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Abstract. In solving the split variational inequality problems in real
Hilbert spaces, the co-coercive assumption of the underlying operators
is usually required and this may limit its usefulness in many applications.
To have these operators freed from the usual and restrictive co-coercive
assumption, we propose a method for solving the split variational in-
equality problem in two real Hilbert spaces without the co-coerciveness
assumption on the operators. We prove that the proposed method con-
verges strongly to a solution of the problem and give some numerical
illustrations of it in comparison with other methods in the literature to
support our strong convergence result.
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1. Introduction

Let C be a nonempty closed and convex subset of a real Hilbert space H and
A : H → H be an operator. The classical Variational Inequality Problem
(VIP) for A on C is defined as follows: find x∗ ∈ C such that

〈Ax∗, x − x∗〉 ≥ 0, ∀ x ∈ C. (1.1)

This problem was first introduced by Stampacchia [34] (also independently
by Fichera [11]) for modeling problems arising from mechanics. To study
the regularity problem for partial differential equations, Stampacchia [34]
studied a generalization of the Lax–Milgram theorem and called all problems
involving inequalities of such kind, the VIPs, (see also [1,12,20,21]). The
VIP (1.1) was later generalized to the following Split Variational Inequality
Problem (SVIP) by Censor et al. [9]:

Findx∗ ∈ C that solves 〈Ax∗, x − x∗〉 ≥ 0 ∀x ∈ C, (1.2)
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such that y∗ = Tx∗ ∈ Q solves

〈fy∗, y − y∗〉 ≥ 0 ∀y ∈ Q, (1.3)

where A : H1 → H1, f : H2 → H2 are two operators and T : H1 → H2 is a
bounded linear operator. The SVIP is a special model of the following Split
Inverse Problem (SIP):

Find x∗ ∈ X1 that solves IP1 (1.4)

such that

y∗ = Tx∗ ∈ X2 solves IP2, (1.5)

where X1 and X2 are two vector spaces, T : X1 → X2 is a bounded linear
operator, IP1 and IP2 are two inverse problems in X1 and X2 respectively
(see [5,9]). Note that the first known case of the SIP is the following Split
Convex Feasibility Problem (SCFP) introduced and studied by Censor and
Elfving [7]:

Find x∗ ∈ C such that y∗ = Tx∗ ∈ Q. (1.6)

Hence, the SVIP (1.2)–(1.3) can also be viewed as an interesting combination
of the classical VIP (1.1) and the SCFP (1.6). Thus, it has wide applications in
medical treatment of the Intensity-Modulated Radiation Therapy (IMRT),
phase retrieval, image reconstruction, signal processing, data compression,
among others (for example, see [4,6–9,28,41] and the references therein).
Censor et al. [9] proposed and studied the following iterative method for
solving SVIP (1.2)–(1.3): for x1 ∈ H1, the sequence {xn} is generated by

xn+1 = PC(I − λA)(xn + τT ∗(PQ(I − λf) − I)Txn), n ≥ 1, (1.7)

where τ ∈ (0, 1
L ) with L being the spectral radius of the operator T ∗T . They

proved that the sequence {xn} generated by (1.7) converges weakly to a
solution of (1.2)–(1.3) provided that the solution set of problem (1.2)–(1.3)
is nonempty, A, f are L1, L2-co-coercive operators and λ ∈ (0, 2δ), where
δ := min{L1, L2}.
Since then, other authors have studied the SVIP in Hilbert spaces. See, for
example [17,22–24,26]. However, in all of these papers, the convergence of
their methods were obtained under the restrictive co-coercive assumption on
A and f , thus precluding the use of their methods in many applications.
An attempt to overcome this setback was made by Tian and Jiang [40] who
proposed the following iterative method: for arbitrary x1 ∈ C, define the
sequence {xn}, {yn} and {tn} by

⎧
⎪⎨

⎪⎩

yn = PC(xn − τnT ∗(I − S)Txn),
tn = PC(yn − λnA(yn)),
xn+1 = PC(yn − λnA(tn)), n ≥ 1,

(1.8)

where {τn} ⊂ [a, b] for some a, b ∈ (0, 1
||T ||2 ), {λn} ⊂ [c, d] for some c, d ∈

(0, 1
L ), S : H2 → H2 is a nonexpansive mapping, T : H1 → H2 is a bounded

linear operator and A : C → H1 is a monotone and L-Lipschitz continu-
ous mapping. They proved that the sequence generated by Algorithm (1.8)
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converges weakly to a solution of the following problem: find x∗ ∈ C such
that

〈Ax∗, x − x∗〉 ≥ 0 ∀x ∈ C, and such that Tx∗ ∈ F (S), (1.9)

where F (S) is the set of fixed points of S.
In [41], these authors improved Algorithm (1.8) into the following algorithm
to obtain a strong convergent result since strong convergent results are much
more desirable in infinite dimensional spaces: for arbitrary x1 ∈ C, define the
sequence {xn}, {yn} {tn} and {wn} by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn = PC(xn − τnT ∗(I − S)Txn),
tn = PC(yn − λnA(yn)),
wn = PC(yn − λnA(tn)),
xn+1 = αnh(xn) + (1 − αn)wn, n ≥ 1,

(1.10)

where {τn}, {λn}, S, T , A are as in Algorithm (1.8), h is a contraction
mapping and {αn} ⊂ (0, 1).
Although the underlying operator A in Algorithms (1.8) and (1.10) is freed
from the strong co-coercive assumption, but we can see that, even at the
expense of too many projections in both algorithms (which may seriously
affect the efficiency of these algorithms), these algorithms can only be use to
solve the SVIP (1.2)–(1.3) if we set S = PQ(I − λf) and f is assumed to be
co-coercive. Meaning that these methods would still rely on the co-coercive
assumption of the second operator f if we intend to use it to solve the SVIP
(1.2)–(1.3), which is the problem of interest in this paper.
Based on this, our aim is to design and analyse an iterative method for solving
the SVIP (1.2)–(1.3) in two real Hilbert spaces without the restrictive co-
coerciveness assumption on the operators A and f usually assumed in many
papers (see [17,22–24,26]), and prove that the method converges strongly to
a solution of the problem. The strong convergence result is obtained when the
operators A and f are monotone and Lipschitz continuous, which is a much
more relaxed assumption than the co-coerciveness of the operators. Moreover,
as we shall see in Sect. 4, the proof of the strong convergence of our method
does not rely on the usual “Two Cases Approach” widely used in many papers
to guarantee strong convergence (see for example [17–19,30–32,35–39,41] and
the references therein). Furthermore, we give some numerical illustrations of
the proposed method in comparison with other methods in the literature to
support our strong convergence result.

2. Preliminaries

Let H be a real Hilbert space. Then, an operator A : H → H is called

• L-co-coercive (or L-inverse strongly monotone), if there exists L > 0
such that

〈Ax − Ay, x − y〉 ≥ L‖Ax − Ay‖2 ∀ x, y ∈ H,
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• monotone, if

〈Ax − Ay, x − y〉 ≥ 0 ∀ x, y ∈ H,

• L-Lipschitz continuous, if there exists a constant L > 0 such that

||Ax − Ay|| ≤ L||x − y|| ∀x, y ∈ H.

Clearly, L-co-coercive operators are 1
L -Lipschitz continuous and monotone

but the converse is not always true.

Recall that for a nonempty closed and convex subset C of H, the metric
projection denoted as PC , is a map defined on H onto C which assigns to
each x ∈ H, the unique point in C, denoted by PCx such that

||x − PCx|| = inf{||x − y|| : y ∈ C}.

It is well known that PC is a nonexpansive mapping of H onto C. We also
know that the PC is characterized by the inequality

〈x − PCx, y − PCx〉 ≤ 0 ∀y ∈ C.

Furthermore, the PC is known to possess the following property:

||PCx − x||2 ≤ ||x − y||2 − ||PCx − y||2 ∀y ∈ C.

For more information and properties of PC see [13,14].

The following lemmas will be needed in the proofs of our main results.

Lemma 2.1 [10]. Let H be a real Hilbert space, then for all x, y ∈ H and
α ∈ (0, 1), the following hold:

(i) 2〈x, y〉 = ||x||2 + ||y||2 − ||x − y||2 = ||x + y||2 − ||x||2 − ||y||2,
(ii) ‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2,
(iii) ||x − y||2 ≤ ||x||2 + 2〈y, x − y〉.

Lemma 2.2 [33]. Assume that A : H → H is a continuous and monotone
operator. Then x∗ is a solution of (1.1) if and only if x∗ is a solution of
following problem: find x∗ ∈ C such that

〈Ax, x − x∗〉 ≥ 0, ∀ x ∈ C.

Theorem 2.3 [15, Theorem 2.3]. Let p ∈ [1,∞) be a rational number except
for p = 1, 2. Unless p = np for a positive integer n , there is no algorithm
which computes the p-norm of a matrix with entries in {−1, 0, 1} to relative
error with running time polynomial in the dimensions.

Lemma 2.4 [29]. Let {an} be a sequence of non-negative real numbers, {αn}
be a sequence of real numbers in (0, 1) with condition

∑∞
n=1 αn = ∞ and

{dn} be a sequence of real numbers. Assume that

an+1 ≤ (1 − αn)an + αndn, n ≥ 1.
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If lim supk→∞ dnk
≤ 0 for every subsequence {ank

} of {an} satisfying the
condition:

lim inf
k→∞

(ank+1 − αnk
) ≥ 0,

then, limn→∞ an = 0.

3. Proposed method

In this section, we present our proposed method and discuss some motivations
for proposing it. We begin with the following assumptions under which our
strong convergence is obtained.

Assumption 3.1. Suppose that the following hold:
(a) The feasible sets C and Q are nonempty closed and convex subsets of

the real Hilbert spaces H1 and H2, respectively.
(b) A : H1 → H1 and f : H2 → H2 are monotone and Lipschitz continuous

with Lipschitz constants L1 and L2, respectively.
(c) T : H1 → H2 is a bounded linear operator and the solution set Γ :=

{z ∈ V I(A,C) : Tz ∈ V I(f,Q)} is nonempty, where V I(A,C) is the
solution set of the classical VIP (1.1).

(d) {θn} ⊂ (a, 1 − αn) for some a > 0, where {αn} ⊂ (0, 1).

We next present the proposed method.

Algorithm 3.2. Initialization: Let τ ≥ 0, λ ∈ (0, 1
L1

), μ ∈ (0, 1
L2

) and x1 ∈ H1

be given arbitrary.
Iterative Steps: Calculate xn+1 as follows:
Step 1. Set

yn = PQ(Txn − μfTxn).

Compute

zn = Txn − βnrn,

where rn := Txn − yn − μ(fTxn − fyn) and βn := 〈Txn−yn,rn〉
||rn||2 , if rn �= 0;

otherwise βn = 0.

Step 2. Compute

vn = xn + τnT ∗(zn − Txn),

where the stepsize τn is chosen such that for some ε > 0, τn ∈(
ε, ‖Txn−zn‖2

‖T ∗(Txn−zn)‖2 − ε
)
, if zn �= Txn; otherwise τn = τ .

Step 3. Set

un = PC(I − λA)vn.

Compute

xn+1 = (1 − θn − αn)vn + θnwn,



98 Page 6 of 23 C. Izuchukwu et al. JFPTA

wn = vn − γnbn,

where bn := vn−un−λ(Avn−Aun) and γn = 〈vn−un,bn〉
||bn||2 , if bn �= 0; otherwise

γn = 0.
Set n := n + 1 and go back to Step 1.

We now highlight the motivation for the proposed algorithm.

Remark 3.3. • Observe that Algorithm 3.2 can be viewed as a single pro-
jection method for solving the classical VIP in one space H1 and a
single projection method under a bounded linear operator T for solving
the second VIP in another space H2 with no extra projection either
on the half-space or on the feasible set. A notable advantage of this
method (Algorithm 3.2) for solving SVIP is that the co-coerciveness of
the operators A and f usually used in many papers (see for example,
[17,22–24,26]) to guarantee convergence, is removed and no extra pro-
jection is required under this setting.

• As we shall see in our convergence analysis, the proof of the strong con-
vergence of Algorithm 3.2 (that is, the proof of Theorem 4.3) does not
rely on the usual “Two Cases Approach” (Case 1 and Case 2) usually
used in numerous papers for solving optimization problems [17,27,30,
31,35–39,41]. Thus, the techniques and ideas employed in our strong
convergence analysis are new for solving the problem considered in this
paper.

• The choice of the stepsize τn ∈
(
ε, ‖Txn−zn‖2

‖T ∗(Txn−zn)‖2 − ε
)

used in Algo-
rithm 3.2 does not require priori knowledge of the operator norm ||T ||.
Algorithms with stepsize that depends on the operator norm (like in
[3,5,9,27,40,41]) require the computation of the norm of the bounded
linear operator, which in general is a very difficult task (sometimes im-
possible) to accomplish as shown in Theorem 2.3.

4. Convergence analysis

Lemma 4.1. Let {xn} be a sequence generated by Algorithm 3.2. Then, under
Assumption 3.1, we have that {xn} is bounded.

Proof. Let p ∈ Γ. Since yn = PQ(Txn − μfTxn) and Tp ∈ V I(f,Q) ⊂ Q,
then by the characteristics property of PQ, we obtain that

〈yn − Tp, yn − Txn + μfTxn〉 ≤ 0.

Thus, by the monotonicity of f , we obtain

〈yn − Tp, rn〉 = 〈yn − Tp, Txn − yn − μfTxn〉 + μ〈yn − Tp, fyn〉
≥ μ〈yn − Tp, fyn〉
= μ〈yn − Tp, fyn − fTp〉 + μ〈yn − Tp, fTp〉 ≥ 0. (4.1)
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From Step 1 and (4.1), we obtain

||zn − Tp||2 = ||Txn − Tp − βnrn||2
= ||Txn − Tp||2 + β2

n||rn||2 − 2βn〈Txn − Tp, rn〉
= ||Txn − Tp||2 + β2

n||rn||2 − 2βn〈Txn − yn, rn〉 − 2βn〈yn − Tp, rn〉
≤ ||Txn − Tp||2 + β2

n||rn||2 − 2βn〈Txn − yn, rn〉
= ||Txn − Tp||2 + β2

n||rn||2 − 2β2
n||rn||2

= ||Txn − Tp||2 − β2
n||rn||2. (4.2)

From Step 2, (4.2) and Lemma 2.1 (i), we obtain

||vn − p||2 = ||xn − p||2 + τ2
n||T ∗(zn − Txn)||2 + 2τn〈xn − p, T ∗(zn − Txn)〉

= ||xn − p||2 + τ2
n||T ∗(zn − Txn)||2 + 2τn〈Txn − Tp, zn − Txn〉

= ||xn − p||2 + τ2
n||T ∗(zn − Txn)||2

+τn

(||zn − Tp||2 − ||Txn − Tp||2 − ||zn − Txn||2)

≤ ||xn − p||2 + τ2
n||T ∗(zn − Txn)||2 − τn||zn − Txn||2. (4.3)

Thus, by the condition on τn, we obtain

||vn − p||2 ≤ ||xn − p||2 − τn

(||zn − Txn||2 − τn||T ∗(zn − Txn)||2)

≤ ||xn − p||2. (4.4)

By similar argument used in obtaining (4.2), we get

||wn − p||2 ≤ ||vn − p||2 − γ2
n||bn||2

= ||vn − p||2 − ||wn − vn||2. (4.5)

Now, observe that

||(1 − θn − αn)(vn − p) + θn(wn − p)||2
= (1 − θn − αn)2||vn − p||2 + θ2

n||wn − p||2
+2(1 − θn − αn)θn〈vn − p,wn − p〉

≤ (1 − θn − αn)2||xn − p||2 + θ2
n||xn − p||2

+2(1 − θn − αn)θn||xn − p||||xn − p||
= (1 − αn)2||xn − p||2. (4.6)

Thus, we obtain from Step 3 that

||xn+1 − p|| = ||(1 − θn − αn)(vn − p) + θn(wn − p) − αnp||
≤ ||(1 − θn − αn)(vn − p) + θn(wn − p)|| + αn||p||
≤ (1 − αn)||xn − p|| + αn||p||
≤ max{||xn − p||, ||p||}
...
≤ max{||x1 − p||, ||p||}.

Therefore, {xn} is bounded. �
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Lemma 4.2. Let {xn} be a sequence generated by Algorithm 3.2 under As-
sumption 3.1. If there exists a subsequence {xnk

} of {xn} which converges
weakly to a point z ∈ H1 and limk→∞ ‖vnk

−unk
‖ = 0 = limk→∞ ‖vnk

−xnk
‖

for subsequences {vnk
} and {unk

} of {vn} and {un}, respectively. Then,
z ∈ Γ.

Proof. Let {xnk
} be a subsequence of {xn} which converges weakly to some

z ∈ H1. Then, since T is a bounded linear operator, we obtain that {Txnk
}

converges weakly to Tz ∈ H2.
Now, let us assume without loss of generality that zn �= Txn, then τn ∈(
ε, ||zn−Txn||2

||T ∗(zn−Txn)||2 − ε
)
. Thus, we obtain from (4.3) that

||vn − p||2 ≤ ||xn − p||2 − τnε||T ∗(zn − Txn)||2
≤ ||xn − p||2 − ε2||T ∗(zn − Txn)||2, (4.7)

which implies that

ε2||T ∗(znk
− Txnk

)||2 ≤ ||xnk
− p||2 − ||vnk

− p||2
≤ ||xnk

− vnk
||2 + 2||xnk

− vnk
||||vnk

− p||.
Thus, by our assumption, we obtain that

lim
k→∞

||T ∗(znk
− Txnk

)|| = 0. (4.8)

Hence, we obtain from (4.3) and (4.8) that

τnk
||Txnk

− znk
||2 ≤ ||xnk

− p||2 − ||vnk
− p||2 + τ2

nk
||T ∗(znk

− Txnk
)||2

≤ ||xnk
− vnk

||2 + 2||xnk
− vnk

||||vnk
− p||

+τ2
nk

||T ∗(znk
− Txnk

)||2 → 0, as k → ∞.

Since 0 < ε < τnk
, we obtain that

lim
k→∞

||Txnk
− znk

|| = 0. (4.9)

Now, observe that

〈Txnk
− ynk

, rnk
〉 = 〈Txnk

− ynk
, Txnk

− ynk
− μ(fTxnk

− fynk
)〉

= ||Txnk
− ynk

||2 − 〈Txnk
− ynk

, μ(fTxnk
− fynk

)〉
≥ ||Txnk

− ynk
||2 − μ||Txnk

− ynk
||||fTxnk

− fynk
||

≥ (1 − μL2)||Txnk
− ynk

||2, (4.10)

which implies that

||Txnk
− ynk

||2 ≤ 1
(1 − μL2)

〈Txnk
− ynk

, rnk
〉

=
1

(1 − μL2)
βnk

||rnk
||2

=
1

(1 − μL2)
βnk

||rnk
|| · ||Txnk

− ynk
− μ(fTxnk

− fynk
)||

≤ 1
(1 − μL2)

βnk
||rnk

|| (||Txnk
− ynk

|| + μ||fTxnk
− fynk

||)
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≤ (1 + μL2)
(1 − μL2)

||Txnk
− ynk

||βnk
||rnk

||

=
(1 + μL2)
(1 − μL2)

||Txnk
− ynk

||||znk
− Txnk

||.

Thus, we obtain from (4.9) that

||Txnk
− ynk

|| ≤ (1 + μL2)
(1 − μL2)

||znk
− Txnk

|| → 0, as k → ∞. (4.11)

Now, by the monotonicity of f and the characteristic property of PQ, we
obtain for all x ∈ Q that

0 ≤ 〈
ynk

− Txnk
+ μfTxnk

, x − ynk

〉

=
〈
ynk

− Txnk
, x − ynk

〉
+ μ

〈
fTxnk

, Txnk
− ynk

〉

+ μ
〈
fTxnk

, x − Txnk

〉

≤ ‖ynk
− Txnk

‖‖x − ynk
‖ + μ‖fTxnk

‖‖Txnk
− ynk

‖
+ μ

〈
fTxnk

, x − Txnk

〉 ∀x ∈ Q

= ‖ynk
− Txnk

‖‖x − ynk
‖ + μ‖fTxnk

‖‖Txnk
− ynk

‖
+ μ

(〈
fTxnk

− fx, x − Txnk

〉
+

〈
fx, x − Txnk

〉)

≤ ‖ynk
− Txnk

‖‖x − ynk
‖ + μ‖fTxnk

‖‖Txnk
− ynk

‖
+ μ

〈
fx, x − Txnk

〉 ∀x ∈ Q. (4.12)

Thus, by passing limit as k → ∞, we obtain that
〈
fx, x − Tz

〉 ≥ 0 ∀x ∈ Q.

Therefore, we obtain from Lemma 2.2 that Tz ∈ V I(f,Q).
On the other hand, we have by our hypothesis that the subsequence {vnk

}
of {vn} converges weakly to z ∈ H1. Now, observe that by following similar
argument used in obtaining (4.12), we get

0 ≤ ‖unk
− vnk

‖‖y − unk
‖ + λ‖Avnk

‖‖vnk
− unk

‖ + λ
〈
Ay, y − vnk

〉 ∀y ∈ C.

(4.13)

Thus, by our hypothesis, we obtain that
〈
Ay, y − z

〉 ≥ 0 ∀y ∈ C.

Therefore, we obtain from Lemma 2.2 that z ∈ V I(A,C). Hence, z ∈ Γ. �

We now present the main theorem for our strong convergence analysis.

Theorem 4.3. Let {xn} be a sequence generated by Algorithm 3.2 under As-
sumption 3.1. If limn→∞ αn = 0 and

∑∞
n=1 αn = ∞. Then, {xn} converges

strongly to p ∈ Γ, where

||p|| = min{||z|| : z ∈ Γ}.
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Proof. Let p ∈ Γ. Then, we obtain from (4.4) and (4.5) that

||(1 − θn)vn + θnwn − p||2
= ||(1 − θn)(vn − p) + θn(wn − p)||2
= (1 − θn)2||vn − p|| + θ2

n||wn − p||2 + 2(1 − θn)θn〈vn − p,wn − p〉
≤ (1 − θn)2||xn − p|| + θ2

n||xn − p||2 + 2(1 − θn)θn||xn − p||2
= ||xn − p||2.

Thus, from Step 3, we obtain

||xn+1 − p||2 = ||(1 − αn) [(1 − θn)vn + θnwn − p] − [αnθn(vn − wn) + αnp] ||2
≤ (1 − αn)

2||(1 − θn)vn + θnwn − p||2 − 2〈αnθn(vn − wn)

+αnp, xn+1 − p〉
≤ (1 − αn)||(1 − θn)vn + θnwn − p||2 + 2〈αnθn(vn − wn), p − xn+1〉

+2αn〈p, p − xn+1〉
≤ (1 − αn)||(1 − θn)vn + θnwn − p||2 + 2αnθn||vn − wn|| · ||xn+1 − p||

+2αn〈p, p − xn+1〉
≤ (1 − αn)||xn − p||2 + αndn, (4.14)

where dn = 2 (θn||vn − wn|| · ||xn+1 − p|| + 〈p, p − xn+1〉).
According to Lemma 2.4, to conclude our proof, it suffices to show that
lim supk→∞ dnk

≤ 0 for every subsequence {||xnk
− p||} of {||xn − p||} satis-

fying the condition:

lim inf
k→∞

(||xnk+1 − p|| − ||xnk
− p||) ≥ 0. (4.15)

To show that lim supk→∞ dnk
≤ 0, suppose that {||xnk

−p||} is a subsequence
of {||xn − p||} such that (4.15) holds. Then,

lim inf
k→∞

(||xnk+1 − p||2 − ||xnk
− p||2)

= lim inf
k→∞

[(||xnk+1 − p|| − ||xnk
− p||) (||xnk+1 − p|| + ||xnk

− p||)]
≥ 0. (4.16)

Now, by Step 3 and (4.5), we obtain that

||xn+1 − p||2 = ||(1 − θn − αn)(vn − p) + θn(wn − p) − αnp||2
= ||(1 − θn − αn)(vn − p) + θn(wn − p)||2 + α2

n||p||2
−2αn〈(1 − θn − αn)(vn − p) + θn(wn − p), p〉

≤ ||(1 − θn − αn)(vn − p) + θn(wn − p)||2 + αnM

≤ (1 − θn − αn)2||vn − p||2 + 2(1 − θn − αn)θn〈vn − p,wn − p〉
+θ2

n||wn − p||2 + αnM

≤ (1 − θn − αn)2||vn − p||2 + θ2
n||wn − p||2 + αnM

+(1 − θn − αn)θn||vn − p||2 + (1 − θn − αn)θn||wn − p||2
≤ (1 − θn − αn)(1 − αn)||vn − p||2

+θn(1 − αn)||wn − p||2 + αnM

≤ (1 − θn − αn)(1 − αn)||vn − p||2
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+θn(1 − αn)
(||vn − p||2 − ||wn − vn||2) + αnM (4.17)

≤ (1 − θn − αn)(1 − αn)||xn − p||2 + θn(1 − αn)||xn − p||2
−θn(1 − αn)||wn − vn||2 + αnM

≤ ||xn − p||2 − θn(1 − αn)||wn − vn||2 + αnM,

for some M > 0. This implies from (4.16) that

lim sup
k→∞

[
(1 − αnk )θnk ||wnk − vnk ||2] ≤ lim sup

k→∞

[||xnk − p||2 − ||xnk+1 − p||2 + αnkM
]

= − lim inf
k→∞

[||xnk+1 − p||2 − ||xnk − p||2] ≤ 0,

which gives

lim
k→∞

||wnk
− vnk

|| = 0. (4.18)

Thus, by similar argument used in obtaining (4.11), we get

||unk
− vnk

|| ≤ (1 + λL1)
(1 − λL1)

||wnk
− vnk

|| → 0, as k → ∞. (4.19)

Combining (4.18) and (4.19), we get

lim
k→∞

||wnk
− unk

|| = 0. (4.20)

Also, from (4.17) and (4.7), we obtain that

||xnk+1 − p||2 ≤ (1 − θnk
− αnk

)(1 − αnk
)||vnk

− p||2
+θnk

(1 − αnk
)||vnk

− p||2 + αnk
M

≤ ||vnk
− p||2 + αnk

M

≤ ||xnk
− p||2 − ε2||T ∗(znk

− Txnk
)||2 + αnk

M.

This implies that

lim sup
k→∞

||T ∗(znk − Txnk)||2 ≤ 1

ε2
lim sup
k→∞

(
||xnk − p||2 − ||xnk+1 − p||2 + αnkM

)

≤ − 1

ε2
lim inf
k→∞

(
||xnk+1 − p||2 − ||xnk − p||2

)
≤ 0,

which gives that

lim
k→∞

||T ∗(znk
− Txnk

)|| = 0. (4.21)

Thus, we obtain that

lim
k→∞

||vnk
− xnk

||2 = τ2
nk

lim
k→∞

||T ∗(znk
− Txnk

)|| = 0. (4.22)

Also, by (4.18), we obtain that

||xnk+1 − vnk
|| ≤ θnk

||wnk
− vnk

|| + αnk
||vnk

|| → 0, as k → ∞.

Thus, we obtain from (4.22) that

lim
k→∞

||xnk+1 − xnk
|| = 0. (4.23)
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Since {xnk
} is bounded, it follows that there exists a subsequence {xnkj

} of
{xnk

} that converges weakly to z ∈ H1 such that

lim sup
k→∞

〈
p, p − xnk

〉
= lim

j→∞
〈
p, p − xnkj

〉
=

〈
p, p − z

〉
. (4.24)

Also, we obtain from (4.19), (4.22) and Lemma 4.2 that z ∈ Γ.
Thus, since p = PΓ0, we obtain from (4.24) that

lim sup
k→∞

〈
p, p − xnk

〉
=

〈
p, p − z

〉 ≤ 0,

which implies from (4.23) that

lim sup
k→∞

〈
p, p − xnk+1

〉 ≤ 0. (4.25)

Using (4.18) and (4.25), we obtain that lim supk→∞ dnk
≤ 0. Hence, we get

that limn→∞ ‖xn − p‖ = 0. Therefore, {xn} converges strongly to p = PΓ0.
�

Remark 4.4. Observe that by setting H1 = H2 = H, f = 0 and T = IH (the
identity operator on H) in Theorem 4.3, we obtain as a corollary, a single
projection method (requiring only one projection onto the feasible set C per
iteration) for solving the classical VIP (1.1).

5. Numerical examples

We give in this section, some numerical examples (in two infinite dimensional
real Hilbert spaces) of Algorithm 3.2 in comparison with Algorithm (1.10)
of Tian and Jiang [41], the following Algorithm 5.1 of Pham et al. [27] and
Algorithm 5.2 of Reich and Tuyen [28].

Algorithm 5.1. Step 0. Choose μ0, λ0 > 0, μ, λ ∈ (0, 1), {τn} ⊂ [τ , τ̄ ] ⊂(
0, 1

||T ||2+1

)
, {αn} ⊂ (0, 1) such that limn→∞ αn = 0 and

∑∞
n=1 αn = ∞.

Step 1. Let x1 ∈ H1. Set n = 1.
Step 2. Compute

un = Txn,

vn = PQ(un − μnfun),
wn = PQn

(un − μnfvn),

where

Qn = {w2 ∈ H2 : 〈un − μnfun − vn, w2 − vn〉 ≤ 0}
and

μn+1 =

{
min

{
μ||un−vn||
||fun−fvn|| , μn

}
, if fun �= fvn,

μn, otherwise.

Step 3. Compute

yn = xn + τnT ∗(wn − un),
zn = PC(yn − λnAyn),
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tn = PCn
(yn − λnAzn),

where

Cn = {w1 ∈ H1 : 〈yn − λnAyn − zn, w1 − zn〉 ≤ 0}
and

λn+1 =

{
min

{
λ||yn−zn||

||Ayn−Azn|| , λn

}
, if Ayn �= Azn,

λn, otherwise.

Step 4. Compute

xn+1 = αnx1 + (1 − αn)tn.

Set n := n + 1 and go back to Step 2.

Algorithm 5.2. For any initial guess x1 = x ∈ H1, define the sequence {xn}
by

yn = V I(C, λnA + IH1 − xn),
zn = V I(Q, μnf + IH2 − Tyn),
Cn = {z ∈ H1 : ||yn − z|| ≤ ||xn − z||},

Dn = {z ∈ H1 : ||zn − Tz|| ≤ ||Tyn − Tz||},

Wn = {z ∈ H1 : 〈z − xn, x1 − xn〉 ≤ 0},

xn+1 = PCn∩Dn∩Wn
(x1), n ≥ 1,

where IH1 and IH2 are identity operators in H1 and H2 respectively, and {λn}
and {μn} are two given sequences of positive numbers satisfying the following
condition:

min {infn{λn}, infn{μn}} ≥ r > 0.

For more details on Algorithms 5.1 and 5.2, see [27, Section 3, Algorithm 1]
and [28, Page 12, Section 4.4], respectively.

For the numerical computations, we define

TOLn :=
1
2

(||xn − PC(xn − λAxn)||2 + ||Txn − PQ(Txn − μfTxn)||2)

for Algorithms 3.2, 5.1 and 5.2. While for Algorithm (1.10), we define

TOLn :=
1
2

(||xn − PC(xn − λAxn)||2 + ||Txn − STxn||2) ,

and use the stopping criterion TOLn < ε for the iterative processes, where ε
is the predetermined error. Note that if TOLn = 0, then xn ∈ Γ, that is, xn

is a solution of the SVIP considered in this paper.
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Note also that, all the codes for the computations are implemented in Mat-
lab 2016 (b). We perform all computations on a personal computer with an
Intel(R) Core(TM) i5-2600 CPU at 2.30 GHz and 8.00 Gb-RAM.

Example 5.3. Let H1 = H2 = L2([0, 2π]) be endowed with inner product

〈x, y〉 =
∫ 2π

0

x(t)y(t)dt ∀ x, y ∈ L2([0, 2π]) and norm ||x|| :

=
(∫ 2π

0

|x(t)|2dt
) 1

2 ∀ x, y ∈ L2([0, 2π]).

Let C = {x ∈ L2([0, 2π]) : 〈y, x〉 ≤ a}, where y = t + e3t and a = 2. Then,

PC(x) =

{
a−〈y,x〉
||y||2L2

y + x, if 〈y, x〉 > a,

x, if 〈y, x〉 ≤ a.

Also, let Q = {x ∈ L2([0, 2π]) : ||x − e||L2 ≤ b}, where e = t + 2 and b = 1,
then Q is a nonempty closed and convex subset of L2([0, 2π]. Thus, we define
the metric projection PQ as:

PQ(x) =

{
x, if x ∈ Q,

x−e
||x−e||L2

b + e, otherwise.

Now, define the operator A : L2([0, 2π]) → L2([0, 2π]) by

Ax(t) =
∫ 2π

0

(
x(t) −

( 2tset+s

e
√

e2 − 1

)
cos x(s)

)
ds +

2tet

e
√

e2 − 1
, x ∈ L2([0, 2π]).

Then A is 2-Lipschitz continuous and monotone on L2([0, 2π]) (see [16]). Also
define the operator f : L2([0, 2π]) → L2([0, 2π]) by

fx(t) =
∫ t

0

x(s)ds, x ∈ L2([0, 2π]).

Then, f is also Lipschitz continuous and monotone with Lipschitz constant
L2 = 2

π (see [2]). Let T : L2([0, 2π]) → L2([0, 2π]) be defined by

Tx(s) =
∫ 2π

0

K(s, t)x(t)dt ∀x ∈ L2([0, 2π]),

where K is a continuous real-valued function defined on [0, 2π]× [0, 2π]. Then
T is a bounded linear operator with adjoint

T ∗x(s) =
∫ 2π

0

K(t, s)x(t)dt ∀x ∈ L2([0, 2π]).

In particular, we define K(s, t) = e−st for all s, t ∈ [0, 2π].
For Algorithm (1.10), we define the mapping S : L2([0, 2π]) → L2([0, 2π]) by

Sx(t) =
∫ 2π

0

x(t)dt, x ∈ [0, 1].

Then, S is nonexpansive. We also define h : L2([0, 2π]) → L2([0, 2π]) by

hx(t) =
∫ 2π

0

1
2
x(t)dt, x ∈ [0, 1].
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Table 1. Numerical results for Example 5.3

Cases Alg 3.2 Alg (1.10) Alg 5.1 Alg 5.2

I: (ε = 10−5) CPU time (s) 2.1401 11.4665 5.9567 5.0631
No. of Iteration 16 78 39 19

I: (ε = 10−6) CPU time (s) 2.4087 11.6153 7.1388 6.0725
No. of Iteration 19 97 47 23

I: (ε = 10−7) CPU time (s) 2.5032 14.2647 8.2433 6.7110
No. of Iteration 22 117 55 26

II: (ε = 10−5) CPU time (s) 1.9927 10.5539 6.4948 5.5345
No. of Iteration 17 88 42 21

II: (ε = 10−6) CPU time (s) 2.2628 12.9709 7.6347 6.1992
No. of Iteration 20 107 50 24

II: (ε = 10−7) CPU time (s) 2.6799 16.1140 9.0545 7.1845
No. of Iteration 23 127 58 27

III: (ε = 10−5) CPU time (s) 2.0941 11.9777 6.8835 5.8391
No. of Iteration 18 97 45 22

III: (ε = 10−6) CPU time (s) 2.4939 15.3438 8.0511 6.6407
No. of Iteration 21 117 53 25

III: (ε = 10−7) CPU time (s) 2.7110 18.3569 9.3688 7.7041
No. of Iteration 24 137 61 29

Then, h is a contraction mapping.
Furthermore, we choose λ = 1

4 , μ = π
10 , αn = 1

5n+2 and θn = 1
2 − αn for all

n ≥ 1. Now, consider the following cases.
Case I: Take x1(t) = sin(2t) + e3t.
Case II: Take x1(t) = 2et + t.
Case III: Take x1(t) = t + t3.
Using these cases (Case I–Case III above), we obtain the numerical results
in Table 1 and Figs. 1, 2, 3, which show that our method performs better
than Algorithm (1.10) of Tian and Jiang [41], Algorithm 5.1 of Pham et al.
[27] and Algorithm 5.2 of Reich and Tuyen [28], in terms of CPU time and
number of iteration.

Example 5.4. Let H1 = (l2(R), || · ||l2) = H2, where l2(R) := {x = (x1, x2, x3,

. . . ), xi ∈ R :
∑∞

i=1 |xi|2 < ∞} and ||x||l2 :=
(∑∞

i=1 |xi|2
) 1

2 ∀x ∈ l2(R). Now,
define the operator T : l2(R) → l2(R) by

Tx =
(
0, x1,

x2

2
,
x3

3
, . . .

)
, ∀x ∈ l2(R).

Then, T is a bounded linear operator on l2(R) with adjoint

T ∗y =
(
y2,

y3

2
,
y4

3
, . . .

)
, ∀y ∈ l2(R).
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Figure 1. The behavior of TOLn with ε = 10−7 for Case I
of Example 5.3

Iteration number (n)
0 20 40 60 80 100 120 140

TO
L

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Algorithm 3.2
Algorithm (1.10)
Algorithm 5.1
Algorithm 5.2

Time (sec)
0 5 10 15 20

TO
L

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Algorithm 3.2
Algorithm (1.10)
Algorithm 5.1
Algorithm 5.2

Figure 2. The behavior of TOLn with ε = 10−7 for Case
II of Example 5.3

To see that T is linear, let x = (x1, x2, x3, . . . ), y = (y1, y2, y3, . . . ) be arbi-
trary in l2(R) and α1, α2 be arbitrary in R. Then,

T (α1x + α2y) =
(

0, α1x1 + α2y1,
α1x2 + α2y2

2
,

α1x3 + α2y3

3
, · · ·

)

=
(
0, α1x1,

α1x2

2
,

α1x3

3
, · · ·

)
+

(
0, α2y1,

α2y2

2
,

α2y3

3
, · · ·

)

= α1T (x) + α2T (y).

Therefore, T is linear. T is also bounded since ||Tx||l2 ≤ ||x||l2 ∀x ∈ l2(R).
The verification that T ∗ is the adjoint of T follows directly from definition.
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Figure 3. The behavior of TOLn with ε = 10−7 for Case
III of Example 5.3

Table 2. Numerical results for Example 5.4

Cases Alg 3.2 Alg (1.10) Alg 5.1 Alg 5.2

A: (ε = 10−8) CPU time (sec) 0.0150 0.0503 0.0348 0.0346
No. of Iteration 11 139 49 36

A: (ε = 10−9) CPU time (sec) 0.0169 0.0523 0.0371 0.0368
No. of Iteration 13 159 55 41

B: (ε = 10−8) CPU time (sec) 0.0180 0.0504 0.0401 0.0400
No. of Iteration 11 132 47 36

B: (ε = 10−9) CPU time (sec) 0.0181 0.0521 0.0404 0.0402
No. of Iteration 12 152 53 40

C: (ε = 10−8) CPU time (sec) 0.0167 0.0505 0.0345 0.0296
No. of Iteration 11 138 49 21

C: (ε = 10−9) CPU time (sec) 0.0183 0.0553 0.0429 0.0321
No. of Iteration 12 158 55 23

We define C = Q = {x ∈ l2(R) : ||x−e||l2 ≤ b}, where e = (1, 1
2 , 1

3 , · · · ), b = 3
for C and e = (1

2 , 1
4 , 1

8 , · · · ), b = 1 for Q. Then C,Q are nonempty closed and
convex subsets of l2(R). Thus,

PC(x) = PQ(x) =

{
x, if x ∈ ||x − e||l2 ≤ b,

x−e
||x−e||l2 b + e, otherwise.

Now, define the operators f,A : l2(R) → l2(R) by Ax = 3x and fx = 8
3x for

all x ∈ l2(R).
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Figure 4. The behavior of TOLn with ε = 10−9 for Case
A of Example 5.4
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Figure 5. The behavior of TOLn with ε = 10−9 for Case
B of Example 5.4

More so, for Algorithm (1.10), we define the mappings S, h : l2(R) → l2(R)
by Sx = (0, x1, x2, . . . ) and hx =

(
0, x1

2 , x2
2 , · · · ) for all x ∈ l2(R).

Then, we choose λ = 1
8 , μ = 1

3 , αn = 1
5n+2 and θn = 1

2 − αn for all n ≥ 1,
and consider the following cases.
Case A: Take x1 = (1, 1

2 , 1
3 , · · · ).

Case B: Take x1 = (1
2 , 1

5 , 1
10 , · · · ).

Case C: Take x1 = (1, 1
4 , 1

9 , · · · ).
Using (Case A–Case C above), we obtain the numerical results displayed in
Table 2 and Figs. 4, 5, 6, which show that our method still performs better
than Algorithm (1.10) of Tian and Jiang [41], Algorithm 5.1 of Pham et al.
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Figure 6. The behavior of TOLn with ε = 10−9 for Case
C of Example 5.4

[27] and Algorithm 5.2 of Reich and Tuyen [28], in terms of CPU time and
number of iteration.

6. Conclusion

Strong convergence of a new iterative method for solving SVIP is established
in two real Hilbert spaces under some relaxed assumptions. In particular,
the strong convergence result is obtained when the operators A and f are
monotone and Lipschitz continuous and this makes our method have much
more potential applications than many existing methods for solving the SVIP
(1.2)–(1.3). Moreover, the proof of the strong convergence of our method does
not rely on the usual “Two Cases Approach” widely used in many papers to
guarantee strong convergence. Furthermore, some numerical experiments of
this method in comparison with Algorithm (1.10), Algorithms 5.1 and 5.2,
are carried out in two infinite dimensional Hilbert spaces. In fact, in all our
comparisons, the numerical results demonstrate that our method performs
better than these algorithms.

As a concluding remark, we emphasize that the main novelty of this
paper is in the design of a method and the proof of its strong convergence to
a solution of the SVIP without the restrictive co-coercive assumption on the
underlying operators usually assumed in many other existing papers in the
literature.

Acknowledgements

The authors sincerely thank the anonymous referees for their careful reading,
constructive comments and fruitful suggestions that substantially improved
the manuscript. The research of the first author is wholly supported by the



98 Page 20 of 23 C. Izuchukwu et al. JFPTA

National Research Foundation (NRF) South Africa (S& F-DSI/NRF Free
Standing Postdoctoral Fellowship; Grant number: 120784). The first author
also acknowledges the financial support from DSI/NRF, South Africa Center
of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) Postdoc-
toral Fellowship. The second author acknowledges the bursary and financial
support from Department of Science and Innovation and National Research
Foundation, Republic of South Africa Center of Excellence in Mathematical
and Statistical Sciences (DSI-NRF COE-MaSS) Doctoral Bursary. The third
author is supported by the NRF of South Africa Incentive Funding for Rated
Researchers (Grant number 119903). Opinions expressed and conclusions ar-
rived are those of the authors and are not necessarily to be attributed to
NRF or CoE-MaSS.

Compliance with Ethical Standards
Competing interests The authors declare that they have no competing inter-
ests.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Alakoya, T.O., Jolaoso, L.O., Mewomo, O.T.: Modified inertia subgradient ex-
tragradient method with self adaptive stepsize for solving monotone variational
inequality and fixed point problems. Optimization (2020). https://doi.org/10.
1080/02331934.2020.1723586

[2] Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator
Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, New York
(2011)

[3] Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility
problem. Inverse Probl. 18, 441–453 (2002)

[4] Byrne, C.: A unified treatment for some iterative algorithms in signal process-
ing and image reconstruction. Inverse Probl. 20, 103–120 (2004)

[5] Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point
problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)

[6] Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for
inversion problems in intensity modulated radiation therapy. Phys. Med. Biol.
51, 2353–2365 (2006)

[7] Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections
in product space. Numer. Algorithms 8, 221–239 (1994)

[8] Censor, Y., Elfving, T., Kopf, N., Bortfield, T.: The multiple-sets split fea-
sibility problem and its applications for inverse problems. Inverse Probl. 21,
2071–2084 (2005)

[9] Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality
problem. Numer. Algorithms 59, 301–323 (2012)

https://doi.org/10.1080/02331934.2020.1723586
https://doi.org/10.1080/02331934.2020.1723586


Vol. 22 (2020) A new method for solving split variational Page 21 of 23 98

[10] Chidume, C.E.: Geometric Properties of Banach Spaces and Nonlinear Iter-
ations, Springer Verlag Series, Lecture Notes in Mathematics. ISBN 978-1-
84882-189-7 (2009)

[11] Fichera, G.: Sul pproblem elastostatico di signorini con ambigue condizioni al
contorno. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 34, 138–142
(1963)

[12] Gibali, A., Reich, S., Zalas, R.: Outer approximation methods for solving vari-
ational inequalities in Hilbert space. Optimization 66, 417–437 (2017)

[13] Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonex-
pansive Mappings. Marcel Dekker, New York (1984)

[14] He, Y.R.: A new double projection algorithm for variational inequalities. J.
Comput. Appl. Math. 185, 66–173 (2006)

[15] Hendrickx, J.M., Olshevsky, A.: Matrix P -norms are NP-hard to approximate
if P �= 1, 2, ∞. SIAM J. Matrix Anal. Appl. 31, 2802–2812 (2010)

[16] Hieu, D.V., Anh, P.K., Muu, L.D.: Modified hybrid projection methods for
finding common solutions to variational inequality problems. Comput. Optim.
Appl. 66, 75–96 (2017)

[17] Izuchukwu, C., Okeke, C.C., Mewomo, O.T.: Systems of variational inequality
problem and multiple-sets split equality fixed point problem for infinite families
of multivalued type-one demicontractive-type mappings. Ukrain. Math. J. 71,
1480–1501 (2019)

[18] Izuchukwu, C., Okeke, C.C., Isiogugu, F.O.: Viscosity iterative technique for
split variational inclusion problem and fixed point problem between Hilbert
space and Banach space. J. Fixed Point Theory Appl. 20, 1–25 (2018)

[19] Jolaoso, L.O., Alakoya, T.O., Taiwo, A., Mewomo, O.T.: Inertial extragradient
method via viscosity approximation approach for solving Equilibrium problem
in Hilbert space. Optimization (2020). https://doi.org/10.1080/02331934.2020.
1716752

[20] Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T.: A unified algorithm
for solving variational inequality and fixed point problems with application to
the split equality problem. Comput. Appl. Math. (2019a). https://doi.org/10.
1007/s40314-019-1014-2

[21] Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T.: A self adaptive inertial
subgradient extragradient algorithm for variational inequality and common
fixed point of multivalued mappings in Hilbert spaces. Demonstr. Math. 52,
183–203 (2019)

[22] Kazmi, K.R.: Split nonconvex variational inequality problem. Math. Sci. 7, 20
(2013). https://doi.org/10.1186/2251-7456

[23] Kazmi, K.R.: Split general quasi-variational inequality problem. Georg. Math.
J. 22(3), 1–8 (2015)

[24] Kim, J.K., Salahuddin, S., Lim, W.H.: General nonconvex split variational
inequality problems. Korean J. Math. 25, 469–481 (2017)

[25] Long, L.V., Thong, D.V., Dung, V.T.: New algorithms for the split variational
inclusion problems and application to split feasibility problems. Optimization
68, 2335–2363 (2019)

[26] Ogbuisi, F.U., Mewomo, O.T.: Convergence analysis of an inertial accelerated
iterative algorithm for solving split variational inequality problem. Adv. Pure
Appl. Math. 10(4), 1–15 (2019)

https://doi.org/10.1080/02331934.2020.1716752
https://doi.org/10.1080/02331934.2020.1716752
https://doi.org/10.1007/s40314-019-1014-2
https://doi.org/10.1007/s40314-019-1014-2
https://doi.org/10.1186/2251-7456


98 Page 22 of 23 C. Izuchukwu et al. JFPTA

[27] Pham, V.H., Nguyen, D.H., Anh, T.V.: A strongly convergent modified Halpern
subgradient extragradient method for solving the split variational inequality
problem. Vietnam J. Math. 48, 187–204 (2020)

[28] Reich, S., Tuyen, T.M.: A new algorithm for solving the split common null
point problem in Hilbert spaces. Numer. Algorithms 83, 789–805 (2020)

[29] Saejung, S., Yotkaew, P.: Approximation of zeros of inverse strongly monotone
operators in Banach spaces. Nonlinear Anal. 75, 742–750 (2012)

[30] Shehu, Y., Li, X.H., Dong, Q.L.: An efficient projection-type method for mono-
tone variational inequalities in Hilbert spaces. Numer. Algorithms 84, 365–388
(2020)

[31] Shehu, Y., Cholamjiak, P.: Iterative method with inertial for variational in-
equalities in Hilbert spaces. Calcolo 56, 20 (2019). https://doi.org/10.1007/
s10092-018-0300-5

[32] Taiwo, A., Jolaoso, L.O., Mewomo, O.T.: Parallel hybrid algorithm for solving
pseudomonotone equilibrium and Split Common Fixed point problems. Bull.
Malays. Math. Sci. Soc. 43(2), 1893–1918 (2020)

[33] Takahashi, W.: Nonlinear Functional Analysis-Fixed Point Theory and Its Ap-
plications. Yokohama Publishers, Yokohama (2000)

[34] Stampacchia, G.: “Variational Inequalities”. In: Theory and Applications of
Monotone Operators. Proceedings of the NATO Advanced Study Institute,
Venice, Italy (Edizioni Odersi, Gubbio, Italy, 1968), pp 102–192

[35] Tang, Y., Gibali, A.: New self-adaptive step size algorithms for solving split
variational inclusion problems and its applications. Numer. Algorithms 83, 305–
331 (2020)

[36] Tuyen, T.M., Thuy, N.T., Trang, N.M.: A strong convergence theorem for a
parallel iterative method for solving the split common null point problem in
Hilbert Spaces. J. Optim. Theory Appl. 183, 271–291 (2019)

[37] Thong, D.V., Hieu, D.V.: Modified subgradient extragradient algorithms for
variational inequality problems and fixed point problems. Optimization 67,
83–102 (2018)

[38] Thong, D.V., Cholamjiak, P.: Strong convergence of a forward-backward split-
ting method with a new step size for solving monotone inclusions. Comput.
Appl. Math. 38, 20 (2019). https://doi.org/10.1007/s40314-019-0855-z

[39] Thong, D.V., Shehu, Y., Iyiola, O.S.: Weak and strong convergence theorems
for solving pseudo-monotone variational inequalities with non-Lipschitz map-
pings. Numer Algorithms 84, 795–823 (2020)

[40] Tian, M., Jiang, B.-N.: Weak convergence theorem for a class of split variational
inequality problems and applications in Hilbert space. J. Ineq. Appl. (2017).
https://doi.org/10.1186/s13660-017-1397-9

[41] Tian, M., Jiang, B.-N.: Viscosity approximation Methods for a Class of gener-
alized split feasibility problems with variational inequalities in Hilbert space.
Numer. Funct. Anal. Optim. 40, 902–923 (2019)

https://doi.org/10.1007/s10092-018-0300-5
https://doi.org/10.1007/s10092-018-0300-5
https://doi.org/10.1007/s40314-019-0855-z
https://doi.org/10.1186/s13660-017-1397-9


Vol. 22 (2020) A new method for solving split variational Page 23 of 23 98

C. Izuchukwu, A. A. Mebawondu and O. T. Mewomo
School of Mathematics, Statistics and Computer Science
University of KwaZulu-Natal
Durban
South Africa
e-mail: izuchukwu c@yahoo.com;

izuchukwuc@ukzn.ac.za;
mebawondua@stu.ukzn.ac.za;

dele@aims.ac.za;
mewomoo@ukzn.ac.za

A. A. Mebawondu
DSI-NRF Center of Excellence in Mathematical and Statistical Sciences (CoE-
MaSS)
Johannesburg
South Africa

Accepted: October 15, 2020.


	A new method for solving split variational inequality problems without co-coerciveness
	Abstract
	1. Introduction
	2. Preliminaries
	3. Proposed method
	4. Convergence analysis
	5. Numerical examples
	6. Conclusion
	Acknowledgements
	References




