NET identity framework

This is a claim-based authentication framework that was used to manage user

registrations login, password reset and user details management. It was also user to

manage user roles within the system.

 79

CHAPTER FOUR

IMPLEMENTATION AND RESULT

This section presents the results of the system and a discussion of the results. It

covers the results of the database of the system that was implemented using MS SQL

server as well as the user interface of the web application for the learning reporting

system which was implemented using web technologies such as: ASP.NET MVC, CSS

and some JavaScript charting libraries. It also presents the user interface of the E-test

module of the system that was implemented using HTML, CSS and JS.

4.1 Database Implementation

Figure 4.1 shows the result of the user table as created in the database by

ASP.NET identity framework through entity framework migration command which

was used for user table and user data management. The table contains columns: ID

which is the primary key and LecturerId which is a candidate key in the table. Other

columns in the table include: college, department, fullName, role, email. This table

holds the data of each user of the learning reporting system namely: lecturers,

examination officer and admin user.

 Also related to the user table is the roles table shown in figure 4.2. It was also

created by ASP.NET identity framework with entity framework migration command

and is used for holding roles data. It contains columns for roleID, roleName and

concurrency stamp that is auto-generated by the migration command.

Figure 4.3 shows the result of the student table in the SQL server management

studio. It contains columns: MatricNo, FirstName, LastName, College, Department,

Programme, Email, YearofEntry, ModeofEntry, CurrentCGPA, LastGPA and

AcademicStanding. The primary key for this table is MatricNo based on the

 80

Figure 4.1: Users Table

 81

Figure 4.2: Roles Table

 82

Figure 4.3: Students Table

 83

observation of the uniqueness of the matriculation number for each students’ academic

record.

Figure 4.4 show the result of the courses table that was used in the system to

hold data for each course. The table contain columns: CourseCode which is the primary

key, CourseTitle, CourseUnit and LecturerAssigned.

Figure 4.5 presents the result of the quiz table that holds the record of quizzes

for courses. It contains columns for: QuizID, QuizName and CourseCode. The quiz

table works along with other tables such as Questions and Choices which holds records

of question, options and options selected by users respectively for each quiz. The

Questions table shown in figure 4.6 contains columns: QuestionID, QuestionText and

QuizID which references the primary key of the Quiz table. The choices table shown in

figure 4.7 also has columns: ChoiceID, ChoiceText and QuestionID with QuestionID

been a foreign key in this table.

4.2 Front-end Implementation

Figure 4.8 shows the result of the login interface of the learning reporting

system. It displays a form that has fields for email address and password as well as

perform validation of form entry function to ensure user enters details and the validity

of the details entered by the user in the fields. Once the user clicks the login button the

user is directed to the dashboard that is authorized for his/her role.

Figure 4.9 shows the result of the admin dashboard after a successful login. The

interface displays reports in form of charts of academic status for all levels, student

performance per department, grade point distribution across level for each department,

courses pass and failure rates, lecturer performance based on performance in the course

taught by the lecturer and tables showing list of students by programme,

 84

Figure 4.4: Courses Table

 85

Figure 4.5: Quiz Table

 86

Figure 4.6: Questions Table

 87

Figure 4.7: Choices Table

 88

Figure 4.8: Login interface

 89

Figure 4.9: Admin dashboard

 90

department, and college in order of their cumulative grade point average (CGPA)

among other things.

Figure 4.10 shows the interface for the examination officer after successfully

logging into the system. The interface contains reports for academic status of students,

average performance per course, average performance per level, average performance

per programme, grade point distribution per level, courses failure and pass rate,

performance of lecturers based on student performance in the courses they teach,

performance of each student in all the courses/he or she registered and a table showing

the list of students per programme in the examination officer’s department in order of

their CGPA. This interface displays reports for only data relating to the examination

officer’s department.

Figure 4.11 shows the result of the interface for lecturers after a successful login

into the system. It displays reports of average performance for the courses taken by the

lecturer, list of scores per assessment for each course taken by the lecturer and reports

of right and wrong response per question in each assessment. It allows the lecturer to

get detailed information on student’s response and performance in his/her courses.

Figure 4.12 shows the result of the interface for creating assessment by lecturers

for their courses. This interface contains a form that contains fields for setting a course

title for a selected course, as well as fields for lists of question and their corresponding

options. Once the user submits this assessment creation form the fields of this form are

validated if they are correctly filled and are then sent to the database.

 91

Figure 4.10: Examination officer dashboard

 92

Figure 4. 11: Lecturer dashboard

 93

Figure 4. 12: Create assessment interface

 94

Figure 4.13 show the result of the login interface for the E-test module which

contains a form with fields for students’ matric number and the quiz password as set by

the lecturer. Once the student clicks login and is successfully authenticated he/she is

directed to the quiz page as shown in figure 4.14 where questions for the logged in quiz

are displayed with their respective options. The interface is simple and user-friendly as

it immediately notifies student of right and wrong choice by color variations as shown

in figure 4.15(a) and 4.15(b) respectively.

4.3 Discussion of Result

The result of the study as presented, shows the different expectation of this study

based on the objectives that were stated in the earlier chapters of this study. The results

of the identification of the system and user requirements allowed for the identification

of the different users of the proposed system such as primary and secondary users of

the system duly defined as lecturers, examination officer and administrator for primary

users and students as the secondary users of the system.

The results shows that the admin user was responsible for the oversight function

on the system having access to every kind of report generated on the system. The results

also shows that the users can only access the system using their school email address

and password for example admin@mtu.edu.ng was used for the admin user while other

users used their respective school email address and password provided by the

institutions’ system administrator. The result also shows that the user can view various

reports on their dashboard based on the roles that they have, however the assessment

creation function is only accessible to examination officers and lecturers by virtue of

their academic function. The results shows that the approach adopted by this was able

to cater for the system and user requirements as defined during the requirement

identification phase of this study. The result of the system implementation showed

 95

Figure 4. 13: E-Test login interface

 96

Figure 4. 14: Quiz interface

 97

Figure 4. 15 (a): Quiz interface when user selects right option

Figure 4. 16 (b): Quiz interface when user selects wrong option

98

the database of the system was able to manage the data storage need. For each table in

the database a significant number of records were inserted and retrieved during report

generation.

The result of the web interface shows that the system was able to provide an interface

that efficiently suits the system and user requirement that were identified in the course

of the study. The system implementation allows users of various roles to perform their

various academic and administrative functions using the systems’ report removing the

challenges of manual data analysis and vague decision-making process.

 2

CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMMENDATION

5.1 Summary

This study developed a reporting system of student academic records that

enables lecturers, examination officer, administrative staff and other stake holders of

higher institutions to effectively monitor performance metrics of student and staff alike

which are key to the process of decision making and subsequent policy implementation

towards achieving their set goals. The study identified the user and system requirements

that were necessary to be met by the system which were identified alongside the

software and hardware requirements of the system.

The identified requirements were further specified using relevant unified

modelling language diagrams such as use case diagram, activity diagram and sequence

diagrams for the user requirements as well as class diagram for data modelling. The

system was developed using Microsoft’s ASP.NET MVC framework for the frontend

as well as packages such as identity and identity for implementing various features. It

also made use of MS SQL server and entity framework for the management database

of the system.

5.1 Conclusion

 In conclusion, this study has designed and implemented a reporting system that

solves the challenges in analysis of student academic record and informed decision

making in higher institutions. The study was able to identify the respective user and

system requirements and the appropriate designs were used to specify these

requirements provided by the users using UML diagrams. The database was

implemented to suit the workings of the proposed system.

 3

5.2 Recommendation

Following the conclusion of this study, I hereby recommend the adoption of this

reporting system by higher institution with an existing student academic record system

to drive meaningful discussions that are influenced by visual reports of from statistical

analysis. I also recommend that future works in this area be done to integrate various

additional performance metrics that are not covered within this study as well as the

adoption of machine learning methods to reveal important patterns that are not

discovered by the statistical methods adopted by this work.

 4

References

Abduldaem, A., & Gravell, A. (2019). PRINCIPLES FOR THE DESIGN AND

DEVELOPMENT OF DASHBOARDS: LITERATURE REVIEW.

Ali, I. H. (2018). Design and implement a Novel Student Information Management

System – Case Study. International Journal of Computer Science and Mobile

Computing, 7(7), 20–31.

Alter, S. Decision Support Systems: Current Practice and Continuing Challenges.

Reading, Mass.: Addison-Wesley, Inc., 1980.

Ambler, S. (2000). How the UML Models Fit Together. DrDobbs.

http://www.sdmagazine.com/articles/2000/003/003z/003z1.htmp?topic=uml

Ap-Azli, B., Safawi, A., Mohd Razilan, A., Mohd, E., & Mohd, N. (2016). Is it a

document? Or is it a record? [E-book].

Asemi, A., Safari, A., & Zavareh, A. A. (2011). The Role of Management Information

System (MIS) and Decision Support System (DSS) for Manager’s Decision

Making Process. International Journal of Business and Management, 6(7),

164–173.

Barjtya, S., Sharma, A., & Rani, U. (2017). A detailed study of Software Development

Life Cycle (SDLC) Models. International Journal of Engineering and

Computing Science, 6(7). http://www.ijecs.in/index.php/ijecs/article/view/2830

Beck, K. (2000). Extreme programming explained: Embrace change. Addison Wesley

Longman, Inc.

 5

Boehm, B. (1968). A Spiral Model of Software Development and Enhancement. ACM

SIGSOFT Software Engineering Notes, 11(4), 14–24.

Boehm, B. (2000) ‘Spiral Development: Experience, Principles and Refinements’,

Carnegie Mellon Software Engineering Institute, Special Report CMU/SEI-

2000-SR-008.

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The Unified Modeling Language User

Guide. Reading, MA: Addison Wesley.

Booch, G., Rumbaugh, J., & Jacobson, I. (2005). The unified modeling language user

guide (2nd ed.). Reading MA: Addison Wesley.

Buckingham, R. A., Hirschheim, R. A., Land, F. F., & Tully, C. J. (1987). Information

systems education: Recommendations and implementation. Cambridge

University Press, 204–214.

Budhrani, K., & Espiritu, J. (2019). Cultivating an e-learning culture. Scientia

Pedagogica Experimentalis, 56(1), 3–32.

Choudhari, J., & Suman, U. (Eds.). (2010). Iterative Maintenance Life cycle using

Extreme Programming. Communication and Computing.

Dada, O. M., Raji, A. K., Oyedepo, F. M., Yusuf, I. T., & Saka, T. O. (2017). Design

and Implementation of an Integrated Result Processing System in a Networked

Environment. Biomedical Statistics and Informatics, 2(4), 131–137.

https://doi.org/10.11648/j.bsi.20170204.11

 6

Dobing, B., & Parsons, B. (2006). How UML is Used. Communications of the ACM.

ACM, 49(5), 109–113.

Earl, M. J. (1989). Management Strategies for Information Technology. Mayland

Avenue : Prentice Hall International (UK) Ltd Campus 400.

Esterhuizen, D., Schutte, C. & Du Toit, A. (2012). A knowledge management

framework to grow innovation capacity maturity. SA Journal of Information

Management , 14 (1).

Freeman, A., & Sanderson, S. (2011). Pro ASP.NET MVC 3 Framework. APress.

Gil, H. G., Dario, M. A., & Raul, O. (2010). Evolution and trends of information

systems for business management: The mbusiness. A review. Dyna, 77, 181–

193.

Goto, T., Tsuchida, K., & Nishino, T. (Eds.). (2014). An iterative programming method

for innovative software based on system designs. 3rd International Conference

on Advanced Applied Informatics.

Gupta, S., Taya, S., Jai, S., & Mukand, P. (2012). Descriptive approach to software

development life cycle models.

Hamilton, L., Halverson, R., Jackson, S. S., Mandinach, E., Supovitz, J. A., Wayman,

J. C., Pickens, C., Martin, E., & Steele, J. L. (2009). Using Student Achievement

Data to Support Instructional Decision Making. United States Department of

Education, Retrieved from https://repository.upenn.edu/gse_pubs/279

 7

Hashim, N. M. Z., & Mohamed, S. N. K. S. (2013). Development of Student

Information System. International Journal of Science and Research (IJSR), 2(8),

256–260.

Henczel, S. (2000). The Information Audit as a First Step towards Effective Knowledge

Management: An Opportunity for the Special Librarian. Worldwide Conference

on Special Librarianship (pp. 210-226). Brighton: Special Libraries Association

(SLA).

Henver, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science research in

information systems. MIS Quarterly, 75–100.

Hersh, M. A. (2002). THE APPLICATION OF SOFT SYSTEMS

METHODOLOGIES TO UNDERSTANDING AND RESOLVING

CONFLICTS. IFAC Proceedings Volumes, 35(1), 201–206.

https://doi.org/10.3182/20020721-6-ES-1901.01424

IEEE, IEEE Standard 610.12-1990, IEEE Standard Glossary of Software Engineering

Terminology, 1990

Kahraman, C., Kaya, I. and Cevikcan, E. (2011). Intelligence decision systems in

enterprise information management. Journal of Enterprese Information

Management (Emerald Insight) , 24 (4), 350 379.

Kaya, I. (2017, November 13). What is a Learning Management System? CMS WIRE.

https://www.cmswire.com/digital-workplace/what-is-a-learning-management-

system/

 8

Keen, P.G.W., & Morton, M.S.S (1978). Decision support systems: an organizational

perspective. Reading, Mass., Addison-Wesley Pub. Co. ISBN 0-201-03667-3

Khanore, S., Patil, R., & Dand, H. (2011). Management information system. Institute

of Distance and Open Learning. Published.

Killion, J., & Bellamy, G. T. (2000). On the job: Data analysts focus school

improvement efforts. Journal of Staff Development, 21(1), 12–18.

Klopper, R., Gruner, S., & Kourie, D. (2007). Assessment of a framework to compare

software development methodologies. SAICSIT '07.

Krasner, G. E., & Pope, S. T. (1988). A cookbook for using the model-view controller

user interface paradigm in Smalltalk-80. A Cookbook for Using the Model-View

Controller User Interface Paradigm in Smalltalk-8, 1(3), 26–49.

Lago, P. (2000). Rendering distributed Systems in UML. Unified Modeling Language:

Systems Analysis, Design. Published.

Wikipedia contributors. (2021, July 20). Learning management system. Wikipedia.

https://en.wikipedia.org/wiki/Learning_management_system

Lehman, T.J., & Sharma, A. (2011), Software Development as a Service: Agile

Experiences, 2011 Annual SRII Global Conference, pp. 749-758, doi:

10.1109/SRII.2011.82.

Lewallen, R. (2005). Software Development Life Cycle.

Lippert, M., & Roock, S. (Eds.). (2001). Adapting XP to complex application domains.

8th European software engineering conference.

 9

Mandinach, E. (2012). A perfect time for data use: Using data-driven decision making

to inform practice. Educational Psychologist, 47, 71–85.

March, S. T., & Smith, G. (1995). Design and natural science research on information

technology. Decision Support System, 15, 251–261.

Maria, D. C. S., & Dave, E. M. (2016). Developing An Automated Student Academic

Record Management With Business Intelligence Approach. INFORMATIKA,

12(2), 111–123. https://doi.org/10.21460/inf.2016.122.453

Monika, S., & Anju, S., (2013) Information system and System development life cycle

Munassar, N. M. A., & Govardhan, A. (2010). A Comparison Between Five Models Of

Software Engineering. International Journal of Computer Science Issues, 7(5).

MVC framework - introduction - tutorialspoint. (n.d.). Tutorials Point. Retrieved July

14, 2021, from

https://www.tutorialspoint.com/mvc_framework/mvc_framework_introductio

n.htm

Nandutu, J. (2016). STUDENT RECORD MANAGEMENT SYSTEM. Livingstone

international university.

Noraziah, A., Nawsher, K., Ahmed, N. A., & Abul, H. B. (2010). A Novel Database

Design for Student Information System. Journal of Computer Science, 6(1), 43–

46.

Nwigbo, S., & Agbo, O.C., School of Science Education, Expert system: a catalyst in

educational development in Nigeria

 10

O’Brien, J.A. (1999). Management Information Systems – Managing Information

Technology in the Internetworked Enterprise. Boston: Irwin McGraw-Hill.

ISBN 0-07-112373-3.

Obiniyi, A. A., & Ezugwu, E. A. (2010). design and Implementation of Students'

Information System for Tertiary Institutions using neural networks: An Open

Source Approach. International Journal of Green Computing, 1(1), 1–15.

https://doi.org/10.4018/jgc.2010010101

O'Brien, J.A. (2003). Introduction to information systems: essentials for the e-business

enterprise. McGraw-Hill, Boston, MA

Orobor, A. I. (2015). A Novel Framework for Student Result Computation as a Cloud

Computing Service. American Journal of Systems and Software, 3(1), 13–19.

https://doi.org/10.12691/ajss-3-1-2

Pilone, D., & Pitman, N. (2005). UML 2.0 in a Nutshell. O’Reilly Media.

Pooja, S., & Nitasha, H. (Eds.). (2016). Analysis of Linear Sequential and Extreme

Programming Development Methodology for a Gaming Application.

International Conference on Communication and Signal Processing.

Pooley, R., & Stevens, P. (1999). Using UML: Software engineering with objects and

components. Addison Wesley Longman Limited.

Ravi, T. M. (2011). The Path to Information Management Nirvana. Information

Management Daily .

 11

Reddy, G. S., Srinivasu, R., Rikkula, S. R., & Rao, V. S. (2009). Management

Information Systems to help Managers for Providing decision making in an

Organisation. International Journal of Reviews in Computing , 2076-3336.

Robertson, J. (2005). 10 Principles of Effective Information Management. Step Two

Design pty Limited

Roger, S. (2005). Software Engineering: A Practitioner’s Approach. Pressman.

Rosca, D., Banica, L., & Mirela, S. (2010). Building successful information systems –

a key for successful organization. Annals of Dunărea de Jos University.

Fascicle I : Economics and Applied Informatics. Published.

Ruparelia, N. (2010). Software development lifecycle models. ACM SIGSOFT

Software Engineering Notes, 35(3), 8–13.

Sharma, N. (2017, December 22). The 14 best data visualization tools. TNW | Dd.

https://thenextweb.com/news/the-14-best-data-visualization-tools

Stella, N., & Chuks, A.O. (2011). Expert System : A Catalyst in Educational

Development in Nigeria.

Tchid, M. F., & Zhen, H. (2010). The Requirements Engineering Process Model Based

on Design for Six Sigma. Institute of Electrical and Electronics Engineers

(IEEE). Published.

Trauth, E. M. (1989). The Evolution of Information Resource Management .

Information and Management 16 , 257 - 268.

Trygve Reenska, http:// heim.ifi.uio.no / ~trygver/themes/mvc/mvc-index.html.

 12

Turban, E., & Aronson, J. E. (1995). Decision Support and Intelligent Systems (5th ed.).

Prentice-Hall, Inc.

Wang, R. Y., & Strong, D. M. (1996). Beyond accuracy: What data quality means to

data consumers. Journal of Management Information System, 12(4), 5–33.

https://doi.org/10.1080/07421222.1996.11518099

Zwass, V. (2020, November 2). Information system. Encyclopedia Britannica.

https://www.britannica.com/topic/information-system

 13

