
i

Development Of A Publish-Subscribe System For Mountain Top

University Staff And Student

By

ADELEYE, Daniel Ifeoluwa.

17010301028

A PROJECT SUBMITTED TO THE DEPARTMENT OF COMPUTER

SCIENCE AND MATHEMATICS, COLLEGE OF BASIC AND APPLIED

SCIENCES,

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE

AWARD OF DEGREE OF BACHELOR OF SCIENCE IN COMPUTER

SCIENCE

2021

ii

DECLARATION

I hereby declare that this project has been written by me and is a record of my own

research work. It has not been presented in any previous application for a higher

degree of this or any other University. All citations and sources of information are

clearly acknowledged by means of reference.

ADELEYE, DANIEL IFEOLUWA

Date

iii

CERTIFICATION

This is to certify that the content of this project entitled „Development of a

Publish/Subscribe System for Mountain Top University’ was prepared and

submitted by ADELEYE DANIEL IFEOLUWA in partial fulfillment of the

requirements for the degree of BACHELOR OF SCIENCE IN COMPUTER

SCIENCE. The original research work was carried out by him under by supervision

and is hereby accepted.

 ____________________________ (Signature and Date)

Mr J.A. Balogun

Supervisor

 ____________________________ (Signature and Date)

Dr. M.O. Adewole

Coordinator, Department of Computer Science and Mathematics

iv

DEDICATION

God Almighty, my creator, my strong pillar, my source of inspiration, wisdom,

knowledge, and insight, I commit my work to you. Throughout this program, He has

provided me with strength, and I have only been able to fly on His wings. I also

dedicate my effort to my boss, Mr. Jeremiah Balogun, who has supported me along

and ensured that I finish what I started. To my buddies Olatubosun Tobiloba, Obe

Israel, Amosun Jumoke and Yusuf Hannah and co who have been affected in every

manner possible by this quest. Thank you. My affection for you all can never be

quantified. God bless you.

v

ACKNOWLEDGEMENT

My sincere thankfulness goes to God, who has supplied everything necessary for the

completion of this project and the purpose for which it was undertaken. There was

never a time of scarcity or desire. In the course of my study, He was there for me,

taking care of everything that could have slowed me down and empowering me even

at my most trying moments. I am grateful to Dr. D.K. Olukoya, the Chancellor of this

magnificent university, for following God's calling and birthing and nourishing the

vision of this wonderful institution, Mountain Top University, where I have been

prepared to fulfil my destiny as a ruler and a ruler of nations. I commend the Vice

Chancellor, Professor Elijah Ayolabi, for his excellent leadership as a leader and a

father in this institution.

This work would not have been possible without the assistance and constructive

criticism of my supervisor, Mr. Jeremiah Balogun, whose contribution and

constructive criticism inspired me to put out the type of effort that I have put forth to

make this work as unique as possible. Because of him, I have had the opportunity to

participate in legitimate study and have gained a greater understanding of the subject

matter. Sir, you will remain in my heart forever. Finally, my uttermost admiration also

goes to my parents, Mr. and Mrs. Adeleye who tirelessly created the foundation for

my education giving it everything it requires.

vi

ABSTRACT

 The aim of this study was to build a social network system that allows

educators to share content while also allowing students to join to one or more

educators on the system and gain access to their content as well as receive

notifications whenever new content is uploaded by any of the educators the

subscribers subscribe to.

 A literature review was conducted in order to discover and evaluate current

publish/subscribe systems. The system's user and system needs were established

through informal discussions with system users. UML diagrams, such as use case,

sequence, and class diagrams, were used to specify the system design. React Native,

Node.js, JavaScript, and Firebase were used to develop the system.

 The system's result revealed the deployment of the database for storing data

alongside the mobile application. The system was able to distinguish if the user was a

writer or a reader as a results of the research.

 The study concluded that using the system deals with the issue of uncertainty

or lack of direction in the regarding career path for final academic year or after, as a

consequence of the knowledge gap between academic curriculum and practical career

criteria.

Keywords: Publish subscribe, topic-based, content based, information system.

vii

TABLE OF CONTENTS

TITLE PAGE i

DECLARATION ii

CERTIFICATION iii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTRACT vi

LIST OF FIGURES ix

CHAPTER ONE: INTRODUCTION

1.2 Statement of Problem 13

1.3 Aim and Objectives 14

1.4 Methodology of the Study 14

1.5 Significance of Study 15

1.6 Scope and Limitation 15

1.7 Definition of Terms 16

CHAPTER TWO: LITERATURE REVIEW

2.1 Information System 17

2.1.1 Types of information system 18

2.2.1 Publish-Subscribe Components: 23

2.2.2 How Publish-Subscribe Pattern Works: 25

2.2.3 Social networking 26

viii

2.2.3 History of social networking 27

2.3 Software Development Life Cycle (SDLC) 28

2.3.1 Software development life cycle processes 29

2.3.2 Software development life cycle models 31

2.3.3 Model Adopted 42

2.4 Unified modeling language (UML) 45

2.5 System Development Tools 49

2.6 Related Works 50

CHAPTER THREE: METHODOLOGY OF THE STUDY

3.1 Method of Identification of User and System Requirement 46

3.1.1 Identification of system requirements 46

3.1.2 Identification of user requirement 48

3.2 System design methods 49

3.2.1 Architectural diagram 49

3.2.2 Use case diagrams 51

3.2.3 Sequence diagram 55

3.2.4 Activity diagram 55

3.3 System implementation 60

3.3.1 Database implementation 60

3.3.2 Frontend implementation 60

CHAPTER FOUR: IMPLEMENTATION AND RESULT

ix

4.1.1 Introduction 61

4.2 Result of database implementation 61

4.2 Result of the implementation of the frontend interface 66

CHAPTER FIVE: SUMMARY, CONCLUSIOM AND RECOMMENDATION

5.1 Summary 74

5.3 Recommendation 75

References 76

LIST OF FIGURES

Page

x

Figure 2.1: Waterfall Model 20

Figure 2.2: Agile Model 22

Figure 2.3: Iterative Model 23

Figure 2.4: Spiral Model 25

Figure 2.5: V-shaped Model 26

Figure 2.6: Rad Model 28

Figure 2.7: Incremental Model 29

Figure 2.8: Extreme programming 31

Figure 2.9: Uml diagram 32

Figure 3.0: Systems architectural diagram 50

Figure 3.1: Admin use case diagram 52

Figure 3.2: Publisher use case diagram 53

Figure 3.3: Subscriber use case diagram 54

Figure 3.4: Sequence diagram illustrating subscription process 56

Figure 3.5: Activity diagram illustrating the applications workflow 57

Figure 3.6: User class diagram 58

Figure 3.7: Post class diagram 59

Figure 4.1: User collection page 62

Figure 4.2: Subscription collection page 63

Figure 4.3: Subscribers collection page 64

Figure 4.4: Post collection page 65

Figure 4.5: User post collection page 67

Figure 4.6: Login screen 68

Figure 4.7: Profile screen 69

Figure 4.8: The add post screen 70

xi

Figure 4.9: Search page 71

Figure 4.10 the feed screen 72

12

CHAPTER ONE

INTRODUCTION

1.1 Background of Study

 Information dissemination and communication is generally strictly formatted

in academic environments and only a few years ago academic institutions joined the

rest of the world in adopting social networking sites for sharing information and

subsequently foster less formal information dissemination and communication

methods. Recent research work have begun to shape and redefine the ways educators

and students communicate for academic purposes. Many study have proved the

adoption of online interactions between educators and students to be more productive

and satisfactory.

However, there is a growing and urgent need for information sharing and

communication systems that specifically suits the preferences of the students and at

the same time afford the educators a chance to a wider audience of student. Such

system will allow educators to effectively impact students academically, socially and

perhaps psychologically through information sharing and timely informal

communication channels.

 A publish/subscribe (pub/sub) system is a mechanism for disseminating data

from one person to another. Data is published by publishers, and subscribers receive

data that is relevant to them. Publishers and subscribers are separate entities that do

not need to know anything about one another. There are several sorts of Pub-Sub

systems, including content-based, type-based, and topic-based systems. Content-based

membership is a more adaptive, but also more complicated perspective in the Pub-Sub

conspiracies. In this communication system, a person can act as a publisher or a

subscriber of data. Publishers create material, which is consumed by subscribers,

13

according to the research. The major semantic distinguishing feature of pub/sub is the

way notifications move from senders to receivers: receivers are not explicitly

addressed by publishers, but are instead addressed indirectly by the content of

notifications. Subscriptions for specific notifications are issued separately from the

publishers that generate them, and subscribers are then asynchronously informed for

all material, supplied by any publisher, that matches their subscription. Both

publishers and subscribers connect with a single entity, the notification service, which

records all subscriptions linked with individual subscribers, receives all notifications

from publishers, and distributes all published notifications to the appropriate

subscribers. As a consequence, information is exchanged between publishers and

subscribers who do not know one other personally. One of the pub/sub paradigm's

primary characteristics is anonymity.

 This study aims to allow subscribers and publishers create a relationship that is

needed to foster learning and necessary guidance such that a subscriber can not only

access content submitted by a publisher but can also communicate directly with the

publisher and develop further interest through working relationship with the publisher.

1.2 Statement of Problem

 This study aims to solve the problem of ambiguity or indecisiveness in the

choice of career path for student in their final year or after, due to the knowledge gap

between academic curriculum and practical career requirement. The students hence

will be able to via the information shared by the lecturers acclamation urge a subject

or field of interest and build a career prospect through the indirect mentorship from

the lecturers.

14

1.3 Aim and Objectives

 The aim of this study is to develop a social network platform that can be used

by educators for sharing content (articles, projects, links and other learning resources)

then allowing students to subscribe to one or more educator on the system and get

access to the content posted by the educator as well as receive notification each time a

content is submitted by any of the educators the students subscribe to.

The specific objectives are to;

i. identify the requirements of the proposed system

ii. specify the design of the system

iii. implement the system

iv. test the system

1.4 Methodology of the Study

 In order to meet up with the aforementioned objectives of the study, the

following methods will be adopted:

a. A review of literature was done in order to identify and understand existing

publish-subscribe systems

b. The user and system requirements of the system were identified from the

system users via informal interview

c. The system design was specified using the unified modelling language

(UML) diagrams such as: Use case, Sequence diagram, and Class diagram as

well as system architecture.

d. The database was implemented using MY SQL technology via Firebase

services and the Frontend will be implemented using React Native Mobile

application framework.

15

e. The system was tested manually through simulations using lecturers and student

from the department of computer science, mountain top university for security

and performance.

1.5 Significance of Study

 Various publisher-subscriber model applications exist that allow information

sharing in different areas and institution but this study will be significant in the

following ways:

a. It will create an avenue for continuous learning among students outside the

classroom.

b. It will foster better educator and student‟s relationship particularly in higher

institutions of learning by bridging the communication gap.

c. It will serve as a means for educators to inspire and invariably mentor student

who have interest in their fields or related works.

1.6 Scope and Limitation

 This study does not attempt to redefine the publish-subscribe model by

removing the anonymity feature between subscriber and publisher but rather will

focus on using the model to suit the case study of the university environment to

achieve the academic and social objectives. This project will only develop a system

that is immediately adoptable within the university in view based on their prevalent

situation as it may need to be further tweaked to suit the academic and social realities

in universities in other climes.

16

 1.7 Definition of Terms

Content: Any piece of information irrespective of its form (speech, writing, visual

arts etc.) or media through directed towards an audience or end-user through which

they can derive value.

Educator: An educator is a person who teaches, informs and inspires others. He/she

is responsible for modelling and demonstrating effective learning as well as

disseminate content and knowledge.

Publisher: A publisher is a client in a pub-sub model who creates messages or

content and sends to specific users based on their subscriptions.

Student: A student studying in a school or other academic establishment who is

learning with the intention of gaining knowledge. It is a person who is studying; it is a

person who is dedicated to learning.

Subscriber: A subscriber is a client in a pub-sub model who receives content or

message from one or more publishers based on his/her subscriptions.

Subscription: Subscription is the indication of interest in the contents made available

by a particular publisher in a pub-sub model.

UML: is a general-purpose, developmental modeling language for software

engineering that aims to give a common approach to depict a system's architecture.

17

CHAPTER TWO

 LITERATURE REVIEW

2.1 Information System

 The terminology "information system" has two meanings: one for its

functionality and the other for its framework. From a functional perspective; an

information system is a technologically implemented medium with the intention of

recording, storing, and disseminating linguistic expressions as well as for the

supporting of inference making. From a structural perspective; an information system

consists of a collection of people, processes, data, models, technology and partly

formalized language, forming a cohesive structure which serves some organizational

purpose or function. (Management Information Systems (MIS) 2011)

Information management is described as an organization's capacity to handle

information. Creating, preserving, retrieving, and making available the appropriate

information as quickly as possible, that is information, at the right moment, in the

hands of the right people, at the right location for use in decision-making at the lowest

cost, in the finest medium (Langemo, 1980). Although information systems is

regarded as the most important discipline, all current research is focused on it, and

enterprises struggle to develop unique technologies and facilities to support it. The

information that was assessed as the soul of these systems is the generator component

of this region. As an outcome, high performance success necessitates determining the

sorts of IS and the work style. Information systems (IS) are an integrated environment

of hardware, software, and people that primarily serves the purpose of collecting and

processing data into valuable information by employing a set of procedures on data

collection. As a result, information is derived from data by IS procedures, and the

18

distinction between data and information is clarified. The information is the final data

of processing, while the data is raw materials. (Hasan, 2018)

Processed data can be characterized as information. Raw data that has been

processed to give a meaning is a simple definition of information. Data that has been

purified to the point where it can be utilized for analysis is referred to as information.

Information, as contrast to data, is organized, clear, and has shape and meaning. It

can be linked to any context depending on how it is examined. Information is a

meaning that a person may convey or extract from a representation of facts or a

concept, and this is done by applying existing conventions to the field of study in

question. (Zoikoczy, 1981). An information system is a set of interconnected

components that collect, store, and analyze data, as well as deliver information,

knowledge, and digital commodities. Businesses and other organizations utilize

information systems to run and manage their operations, communicate with

customers and suppliers, and compete in the market. (Zwass, 2020)

2.1.1 Types of information system

 There are several types of information systems that apply to specific business

needs or business types and can majorly be classified into the following:

a. Transaction processing system

 A transaction includes all product and service purchases and sales, as well as

any everyday business transactions or operations necessary to run a firm. The

frequency and types of transactions executed vary depending on the business and the

firm's size/scope. Billing clients, making bank deposits, keeping track of new recruit

information, inventory counts, and keeping track of client-customer relationship

management data are all examples of typical transactions. All contractual,

transactional, and customer relationship data is kept safe and accessible through a

19

transaction processing system. It also helps with sales order processing, payroll,

shipping, sales management, and other normal tasks that keep companies functioning.

By establishing a TPS, organizations may improve the dependability and quality of

their user/customer data while lowering the chance of human error. (Christiansen,

2021)

b. Office automation systems

 The system includes of both hardware and software solutions that allow data

to be transferred across systems without the need for human involvement.

Accounting, data management, training, facility management, and other

administrative activities are all simplified and automated through office automation.

Going paperless isn't the only benefit of an office automation system. For instance,

every work product and customer interactions should be stored in a document

management system. However, an office automation system provides much more to

businesses than simply being green by reducing paper usage. It's a powerful tool for

automating processes, identifying inefficient workflows, and assisting with informed

decision-making. (Eisner, 2020)

c. Operations support system

 The end client inserts data into a system, which is subsequently utilized to

generate information products for organizations and individuals, such as reports. An

operation support system is what this type of system is called. The purpose of the

operation support structure is to simplify business transactions, manage production,

aid internal and external communication, and maintain the organization's central

database. The operation support system includes a transaction processing system, a

processing control system, and an integrated information system. (Juneja, 2015)

d. Management information systems

20

 Managers at all levels benefit from information systems, from those in charge

of small work group schedules and budgets to those in charge of the organization's

long-term plans and budgets. Management reporting systems deliver routine, detailed,

and voluminous information reports tailored to each manager's areas of responsibility.

These systems are most commonly used by first-level supervisors. Such reports, in

general, focus on past and present actions rather than anticipating future outcomes.

Reports may only be issued automatically in extraordinary circumstances or at the

request of management to minimize information overload. (Zwass, 2020)

e. Decision support systems

 Data is analyzed by a decision support system to assist managers in making

choices. It gathers and saves the information needed for management to make the best

decisions at the right moment. A DSS can be used by a bank management, for

example, to assess changing loan trends and determine which yearly loan targets to

meet. The information system includes decision models that assess and synthesize

large volumes of data and present it in an understandable visual fashion. Because a

DSS is interactive, management may simply add or delete data and ask relevant

questions. This provides proof for mid-management to make the best judgments

feasible in order for the company to meet its goals. (Christiansen, 2021)

f. Executive information systems

 Executive information systems (EIS) present a variety of critical facts in a

highly simplified and accessible format, generally through a graphical digital

dashboard. Senior executives, on the other hand, generally rely on a variety of

informal sources of information, making formal, computerized information systems

only marginally useful. Nonetheless, the chief executive officer, senior and executive

vice presidents, and the board of directors require this support in order to monitor the

21

company's performance, analyze the business climate, and establish strategic

objectives for the future. These executives must, in particular, compare their

company's performance to that of its rivals and research regional or national economic

trends. Executive information systems are frequently customized and employ a

variety of media formats, allow users to "dig down" from broad overviews to more

specific data. (Zwass, 2020)

2.2 Publish/subscribe

 It's a well-known consideration in the design in which writers use a set of

writings to produce a set of information, while users use a set of subscriptions to

express their interests. Publishers use a set of publications to disseminate a collection

of information, and subscribers use a set of subscriptions to describe their interests.

When a publication is received, the system confirms receipt and distributes the

publication to the subscribers who fulfill the criteria. The publish/subscribe method

divides time, space, and flow between publishers and subscribers, which reduces

program complexity and resource consumption.

Subscribers to the publish/subscribe approach frequently receive just a percentage of

the total number of messages published. Filtering is the process of choosing which

communications to receive and then processing them once they have been received.

Topic-based filtering and content-based filtering are the two most popular forms of

filtering.

Joining a group that has a topic of interest is how you subscribe to a topic-based

system. All of the group's members get copies of publications that are related to the

topic. As a result, both publishers and subscribers must specify which group they

want to subscribe to. Topic-based systems, as well as group communication and event

notification systems, have been around for a long time. Because no prior knowledge

22

of the subscribers' interests is required, content-based publish/subscribe systems link

subscriptions with publications. As an outcome, systems are more versatile and

helpful, as subscribers may more accurately describe their interests using a set of

predicates. To create this sort of system, millions of publications must be matched

with subscribers in a thorough and effective manner. Publish/subscribe (pub/sub)

strategies are an attractive communication paradigm to explore when designing large-

scale school notification systems. (Jahan, 2013)

The following challenges of a publish/subscribe system:

a. Relay Nodes

 One distinguishing feature of Peer-to-Peer pub/sub systems is that they use a

generic overlay network (e.g., DHT, tree, full-mesh) rather than projecting the social

graph in the Peer-to-Peer overlay network. Due to the fact that social users are not

always directly connected in the Peer-to-Peer overlay network, message dissemination

in Peer-to-Peer pub/sub systems is dependent on peers (also known as relay nodes)

who may or may not be interested in the message.

b. High traffic

 Recent pub/sub systems attempt to simplify the routing tree design and focus

on the construction of the Peer-to-Peer overlay network in order to improve message

dissemination efficiency. Each peer has a finite number of connections that can be

maintained, and these connections are chosen without using the social graph or social

interactions. As a corollary of the high social interactions and the lack of social

integration in the overlay design, the generated Peer to Peer overlay network has load

balancing issues, with a percentage of their colleagues having high traffic overhead

compared to the rest of the peers.

c. Dissemination Latency

23

 Each peer in the Peer-to-Peer overlay network has a unique upload and

download bandwidth profile. Because each peer has a limited number of connections,

keeping a Peer-to-Peer connection with a low bandwidth rate increases dissemination

latency, affecting the overall performance of the Peer-to-Peer pub/sub system.

d. Dynamic environment

 It is critical for the OSN's success to provide a fail-safe peer-to-peer pub/sub

system with minimal disruption to social friends' communication. The architecture of

a churn-resistant Peer to Peer pub/sub system has been studied in OMen; however,

OMen falls short of identifying each social user's online activity, which introduces

additional latency because establishing a Peer-to-Peer connection requires a Multi-

Path TCP connection.

Some advantages of a Publish–subscribe system according to (Gibb, 2019) are:

a. Loose coupling

 Subscribers are only tangentially related to publishers, thus they don't need to

be aware of their presence. Publishers and subscribers are allowed to disregard system

topology since the content is the major emphasis. Even if the other isn't there, both

can continue to function normally. The client can't send messages to the server unless

the server process is active, and the server can't receive messages unless the client is

operating under the classic closely linked client–server paradigm.

b. Scalability

 Publishers and subscribers are often physically and temporally separated in

many pub/sub systems. Middleware analysts frequently deactivate a publisher in such

pub/sub systems so that the subscriber may work through the backlog (a form of

bandwidth throttling). Scalability, on the other hand, has a cap. The possibility of a

load spike or delay rises as the number of nodes and messages grows. Moreover,

24

message passing issues, such as: Regardless of whether the message was received or

not, a publisher may only deliver messages for a limited time because the publisher

has no way of knowing who is listening, the benefits of the pub/sub model are

sometimes swamped by message delivery issues.

Publish-Subscribe Components:

 A number of components have been taken into consideration when developing

the publish, /subscribe model. A description of how those components are organised

and connect to othersis provided in the following discussion.

a. User

 The User component is the most important component of the model, and it is

subdivided into two subcomponents: the Subscriber component and the Publisher

component. The User component maintains information about both publishers and

subscribers, such as their names, addresses, states, zip codes, and email addresses.

b. Subscriber

 The Subscriber component inherits the attributes name, address, state, zip,

email, and so on from the parent component User, which is itself an inherited

attribute. It possesses the property "has Interest," which allows it to form a connection

with the component Interest. The publish/subscribe model tells the subscriber of a

recent publication that meets any of his/her many levels of interest, which is

determined by the subscriber's various degrees of interest.

c. Publisher

 The Publisher component, like the Subscriber component, inherits the

properties name, address, state, zip, email, and so on from the parent component User,

which is the same as the Subscriber component. In ways to construct a connection

with the Publication component, it has the property "publishes." For example, if a

25

Publisher publishes any form of news (for example, news on music), the Subscribers

whose interests coincide with the news receive a notification of this publication.

 2.2.2 How Publish-Subscribe Pattern Works:

 The core of software design patterns is the creation of reusable groupings of

modules and their relationships. These modules are often represented as classes or

objects in a UML design diagram. Modules, on the other hand, are shown in modern

architectural patterns as bigger, self-executing processes scattered throughout

distributed systems. To fully appreciate the advantages of the Pub/Sub design, you

must first comprehend the underlying pattern upon which an information system is

formed, and then trace its progression into a distributed system. Publish–subscribe is a

communications pattern in which message senders, known as publishers, categorize

published messages into classes without knowing which subscribers, if any, may exist.

Subscribers register an interest in one or more classes and only get communications

that are relevant to them, with no awareness of whose publishers, if any, they are

receiving messages from. The publish–subscribe paradigm is a cousin of the message

queue paradigm, and it's usually part of a broader message-oriented middleware

system.

The pub/sub and message queue concepts are supported by most messaging system

APIs; for example, Java Message Service (JMS). This design improves network

scalability and generates a more dynamic network architecture, but it limits the ability

to modify the publisher and the nature of the data published.

 In the publish-subscribe approach, subscribers often only receive a portion of

the total messages published. The process of choosing messages for reception and

processing is known as filtering. The two most popular methods of filtering are topic-

based and content-based. In a topic-based system, messages are published to "topics,"

26

or specified logical channels. Subscribers to a topic-based system get all

communications posted to the subjects to which they have subscribed. The publisher

is in control of deciding which topics subscribers will be able to access. In a content-

based system, messages are only delivered to subscribers if their properties or content

fit the subscriber's limitations. The subscriber is in charge of categorizing the

messages.

Four core concepts make up the pub/sub model:

a. Topic – An intermediate gateway that manages a database of customers to

whom publishers can send messages.

b. Message – A publisher who is unaware of the subscribers sends sequential

information to a subject.

c. Publisher – The application that publishes a message to a topic

d. Subscriber – An application that registers itself with the desired topic in order

to receive the appropriate messages.

 Some systems support a hybrid of the two; publishers post messages to a topic,

while readers can choose to explore one or more subject areas via content-based

subscriptions.

2.2.3 Social networking

 People create content, share it, bookmark it, and network at a quick pace on

social media, which has increased in popularity as a category of online

communication over the last few years. Because of its ease of use, speed, and reach,

social media is fast influencing public debate in society and establishing trends and

agenda in a wide range of topics ranging from the environment and politics to

technology and the entertainment industry. In only ten years, the online world has

undergone significant transformation. Thanks to the creation of social media, young

27

men and women are now exchanging thoughts, feelings, personal information,

photographs, and videos at an astonishingly fast rate. (Huberman, 2010).

 Platforms for digital networking are now used by 73% of wired American

teenagers (Oberst, 2010). The concepts of social media are shared by Martn, (2008)

and Lusk, (2010). To them, Digital networking refers to the usage of Facebook, blogs,

Twitter, Myspace, and LinkedIn for conversation and the sharing of photographs and

videos. However, for the purposes of this study, social media is defined as individuals

using Facebook, Twitter, Skype, Myspace, and Yahoo Messenger to communicate,

share ideas, and share images and videos. The increased use of social networking

websites has become an international phenomena in recent years. What began as a

hobby for a few computer savvy people has turned into a social norm and way of life

for people all over the world. Teenagers and young people, in particular, have

embraced these sites as a way to interact with their friends, share information,

reinvent their identities, and showcase their social lives. (Boyd, 2007). Social

networking is the practice of using the internet to link individuals with friends, family,

and acquaintances. Social networking sites aren't necessarily about meeting new

people online, but that does happen. Instead, they are mostly about engaging with

real-life friends, family, and acquaintances. Facebook, Twitter, and Myspace are the

most well-known social media platforms. These services allow you to exchange

photographs, videos, and information, as well as schedule events, chat, download

music, and play online games like Scrabble and Chess. (Australian Communications

Consumer Action Network (ACCAN), 2010).

 2.2.3 History of social networking

 Social networks, contrary to common opinion, have a long and storied history.

In 1971, the first email was sent, and it is believed that this was the beginning of

28

social networking. For a variety of reasons, the majority of people appreciated it.

Emails were a considerably more cost-effective and practically instantaneous way of

interacting with individuals all across the world. People were motivated by the email

to think of new methods to communicate even faster. The Bulletin Board system was

created in 1978 by Ward Christensen and Randy Suess to allow users to transmit data

via phone lines. On a regular basis, users might interact with one another about

planned meetings, make announcements, and share data. Several applications were

presented to the globe in the next decade, notably the World Wide Web. The arrival

of the World Wide Web prompted many people to create new ways of sharing

knowledge not only locally but internationally. Geocities, widely recognized as the

world's first social networking site, was founded by Beverly Hills Internet. Users may

create their own webpages on Geocities depending on their particular hobbies and

preferences. (Al-Jenaibi, 2016)

2.3 Software Development Life Cycle (SDLC)

 The system development life cycle encompasses the whole process of creating,

implementing, and retiring information systems, from inception to analysis, design,

implementation, and maintenance to disposal. Despite the fact that there are several

SDLC models and approaches, they always share a set of processes or phases. To

provide effective protection for the data that the system will communicate, process,

and store, information security must be included in the SDLC for any SDLC model.

Businesses may balance security demands for agency data and assets with the cost of

security controls and mitigation approaches across the SDLC by using the risk

management process to develop systems. Critical assets and activities, as well as

systemic weaknesses, are identified through risk management methods. Risks are

frequently shared within an organization and are not limited to certain system

29

architectures. (Radack, 2009).SDLC is used majorly in several engineering fields, and

industrial fields as a framework to help manage, plan, and control the process of

developing a system. It is a continuous process that starts from the moment a decision

has been made to launch a project, to when the system has met the user requirements

and is ready to be deployed.

2.3.1 Software development life cycle processes

The software development life cycle gives a sequence of processes to be

followed to design and create a software product efficiently. SDLC

framework comprises the following steps:

a. Planning

 Project leaders assess the project's terms during the planning phase.

Calculating labor and material expenses, setting a schedule with specific deadlines,

and forming the project's teams and leadership structure are all part of this process.

Stakeholder comments may be included into the planning process. Anyone who

stands to gain from the application is referred to as a stakeholder. Obtain comments

from potential consumers, developers, subject matter experts, and sales

representatives. The scope and goal of the application should be clearly defined

throughout planning. It charts a route and equips the team to build software efficiently.

It also establishes limits to prevent the project from growing or diverging from its

initial goal.

b. Requirement analysis

 Defining requirements is part of the planning process to figure out what the

application is meant to accomplish and what it needs. A social networking program,

for example, would need the ability to connect with a buddy. A search function may

be required by an inventory program. The resources required to complete the project

30

are also defined in the requirements because it is it is necessary to know what is

expected from the system to be developed before implementation. A group may, for

example, create software to control a bespoke manufacturing equipment. The machine

is required for the process to work.

c. Designing project architecture

 The developers are creating the architecture in the second step of the software

development life cycle. The specifics of the design are presented to the system

stakeholders, alongside the possible drawbacks that may occur (budget, risks, and

time constraints) and each of these parameters is reviewed to determine the best

design approach to solve the problem. All of the stakeholders, including the client,

debate the many technical questions that may arise at this point. In addition, the

technologies utilized in the project, team load, limits, time frames, and budget are all

described here.

d. Development and programming

 Following the approval of the requirements, the process moves on to the next

stage: actual development. Programmers begin by writing source code while keeping

previously defined requirements in mind. System administrators configure the

software environment, while front-end programmers create the program's user

interface and the logic that governs its interaction with the server.

e. Testing

The debugging procedure is included in the testing step. All of the code problems

that were overlooked during development are found here, documented, and forwarded

to the developers to remedy. Each component of the system is brought together to

form a single system after which it is deployed into the testing environment before it

is delivered to the client. The testing procedure is repeated until all major issues have

31

been addressed and the software workflow has been stabilized. Black box and white

box testing are the two types of testing methodologies used to evaluate software

systems.

f. Deployment

 When the software is complete and free of major flaws, it is time to make it

available to end users. The tech support staff joins when the new software version is

released. This section offers user feedback, as well as consultation and assistance

during the exploitation period.

g. Operations and maintenance

The development cycle is practically complete at this stage. The application

has been completed and is currently being utilized in the field. However, the period of

operation and maintenance is still crucial. Users point out the flaws that were missed

during testing at this phase. These issues must be addressed, which may give rise to

new development cycles.

 2.3.2 Software development life cycle models

 Developers may use the software development paradigm to help them choose

a software development method. A software development paradigm is a set of tools,

processes, and procedures that describe the software development life cycle and are

explicitly stated. Some examples of software development paradigms or process

models are as follows:

a. Waterfall model

The most widely used design process is the Waterfall SDLC model. When one step of

the project is completed, it spills over into the next. It is one of the oldest models,

having been used in a variety of large government and organizational initiatives. It

can be applied to fit various applications, but it is best fitted when the software

32

requirements are well understood documented, clear, and fixed. It can also be used

when the technology to be used is not dynamic when the software requirements are

not ambiguousThis is a tried-and-true strategy that works. The Waterfall approach has

the benefit of allowing each step to be reviewed for continuity

33

Figure 2.1: Waterfall Model

and feasibility before going on to the next. It is, however, restricted in pace since one

phase must end before the next can begin. (jevtic, 2019)

b. Agile model

 The agile approach is a hybrid methodology that combines the benefits of both

iterative and incremental development by splitting software into components and

delivering a functioning model of each component on each cycle or iteration. This

approach generates new releases, each of which contains certain incremental

modifications. After each iteration, the product is evaluated to see whether it is

acceptable or not. As customers, developers, and testers collaborate throughout the

project, the agile approach promotes collaboration. The Agile paradigm has the

advantage of quickly delivering a functional product and is a very practical

development strategy. . One disadvantage of this approach is that, because it is so

reliant on client communication, the project might move in the wrong direction if the

client is unsure of his or her needs or the direction in which he or she wants to go.

(Barjtya, 2017)

c. Iterative model

Repetition is crucial to the Iterative model. Project teams execute a set of

software requirements before testing, analyzing, and finding further needs, rather than

starting with entirely stated requirements. A new version of the software is developed

after each phase, or iteration. Repeat this process until the entire system is operational.

34

In an iterative approach, the demands are not fully specified; rather, the process

begins with a restricted set of criteria, with each iteration producing a smaller form of

the product or system, and so on until the final version is developed. In comparison to

other common SDLC methodologies, the iterative model has the benefit of providing

a feasible solution.

35

Figure 2.2: Agile Model

36

Figure 2.3: Iterative Model

edition of the project early in the cycle, which reduces the cost of change

implementation. One drawback is that repetitive procedures can quickly deplete

resources. The rational unified process (RUP), developed by IBM's Rational Software

group, is an illustration of an iterative approach. (Half, 2019)

d. Spiral Model

 Spiral model is a mix of systematic and organized development that takes the

benefits of iterative development and combines them with the simplicity of the

waterfall model, as well as extra risk analysis elements. The Spiral model's operation

37

is separated into four phases (identification, design, construction, evaluation, and risk

analysis), which are repeated until the project is completed. This paradigm allows for

gradual updates to software product releases. This paradigm allows for gradual

updates to software product releases. The spiral approach is most suited for highly

customized software products since user involvement and assessment begin early in

the development process. However, you run the danger of constructing a never-ending

spiral for a project that never ends. (Barjtya, 2017)

e. V-Shaped Model

 The V-Shaped life cycle, like the water fall model, executes a number of

operations in a sequential route. Each phase in this paradigm must be accomplished

before on towards the next. Testing methods are created early in the life cycle, before

any coding is done, in each of the phases before implementation. This life cycle

model has the same requirements as the waterfall model. Before beginning

development, a system test strategy is established. The test strategy is focused on

ensuring that the functionality provided in the requirements is met. The high-level

design phase is focused on system architectural design, whereas the low-level

conceptual design is

38

Figure 2.4: Spiral Model

39

Figure 2.5: V-shaped Model

focused on the application system components and unit testing. (Khurana gourav,

2012)

f. Rad Model

The RAD paradigm stands for Rapid Application Development. It's an

incremental model of some sort. The components or functions of the RAD paradigm

40

are created in simultaneously, as if they were minor tasks. The projects are timed,

delivered, and then put together into a functional prototype. This may immediately

offer the client with something to see and use, in addition to an opportunity to provide

feedback on the delivery and their needs.

g. Incremental Model

 The incremental model splits the product into builds, with individual portions

of the project being developed and evaluated. Because user feedback is sought at each

stage and code is tested sooner after it is developed, this technique is likely to

discover flaws in user requirements fast. The overall needs of the end system or

product are understood from the outset of development in incremental models, just as

they are in sequential models. However, with incremental models, each increment is

assigned a restricted set of criteria, and with each subsequent (internal) release,

additional requirements are addressed until the final (external) release meets all

requirements.

41

Figure 2.6: Rad Model

42

Figure 2.7: Incremental Model

 2.3.3 Model Adopted

 Extreme programming is a software building style that stresses product quality

improvement and responsiveness to changing client requirements over all other

factors. (e.g., cost). According to the definition, it is a type of agile development

43

model. As a technique of enhancing productivity, it encourages frequent releases with

short development cycles. These releases are designed to boost the program's

efficiency while also increasing its overall quality by implementing certain methods

aimed at setting certain checkpoints at which client needs can be approved and met.

Extreme Programming is a technique that emphasizes the usage of lightweight

procedures. Aspects of the XP lifecycle that must be considered are: planning;

designing; coding; and testing Given that this is an iterative methodology, the system

is created by breaking down the main project into smaller sub-projects. The entire

development cycle, from the design phase to the testing phase, is carried out for a

single function. After completing the execution of one function and thoroughly

debugging it, the developers move on to the next one. XP is centered on rapid release

cycles and continuous communication between developers and stakeholders, i.e.,

customers and other interested parties. In addition to oral communication, frequent

testing, code review, and designing are all essential. Communication is seen as a

critical criterion in the XP environment. Communication between all parties involved,

including developers, customers, and management, should take place on a regular

basis. Extreme programming has been demonstrated to produce superior results in

software development when used as a software development approach. (Yasvi, 2019)

44

Figure 2.8: Extreme programming

45

2.4 Unified modeling language (UML)

 It was first introduced in the late 1990s, as an evolution of the object-oriented

programming language. Its origin is an intersection of the three popular

methodologies of the 1980s and 1990s: the Booch method, Rum-baugh‟s Object-

Modeling Technique (OMT), and Jacobson‟s Object-Oriented Software Engineering

(OOSE). In the discipline of object-oriented software engineering, the Unified

Modeling Language (UML) is a recognized general-purpose modeling language.

UML is a set of methodologies for creating visual models of object-oriented software

systems using a set of graphic notation techniques. UML is a modeling language that

incorporates data modeling, business modeling, object modeling, and component

modeling methodologies. It may be used across the software development life cycle

and with a variety of implementation technologies. (Padmanabhan, 2012)

Figure 2.9: Uml diagram

46

Two views of a system model are represented by UML diagrams:

a. Static (or structural) view

 Structure view show the things in the modeled system. In a more technical

term, they show different objects in a system. Using objects, characteristics, actions,

and relationships, this viewpoint emphasizes the system's static structure. Ex: Class

diagram, Composite Structure diagram.

i. Class diagram

 In any object-oriented solution, class diagrams serve as the fundamental

building element. The attributes and actions of each class, as well as the relationships

between them, are used to depict system classes. A class is usually broken into three

portions in most modeling systems. The name is at the top of the page, the

characteristics are in the middle, and the operations or procedures are at the bottom.

Creating class diagrams is useful in large systems with numerous related classes since

it allows for easier grouping of classes. Different types of arrows are used to depict

different types of links between classes.

ii. Components diagram

 A component diagram shows how the structural connections between the

components of a software system are made. When dealing with large, complex

systems with several components, these are commonly used. Components

communicate with one another through interfaces. Connectors are used to link the

different interfaces together.

iii. Deployment diagram

 The physical components of your system, as well as the software that runs on

them, are depicted in a deployment diagram. When your software solution is

47

distributed across multiple workstations, each with a different configuration than the

others, deployment diagrams are essential.

iv. Objects diagram

 Object diagrams, also known as Instance diagrams, show the relationships

between objects in a similar way to class diagrams. They're similar to class diagrams

in that they show how items relate to one another, but they employ real-world

examples. They show how a system will appear at a given moment in time. Because

the objects include data, they can be used to depict complicated relationships between

different entities.

v. Package diagram

 A package diagram, as the name suggests, depicts the relationships that exist

between distinct packages in a given system.

vi. Profile diagram

 Profile diagrams are a new sort of diagram that was introduced in UML

version. In any standard, this is a diagram type that is only very infrequently used.

vii. Composite structure diagram

 In order to demonstrate the internal structure of a class, composite structure

diagrams are utilized. Some of the most often encountered composite structure

diagrams.

b. Dynamic view (or behavioral) perspective

 The behavioral view depicts what should take place in a system. In order to

establish a functional system, they define how the objects interact with one another.

This view draws attention to the system's dynamic activity by presenting inter-object

cooperation as well as changes in the internal states of individual objects. Sequence

diagrams, activity diagrams, and state machine diagrams are examples of diagrams.

48

i. Use case diagrams

 In addition to being the most well-known diagram type among the behavioral

UML kinds, use case diagrams provide a visual representation of the players involved

in a system, the various functions required by those actors, and the way these various

functions interact. It is an excellent beginning point for any project conversation since

it allows you to quickly identify the primary actors engaged as well as the primary

processes of the system under consideration.

ii. State machine diagrams

 With the exception of the notations and vocabulary, state machine diagrams

are very similar to activity diagrams. State diagrams, state chart diagrams, and state

chart diagrams are all terms used to describe them. These are crucial for defining the

behavior of objects that act differently depending on their current state. The essential

states and actions are depicted in the state machine figure on the right.

iii. Sequence diagram

 Sequence diagrams in the Unified Modeling Language (UML) depict how

objects interact with one another and the sequence in which those interactions occur.

It's vital to notice that they only display the interactions that occur in a specific

scenario. Processes are shown vertically, and interactions are depicted as arrows to

indicate their existence.

iv. Activity diagrams

Activity diagrams and interaction summary diagrams are extremely similar in

appearance. However, whereas process flow diagrams depict a sequence of processes,

interaction overview diagrams depict a sequence of interaction diagrams. They are a

collection of interaction diagrams that are displayed in the sequence in which they

occur.

49

v. Timing diagrams

 The appearance of timing diagrams and sequence diagrams is very similar.

They're used to show how items behave over time. The diagram is simple to

understand as long as there is only one thing to portray. When more than one object is

involved, however, a Timing diagram is utilized to represent the interactions between

the objects across time.

2.5 System Development Tools

This study shows the technologies which were used to implement the system which

are:

a. React native

 React Native is a JavaScript framework for building real-time, natively

rendered iOS and Android mobile apps. It's centered on React, Facebook's JavaScript

framework for developing user interfaces, although it's optimized for mobile rather

than web use. To put it another way, online developers may now use a JavaScript

editor to create mobile apps that look and feel totally "native."

b. Node j.s

 Ryan Dahl created Node.js in 2009 as a cross-platform runtime environment

for building server-side applications. It's a type of JavaScript that's run on the server.

It was intended to address the problems that platforms sometimes have with network

communication performance, such as spending too much time processing web

requests and responses. Node.js is a framework for creating fast, scalable network

applications that is built on Chrome's JavaScript runtime.

 Node.js is lightweight and efficient because it uses an event-driven, non-

blocking I/O architecture. It's ideal for data-intensive real-time applications that

operate across several devices. Node.js is a server environment that is available for

download for free. Node.js is a server-side programming language that may be used

50

with a wide range of platforms. (Windows, Linux, UNIX, Mac OS X, and so on)

(Refsnes Data, 1999).

c. Firebase

 Firebase was previously known as Envolve, a company that was bought by

Google in 2012. Developers may add online chat features into their own websites

using an API offered by the company, which was then known as Envolve. It's

amazing to observe that people were utilizing Envolve to pass application data that

was more involved than just chat messages. Developers were using Envolve to sync

application data, such as a game state, across their consumers' devices in real time.

As a result, Envolve's founders, James Tamplin and Andrew Lee, were compelled to

remove the chat system from the real-time architecture. Firebase was spun off from

Google in April 2012 to provide real-time Backend-as-a-Service for web apps and

websites. Firebase is a mobile and web application development platform that

provides a plethora of tools and services to assist developers create high-quality apps,

expand their user base, and increase their profits. Firebase is an online and mobile

application development platform.

Firebase grew into the multifunctional monster of a mobile and online platform that it

is today as a result of its acquisition by Google in 2014. (geekyants, 2017)

2.6 Related Works

 Over time, different forms of publish/subscribe systems have been developed.

The majority of research on publish/subscribe systems has focused on heterogeneous

database integration, network centric integration, or both.

 According to (Babur et al., 2018), a pub-sub system was used to develop a

university notification subscription system. The research implement Amazon web

service‟s Simple Notification Service (SNS) to allow creation and sending of

51

messages from publisher to subscriber on logical access points and topics of

communication channels. It also achieved extensibility of the system by distributing

topic sets in a number of message providers while the pub-sub middleware forwards

publisher‟s event to relevant subscribers.

 According to (Wentao et al., 2018), a distributed pub-sub communication

framework for building management systems over Named Data Network (NDN)

called “NDN-PS” that supports data subscriptions from consumer applications

running on different platforms and with interests in different data as well as different

data consumption semantics. Their design is based on the NDN‟s Interest-Data

primitive.

SIENA is one of the most well-known examples of the publish/subscribe

system to be developed in this area. SIENA uses a P2P model of interaction among

servers (super-peers terminology) and adopts a language based on attribute-value

pairs in order to express notifications, subscriptions and advertisement. SIENA

adopted a conventional network based algorithm on shortest paths and minimum

weight spanning trees for routing messages. Another hash based publish subscriber

model adopts publish/subscribe communication paradigm to WMNs (Wireless Mesh

Network). This system automatically selects brokers to store and forward messages

from publisher to subscriber. When published events/services match the subscriptions,

subscribers receive notifications.

 According to (Rahimian et al., 2019) proposed a gossip-based hybrid

P2P structure for pub/sub systems, called Vitis. In Vitis, peers are arranged in a ring

structure and use a gossip-based peer sampling mechanism to find subscriptions and

form connections, resulting in clusters of peers interested in similar topics. Despite the

fact that Vitis is able to lower the number of relay nodes, peers with a high social

52

degree have a significant traffic overhead since the rest of the peers want to connect

with the social users who share the most social friends.

 Another distributed content-based publish/subscribe system was approached

with the advent of distributed hash-tables. . The schema, which is a set of principles

for picking topics, is used in this approach to automatically generate themes from the

content of subscriptions and publications. After some statistical analysis, the

application designer can supply the schema, which is application-specific. The

schemas that have been used are very much similar to the schemas of RDBMS

(Relational Database Management System). With this approach, they have increased

the expressiveness of subscriptions compared to the purely topic-based systems.

46

CHAPTER THREE

METHODOLOGY OF THE STUDY

3.1 Method of Identification of User and System Requirement

 The system and user requirements were sourced using secondary sources.

These sources include online articles, journals, review of other similar

publish/subscribe platforms etc. The analysis of these sources led to the elicitation of

the valid user and system requirements. This chapter would also talk about the method

of system implementation, database implementation, and front-end implementation.

3.1.1 Identification of system requirements

 The requirements of the system were used to design the program. These are

what the system was based on during the development stages. Some of these

requirements are functional while some others are non-functional in nature.

a. Functional Requirements

 The following functional requirements should be met by a publish/subscribe

system:

i. Create post: The publisher must be able to create post for the

subscriber to view

ii. Delete post: The publisher must be able to delete post from the

application

iii. Comment and like a publisher post: The subscriber must be able to

comment on and like the post made by the publisher that

iv. Subscribe to a publisher page: The subscriber must be able to subscribe

to the publisher's page.

v. Get notification of post: The subscriber must receive notifications

whenever a new post is made by the subscriber he subscribed to.

47

vi. Comment and like a publisher post: The subscriber must be allowed to

comment on and like the post made by the publisher that piques his or

her interest.

b. Non-functional Requirements

The non-functional requirements include:

i. Security and validation: Access to the system is to be controlled through the

use of a unique login, password, and authentication procedure each

time. Modules will be designed dependent on the type of user that will

be logging into the system.

ii. Authentication and authorization: When a user logs into the system, it

should be able to verify that they are who they say they are and grant

them authorization to access a particular function.

iii. Usability: There must be ease of navigation for the user.

iv. Reliability: The system should be trustworthy and performing

consistently well.

v. Response time: A request made to the system should be responded to

immediately

c. Software Requirement

In order for the scheme to function properly, it is necessary that certain

hardware and software components be available on the system. The scheme

specification is made up of the software and hardware components that make

it possible to create the scheme in an efficient manner. The following software

was installed and utilized in order to ensure the successful and efficient

deployment of the system:

 Front-end technologies: ` React Native

48

Backend technologies: JavaScript

Database Management System: Firebase

Local Server: Node j.s

Web Browser: Google Chrome, Mozilla Firefox

d. Hardware Requirements

 One of the most common sets of requirements defined by any operating

system or software application is the physical computer resources, also known as

hardware resources. A hardware requirements list is frequently supplemented by a

hardware compatibility list (HCL), particularly in the case of operating systems and

software applications. An android device is needed with camera and image support

and a reliable internet connection. (Android 7.0 and above)

3.1.2 Identification of user requirement

The User Requirements Specification outlines the business requirements for what

users expect from the system and how it will be implemented.

a. System Admin requirements

 In order to establish accounts for publishers and subscribers, as well as to

delete people when necessary, the admin must have the maximum level of privilege

and can view the user that has registered on the system and their information.

b. Basic user requirements

 There are two basic users on the publish/subscribe system which are:

i. Publisher (educators): They log in using the credentials provided

by the administrator and have the ability to create and delete posts.

ii. Subscriber (student): They log in using the credentials provided by

the administrator and are allowed to like, follow, and comment on

the publisher's page that they are interested in.

49

3.2 System design methods

 The system was modelled using extreme programming which is an agile

methodology. It allows for quick iteration and testing of ideas due to its lean structure.

At each phase of the development process, an increment of the software is developed

with all the specified features planned out for the release cycle implemented. The

implemented system architectural components were designed with the aid of UML

diagrams which showed the interactions between the system users and the system

components.

3.2.1 Architectural diagram

The architectural diagram is a system diagram that encapsulates the overall outline of

the software system as well as the relationships, restrictions, and boundaries between

its many components. The architectural design of the system, the components that

make up the system, and their interactions are depicted in this figure below.

50

Figure 3.0: Systems architectural diagram

51

3.2.2 Use case diagrams

This section illustrates the functional requirements of the identified users via the UML

use case diagrams.

a. Admin use case diagram

 Figure 3.1 below describes the admin use case diagram of the system. The

admin is in charge of overseeing the interactions between the publisher and subscriber,

two other users. Below is their use case diagram showing the expected functionality

from the system.

b. Publisher use case diagram

 Figure 3.2 below describes the publisher use diagram of the system. The

publisher user type is responsible for churning out content in which the subscribers

subscribe to. They are responsible for moderating their content on the platform.

c. Subscriber use case diagram

 Figure 3.3 below describes the subscriber use case diagram of the system. The

subscriber class of users are responsible for subscribing to content posted by the

publishers and reacting to said content via comments and likes.

52

Figure 3.1: Admin use case diagram

53

Figure 3.2: Publisher use case diagram

54

Figure 3.3: Subscriber use case diagram

55

3.2.3 Sequence diagram

Figure 3.4 below describes the sequence diagram of the system. Because it

illustrates how and in what order a group of items interacts, a sequence diagram is a

form of interaction diagram. It describes the scenario's objects, as well as the

sequence of messages that must be sent between them in order for the scenario's

functionality to be carried out. The diagram illustrates the interactions between users

of the publish/subscribe platform and the implemented system itself.

3.2.4 Activity diagram

 Figure 3.5 below describes the activity diagram of the system. The diagram

illustrates the applications workflow from start to finish via the use of an activity

diagram. It shows the transition from certain states to the other and the corresponding

inputs which take one state to the other.it portrays the control flow from a start point

to a finish point showing the various decision paths that exist while the activity is

being executed.

3.2.5 Class diagrams

 Figure 3.6 and 3.7 below describes the class diagram of the system. It depicts

a system's structure by displaying the system's classes, properties, operations, and

object relationships. The system's identified objects, as well as their accompanying

variables and methods, are depicted in the class diagram below. The user class

consists of properties that describe the user of the system. (Registration officer,

students and lecturers).

56

Figure 3.4: Sequence diagram illustrating subscription process

57

Figure 3.5: Activity diagram illustrating the applications workflow

58

Figure 3.6: User class diagram

59

Figure 3.7: Post class diagram

60

3.3 System implementation

 The mobile user interface for the system was developed using the React

Native framework. Class components were constructed to control screens, navigation,

and other application functionality, such as authorization, for which java script code

was written to manage the authorization of users based on the role field in the class

component definition. Other libraries were added to provide functions such as picture

selection, form validation, and other similar tasks.

3.3.1 Database implementation

 Firebase was used to store user personal data, post data, and subscription

details in several collections, including: user collection, post collection, subscription

collection, subscriber‟s collection, user registration, authorization, and collection

management for users.

3.3.2 Frontend implementation

 The frontend and logic of the system got implemented using the React native

mobile application development framework. The application screen was generated

with class components, and libraries like expo document picker, react redux, and

others were deployed for functionality like device directory access and static

management.

Node j.s is a runtime server that can be used to execute JavaScript applications. It was

utilized in this project to host the react native application, as well as the Node package

manager (NPM) to manage the application dependencies.

61

CHAPTER FOUR

IMPLEMENTATION AND RESULT

4.1.1 Introduction

 The results of the publish/subscribe system are discussed in this chapter, along

with a description of the outcomes. The data obtained of the database, which was

implemented using firebase, and the frontend implementation of the publish/subscribe

system, which was designed using react native and JavaScript will be addressed in

this chapter.

4.2 Result of database implementation

a. The user collection page

 The figure 4.1 indicates the personal data within the system. It includes fields

such as college, department, email, field of expertise, first name, gender, interests, last

name, and roles, as well as first name, gender, interests, last name, and roles. It keeps

adequate records for each user generated by the administrator.

b. The subscription collection page

 The figure 4.2 gives a list of publisher information. It utilizes the user

collection also as main basis and filters by the role field.

c. The subscriber collection page

 The figure 4.3 shows the list of subscribers for each publisher in the

subscription collection. It also makes use of the user ID to refer to a user collection.

d. The post collection page

Considering educators are publishers in the system, the collection used to keep the

data for each publisher and their associated postings is shown in figure 4.4 by

referring the individuals table for the user with role "educator."

62

Figure 4.1: User collection page

63

Figure 4.2: Subscription collection page

64

Figure 4.3: Subscribers collection page

65

Figure 4.4: Post collection page

66

e. The user post collection page

The figure 4.5 depicts the user post collection page, which contains a list of details for

each publisher's entries in the post collection. A post / content that is published by the

publisher and exists in the post collection is a documentation in this collections.

4.2 Result of the implementation of the frontend interface

a. The login page

 The figure 4.6 shows the login page. Logging in is the procedure by which an

individual receives access to a computer system by identifying and authenticating

oneself. In this figure below the user is allowed to log in either as a publisher or

subscriber.

b. The profile page

 The figure 4.7 shows the profile page. The users' profiles are collections of

settings and information that are specific to the individual who created them. The

figure is showing the information of the user that logged into the system using the

info provided by the administrator. This is a publisher page, he/she is allowed to

create post and delete them when necessary.

c. The add post screen

 The figure 4.8 shows the add post screen. The image below illustrates that the

publisher has the option of posting either by snapping a photo or by accessing files

already saved on the device.

d. The search page

The figure 4.9 shows the search page which in order to find a publication page or post

that piques the subscriber‟s interest, the user is given the option to search.

67

Figure 4.5: User post collection page

68

Figure 4.6: Login screen

69

Figure 4.7: Profile screen

70

Figure 4.8: The add post screen

71

Figure 4.9: Search page

72

Figure 4.10 the feed screen

73

4.3 Discussion of Results

 The results on the topic of publish/subscribe systems showed desire outcome

based on the set goals forth at the beginning. The administrative registration

officer, lecturers, and students were identified as system users as a function of the

user and system prerequisites having recognized. The administrative officer is in

charge of registering students and obtaining their information, according to the

results. It implies that the publishers are in responsible for formulating posts for

subscribers to engage to. The study demonstrated that a subscriber should

subscribe to a publisher page that piques their interest, and thus be informed

whenever the publisher submits a post. As a result, it is safe to conclude that the

system's outcome deals with the issue of uncertainty or lack of direction in the

regarding career path for final academic year or after, as a reaction of the

knowledge gap between academic curriculum and practical career criteria.

74

CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMMENDATION

5.1 Summary

This research developed a publish/subscribe system that allows professors to

post information that piques the interest of students and allows students to subscribe

to the publisher of their choice, allowing them to get alerts when that publisher makes

a post. During this research, the user and system requirements that the system

necessary to meet were identified alongside the software and hardware needs of the

system. Unified modeling diagrams such as the use case, activity, sequence, and class

diagram were also used to specify the requirements. The react native framework was

used to create the frontend, while Firebase was used to handle the database.

5.2 Conclusion

 Finally, this study has designed and implemented a publish/subscribe system

that solves the problem of indecisiveness in the choice of career path for student in

their final year has been constant but the introduction of the publish/subscribe system,

which will allow publishers to share articles, pictures, links, and other learning

resources and then allow students to decide on the articles that pique his/her interest

and is believed to help alleviate the problems. The publish/subscribe system has

remarkable features like the subscriber gets notified anytime a new post is posted by

the publisher. The app was designed using react native framework, JavaScript,

firebase and node j.s.

75

5.3 Recommendation

It is encouraged that the application be deployed at other universities because

it fosters the communication between professors and students and facilitates students

to develop a future career through indirect mentorship from the system's publishers.

76

Reference

Al-Jenaibi, A. a. (2016). Journal of r uoJ. Social Network and Privacy, 8.

amazon. (2021). What is Pub/Sub Messaging. Retrieved from aws:

https://aws.amazon.com/pub-sub-

messaging/#:~:text=Publish%2FSubscribe%20(Pub%2FSub,parts%20of%20a

%20system%20asynchronously.&text=To%20broadcast%20a%20message%2

C%20a,a%20message%20to%20the%20topic.

Barjtya, S. (2017, july 7). International Journal Of Engineering And Computer

Science. A detailed study of Software Development Life Cycle (SDLC) Models,

Babur, H. M., Zaheer, M. D., Sabah, M. K., Mahnoor, D., Muhammad, H. S., Imran,

K., Fatima, M., Hamna, Z., & Asad, A. (2018). University Notification Subscription

System using Amazon Web Service. International Journal of Advanced Computer

Science and Applications, 9(5), 349–354. https://www.ijacsa.thesai.org

Chenxi, H., Peter, R. H., Gareth, A. T., & Kyberd, P. (2007). A Study of

Publish/Subscribe Systems for Real-Time Grid Monitoring. Proceedings, 26–30, 1–8.

https://doi.org/10.1109/IPDPS.2007.370550

Christiansen, L. (2021, january 06). The 6 Main Types of Information Systems.

Retrieved from altametrics: https://altametrics.com/en/information-

systems/information-system-types.html

Eisner, M. (2020, july 24). processmaker/blog. Retrieved from processmaker:

https://www.processmaker.com/blog/implementing-an-office-automation-

system/

https://aws.amazon.com/pub-sub-messaging/#:~:text=Publish%2FSubscribe%20(Pub%2FSub,parts%20of%20a%20system%20asynchronously.&text=To%20broadcast%20a%20message%2C%20a,a%20message%20to%20the%20topic
https://aws.amazon.com/pub-sub-messaging/#:~:text=Publish%2FSubscribe%20(Pub%2FSub,parts%20of%20a%20system%20asynchronously.&text=To%20broadcast%20a%20message%2C%20a,a%20message%20to%20the%20topic
https://aws.amazon.com/pub-sub-messaging/#:~:text=Publish%2FSubscribe%20(Pub%2FSub,parts%20of%20a%20system%20asynchronously.&text=To%20broadcast%20a%20message%2C%20a,a%20message%20to%20the%20topic
https://aws.amazon.com/pub-sub-messaging/#:~:text=Publish%2FSubscribe%20(Pub%2FSub,parts%20of%20a%20system%20asynchronously.&text=To%20broadcast%20a%20message%2C%20a,a%20message%20to%20the%20topic
https://www.ijacsa.thesai.org/
https://doi.org/10.1109/IPDPS.2007.370550

77

Fengyun, C., & Jaswinderpal, S. (2006). Architecture design for distributed content-

based publish-subscribe systems (No. AAI3214554). Princeton UniversityComputer

Science Dept. Engineering Quadrangle Princeton, NJUnited States.

https://dl.acm.org/doi/book/10.5555/1195489

geekyants. (2017, december 27). introduction to firebase. Retrieved from hackernoon:

https://hackernoon.com/introduction-to-firebase-218a23186cd7

Gibb, R. (2019, July 12). What is pub/sub messaging? A simple explainer. Retrieved

from dev.

Half, R. (2019, may 24). 6 Basic SDLC Methodologies: Which One is Best? Retrieved

from robert half talent solutions: https://www.roberthalf.com/blog/salaries-

and-skills/6-basic-sdlc-methodologies-which-one-is-best

Jahan, F. (2013). SEMANTIC-BASED PUBLISH/SUBSCRIBE SYSTEM IN SOCIAL

NETWORK. North Dakota: North Dakota State University.

jevtic, G. (2019, may 15). software-development-life-cycle. Retrieved from

phoenixnap: https://phoenixnap.com/blog/software-development-life-cycle

Jackie, G. (n.d.). The Role of the Educator as a Maker Educator. ASCD. Retrieved

April 5, 2021, from http://www.ascd.org/publications/books/119025/chapters/The-

Role-of-the-Educator-as-a-Maker-Educator.aspx

Juneja, P. (2015). MANAGEMENT INFORMATION SYSTEM. Types of

Information Systems - Components and Classification of Information Systems,

Liebenberg, I. (2017, March 22). Teacher vs Educator – Which One Are You? The

Eduvation Network. https://eduvationnet.co.za/news_article/teacher-vs-educator-

which-one-are-you/

https://dl.acm.org/doi/book/10.5555/1195489
https://phoenixnap.com/blog/software-development-life-cycle
https://eduvationnet.co.za/news_article/teacher-vs-educator-which-one-are-you/
https://eduvationnet.co.za/news_article/teacher-vs-educator-which-one-are-you/

78

Oracle. (2002, September 1). Using the Publish-Subscribe Model for Applications.

Retrieved from

https://docs.oracle.com/cd/B10501_01/appdev.920/a96590/adg15pub.htm.

Proceedings of 1st IEEE International Conference on Internet of Things Design and

Implementation (IoTDI)

Using the Publish-Subscribe Model for Applications. (n.d.). Oracle. Retrieved April 5,

2021, from

https://docs.oracle.com/cd/B10501_01/appdev.920/a96590/adg15pub.htms

Padmanabhan, B. (2012). UNIFIED MODELING LANGUAGE. 12.

Radack, S. (2009, april). NIST Special Publication. THE SYSTEM DEVELOPMENT

LIFE CYCLE (SDLC) , 7.

Qiu, X. (2010). A Publish-Subscribe System for Data Replication and

Synchronization Among Integrated Person-Centric Information Systems (No. 620).

All Graduate Theses and Dissertations.

Shang, W., Bannis, A., Liang, T., Wang, Z., Yu, Y., Afanasyev, A., Thompson, J.,

Burke, J., Zhang, B., & Zhang, L. (2016). “Named Data Networking of Things,”

Wentao, S., Ashlesh, G., Minsheng, Z., Alexander, A., Jeffrey, B., Lan, W., & Lixia,

Z. (2018). Publish-Subscribe Communication in Building Management Systems over

Named Data Networking (NDN-0066). University of Memphis. http://named-

data.net/techreports.html

Yasvi, M. (2019). Review On Extreme Programming-XP. delhi: researchgate.

79

Zwass, V. (2020). Encyclopedia Britannica. information system, 10.

80

