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1. Introduction

Let C be a nonempty, closed and convex subset of a real Hilbert space H, then the
Quasi-Variational Inclusion Problem (in short QVIP) (see [1, 2]) which generalizes the
classical Varaiational Inequality Problem (VIP) introduced by Stampacchia [3] is to find
u ∈ H such that

θ ∈ D(u) +M(u), (1.1)
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where D : H → H is a single-valued nonlinear mapping and M : H → 2H is a multivalued
mapping.
As applications, a number of problems arising in structural analysis, mechanics and eco-
nomics can be studied in the framework of this kind of variational inclusion (see [4]).
The QVIP can be applied to solve several other optimization problems, (see [5–16]). We
denote by V I(H,D,M) the solution set of (1.1).
Let C be a nonempty, closed and convex subset of a real Hilbert space H, a point p ∈ C
is called a fixed point of a mapping T : C → C, if Tp = p. We denote by F (T ), the set
of all fixed points of T .

Definition 1.1. A nonlinear mapping M : H → H is called
(i) nonexpansive, if

||Mx−My|| ≤ ||x− y||, ∀ x, y ∈ H;

(ii) quasi-nonexpansive, if p ∈ F (T ) and

||Mx− p|| ≤ ||x− p||, ∀ x ∈ H;

(iii) monotone, if

〈Mx−My, x− y〉 ≥ 0, ∀ x, y ∈ H;

(iv) α-strongly monotone, if there exists a constant α > 0 such that

〈Mx−My, x− y〉 ≥ α||x− y||2, ∀ x, y ∈ H;

(v) α-inverse strongly monotone (ism), if there exists a constant α > 0 such that

〈Mx−My, x− y〉 ≥ α||Mx−My||2, ∀ x, y ∈ H.

A multivalued mapping M : H → 2H is called maximal monotone, if it is monotone and
if for any (x, u) ∈ H × H , 〈u − v, x − y〉 ≥ 0 for every (y, v) ∈ Gra(M) (the graph of
mapping M) implies u ∈Mx and v ∈My.

Definition 1.2. Let T : H → H be a mapping with F (T ) 6= ∅, then T is called k-
demimetric if there exist k ∈ (−∞, 1), for any x ∈ H and q ∈ F (T ) such that

〈x− q, x− Tx〉 ≥ 1− k
2
||x− Tx||2. (1.2)

Equivalently, T is k-demimetric, if there exists k ∈ (−∞, 1) such that

||Tx− q||2 ≤ ||x− q||2 + k||x− Tx||2, ∀ x ∈ H and q ∈ F (T ).

Below is an example of a demimetric mapping in Hilbert spaces.

Example 1.3. Let H = R (the real line with usual metric). Define T : R→ R by

T (x) =


−9
2 x, 0 ≤ x ≤ 1,

0, otherwise.

Clearly, F (T ) = {0}, and k = 7
11 . Hence, we have that T is 7

11 -demimetric mapping.
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Example 1.4. [17] Let H be the real line and C = [−2, 1]. Define

Tx =


x+ 9

10
, x ∈ [0, 1],

3 + x

4
, x ∈ [−2, 0).

Obviously, F (T ) = {1}. We will show that there exists δ ∈ (−∞, 1) such that

|Tx− 1|2 ≤ |x− 1|2 + δ|x− Tx|2, ∀x ∈ [−2, 1].

Consider the following two cases:
Case (i): Let x ∈ [0, 1], then

|x− Tx|2 =
∣∣∣x− x+ 9

10

∣∣∣2 =
∣∣∣ 9

10
(x− 1)

∣∣∣2 =
81

100
|x− 1|2.

Also

|Tx− 1|2 =
∣∣∣x+ 9

10
− 1
∣∣∣2 =

1

100
|x− 1|2

= |x− 1|2 − 99

100
|x− 1|2

= |x− 1|2 − 99

81
× 81

100
|x− 1|2

≤ |x− 1|2 + δ1.
81

100
|x− 1|2,

for any δ1 ∈ [− 99
81 , 1). Hence |Tx− 1|2 ≤ |x− 1|2 + δ1|x− Tx|2.

Case (ii): Let x ∈ [−2, 0), thus

|x− Tx|2 =
∣∣∣x− 3 + x

4

∣∣∣2 =
∣∣∣3(x− 1)

4

∣∣∣2 =
9

16
|x− 1|2.

Then

|Tx− 1|2 =
∣∣∣3 + x

4
− 1
∣∣∣2 =

∣∣∣x− 1

4

∣∣∣2 =
1

16
|x− 1|2

= |x− 1|2 − 15

16
|x− 1|2

= |x− 1|2 − 15

9
.

9

16
|x− 1|2

≤ |x− 1|2 + δ2.
9

16
|x− 1|2,

for any δ2 ∈ [− 15
9 , 1). Hence |Tx − 1|2 ≤ |x − 1|2 + δ1|x − Tx|2. In particular, choose

δ = min{δ1, δ2}. Thus, T is − 15
9 -demimetric.

According to (1.2), it has been proved that a k-strict pseudocontraction T with F (T ) 6= ∅
is k-demimetric and an α-generalized hybrid mapping T with F (T ) 6= ∅ is 0-demimetric,
see [18].
In 2018, Chen and Lee [19] proved the following strong convergence theorem for approx-
imating a common solution of quasi-variational inclusion and fixed point problems of
nonexpansive mapping in the framework of real Hilbert spaces as follows:
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Theorem 1.5. Let H be a real Hilbert space, A : H → H be an α-ism mapping, M :
H → 2H be a maximal monotone mapping and S : H → H be a nonexpansive mapping.
Suppose that the set F (S) ∩ V I(H,A,M) 6= ∅. Suppose x0 = x ∈ H and {xn} is the
sequence defined by{

xn+1 = αnx+ (1− αn)Syn;

yn = JM,λ(xn − λAxn);

where λ ∈ (0, 2α] and αn is a sequence in [0,1] satisfying the following conditions:
(i) limn→∞ αn = 0 and

∑∞
n=0 αn =∞;

(ii)
∑∞
n=0 |αn+1 − αn| <∞.

Then {xn} converges strongly to PF (S)∩V I(H,A,M)x0.

Also, recently Takahashi, Wen and Yao [20] introduced a shrinking projection method
for approximating solution of a finite family of demimetric mappings together with a
variational inequality problems in a real Hilbert space. They proved the following strong
convergence theorem:

Theorem 1.6. Let C be a nonempty closed and covex subset of a real Hilbert space H.
Let {k1, ..., km} ⊂ (−∞, 1) and {µ1, ..., µm} ⊂ (0,∞). Let {Tj}mj=1 be a finite family of

kj-demimetric and demiclosed mappings of C into H and let {Bi}Ni=1 be a finite family
of µi-ism mappings of C into H. Assume that ∩mj=1F (Tj) ∩ (∩Ni=1V I(C,Bi)) 6= ∅. Let
x1 ∈ C and C1 = C, then {xn} is a sequence generated iteratively by

zn =
∑m
j=1 ξj((1− λn)I + λnTj)xn,

wn =
∑N
i=1 σiPC(I − ηnBi)xn;

yn = αnxn + βnzn + γnwn;

Cn+1 = {z ∈ Cn : ||yn − z|| ≤ ||xn − z||};
xn+1 = PCn+1x1

, ∀ n ∈ N;

where a, b, c ∈ R, {λn}, {ηn} ⊂ (0,∞), {ξ1, ..., ξm}, {σ1, ..., σm} ⊂ (0, 1) and {αn}, {βn},
{γn} ⊂ (0, 1) satisfy the following conditions:
(i) 0 < a ≤ λn ≤ min{1− k1, ..., 1− km}, 0 < b ≤ ηn ≤ 2 min{µ1, ..., µn};
(ii)

∑m
j=1 ξj = 1 and

∑n
i=1 σi = 1;

(iii) 0 ≤ c ≤ αn, βn, γn < 1 and αn + βn + γn = 1.
Then {xn} converges strongly to a point z0 ∈ ∩mj=1F (Tj) ∩ (∩ni=1V I(C,Bi)), where z0 =
P∩m

j=1F (Tj)∩(∩n
i=1V I(C,Bi))x1.

In 2009, Chakkrid and Suantai [12] introduced an iterative algorithm to a common element
of the set of fixed points of nonexpansive mapping and the set of solutions of the VIP
for the ism mapping which solves some VIP. They proved a strong convergence result for
approximating solutions of the aforementioned problems.
Motivated by the works of Takahashi et. al [20], Chen and Lee [19], Chakkrid and Suantai
[12] and other related works in literature, we introduce an Halpern iteration process
for approximating solutions of quasi-variational inclusion and fixed point problems of
demimetric and quasi-nonexpansive mappings in the framework of real Hilbert spaces.
A strong convergence result for approximating solutions of the aforementioned problems
was proved. We gave some consequences of our main result and also present a numerical
example to display the applicability of our main result. The result presented in this paper
extends and complements some related results in literature.
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2. Preliminaries

We state some known and useful results which will be needed in the proof of our
main theorem. In the sequel, we denote strong and weak convergence by ”→” and ”⇀”,
respectively.
Let C be a nonempty, closed and convex subset of a real Hilbert space H. For every point
x ∈ H, there exists a unique nearest point in C, denoted by PCx such that

||x− PCx|| ≤ ||x− y||, ∀ y ∈ C.

PC is called the metric projection of H onto C and it is well known that PC is a nonex-
pansive mapping of H onto C that satisfies the inequality:

||PCx− PCy|| ≤ 〈x− y, PCx− PCy〉.

Moreover, PCx is characterized by the following properties:

〈x− PCx, y − PCx〉 ≤ 0,

and

||x− y||2 ≥ ||x− PCx||2 + ||y − PCx||2, ∀ x ∈ H, y ∈ C.

Definition 2.1. Let Q be a convex subset of a vector space X and f : Q → R ∪ {+∞}
be a map. Then,
(i) f is convex if for each λ ∈ [0, 1] and x, y ∈ Q, we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y);

(ii) f is called proper if there exists at least one x ∈ Q such that

f(x) 6= +∞;

(iii) f is lower semi-continuous at x0 ∈ Q if

f(x0) ≤ lim inf
x→x0

f(x).

Definition 2.2. A single-valued mapping A : H → H is said to be hemi-continuous, if
for any x, y, z ∈ H, the function t 7→ 〈A(x+ ty), z〉 is continuous at 0.

Lemma 2.3 ([19]). Let H be a real Hilbert space, then u ∈ H is a solution of variational
inclusion (i) if and only if u = JM,ρ(u− ρDu) ∀ ρ > 0, i.e

V I(H,D,M) = F (JM,ρ(I − ρD)), ∀ ρ > 0.

Also, if ρ ∈ (0, 2α], then V I(H,D,M) is a closed convex subset in H.

Lemma 2.4 ([19]). (i) The resolvent operator JM,ρ associated with M is single-valued
and nonexpansive for all ρ > 0.
(ii) The resolvent operator JM,ρ is 1-ism i.e.

||JM,ρ(x)− JM,ρ(y)||2 ≤ 〈x− y, JM,ρ(x)− JM,ρ(y)〉, ∀ x, y ∈ H.

Lemma 2.5. Let H be a real Hilbert space, then the following inequalities holds:

(i) ||x+ y||2 ≤ ||x||2 + 2〈y, x+ y〉.
(ii) 2〈x, y〉 = ||x||2 + ||y||2 − ||x− y||2 = ||x+ y||2 − ||x||2 − ||y||2, ∀ x, y ∈ H.
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Lemma 2.6 ([21]). Let H be a real Hilbert space, and T : H → H be a quasi-nonexpansive
mapping. Set Tα = αI + (1 − α)T for α ∈ [0, 1). Then the following holds, for all
(x, p) ∈ H × F (T ).
(i) ||Tαx− p||2 ≤ ||x− p||2 − α(1− α)||Tx− x||2.
(ii) F (Tα) = F (T ).

Lemma 2.7 ([22]). Let H be a real Hilbert space and let η be a real number with η ∈
(−∞, 1). Let T : H → H be an η-demimetric mapping. Then F (T ) is closed and convex.

Definition 2.8. Let T : H → H be a mapping, then I−T is said to be demiclosed at the
origin if for any sequence {xn} in H, the conditions xn ⇀ x and limn→∞ ||xn−Txn|| = 0,
imply x = Tx.

Lemma 2.9 ([23]). Let X be a real Banach space with X∗ its dual. Let T : X → 2X
∗

be
a maximal monotone mapping and P : X → X∗ be a hemicontinuous bounded monotone
mapping with Dom(T ) = X. Then the mapping S = T + P : X → 2X

∗
is a maximal

monotone mapping.

Lemma 2.10 ([19]). Let H be a real Hilbert space and A : H → H be an α-ism mapping,
then
(i) A is an 1

α -Lipschitz continuous and monotone mapping,
(ii) If λ is any constant in (0, 2α], then the mapping I − λA is nonexpansive, where I is
the identity mapping on H.

Lemma 2.11 ([24]). Let H be a real Hilbert space, and T : H → H be β-strict pseudo-
contractive mapping. Then I − T is demiclosed at the origin.

Lemma 2.12 ([25]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− σn)an + σnδn, n > 0,

where {σn} is a sequence in (0, 1) and {δn} is a real sequence satisfying
(i)
∑∞
n=1 σn =∞,

(ii) lim supn→∞ δn ≤ 0 or
∑∞
n=1 |σnδn| <∞.

Then limn→∞ an = 0.

3. Main Results

Theorem 3.1. Let C be a nonempty closed and convex subset of a real Hilbert space H,
and D : H → H be an µ-ism. Let M : H → 2H be a maximal monotone mapping and
T : H → H be a quasi-nonexpansive mapping. For {ξi}mi=1, let {Si}mi=1 : H → H be
a finite family of ξi-demimetric mappings such that Si − I is demiclosed at the origin.
Suppose ∆ := ∩mi=1F (Si) ∩ F (T ) ∩ V I(H,D,M) 6= ∅, then the sequences {yn}, {un} and
{xn} generated iteratively for x0 ∈ C and a fixed u ∈ C by

yn = JM,ρ(xn − ρDxn);

un = yn +
∑m
i=1 θn,i

1−ξi
2 (Si − I)yn;

xn+1 = (1− αn − tn)un + αnTun + tnu;

(3.1)

where ρ ∈ (0, 2µ], {αn} is a sequence in (0, 1), {tn} is a sequence in (0, 1 − a) for some
a > 0 satisfying the following conditions:
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(i)
∑m
i=1 θn,i = 1 and lim infn→∞ θn,i > 0,

(ii) limn→∞ tn = 0 and
∑∞
n=1 tn =∞;

(iii) 0 < lim inf αn→∞ ≤ lim supαn→∞ < 1.

Then, the sequence {xn} converges strongly to an element p = P∆u, where P∆ is the
metric projection of H onto ∆.

Proof. For any given p ∈ 4, ρ ∈ (0, 2µ] and Lemma 2.3, we have that p = JM,ρ(p−ρDp).
Moreso, by applying Lemma 2.10, it is clear that 1 − ρD : H → H is nonexpansive.
Hence, we have that

||yn − p|| = ||JM,ρ(xn − ρDxn)− JM,ρ(p− ρDp)||
≤ ||xn − ρDxn − (p− ρDp)||
≤ ||xn − p|| ∀ n ≥ 0. (3.2)

From (3.1) and applying the convexity of ||.||2, we have

||un − p||2 = ||yn +

m∑
i=1

θn,i
1− ξi

2
(Si − I)yn − p||2

≤
m∑
i=1

θn,i||yn +
1− ξi

2
(Si − I)yn − p||2

=

m∑
i=1

θn,i
(
||yn − p||2 + (

1− ξi
2

)2||(Si − I)yn||2

+ 2(
1− ξi

2
)〈yn − p, (Si − I)yn〉

)
=

m∑
i=1

θn,i(||yn − p||2 + (
1− ξi

2
)2||(Si − I)yn||2

− 2(
1− ξi

2
)(

1− ξi
2

)||(Si − I)yn||2

≤ ||yn − p||2 −
m∑
i=1

θn,i
(1− ξ)2

4
||(Si − I)yn||

≤ ||yn − p||2. (3.3)

Hence, we have from (3.2) and (3.3) that

||un − p|| ≤ ||yn − p||
≤ ||xn − p|| (3.4)
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Using (3.1), (3.4) and utilizing the convexity of ||.||2, we have

||xn+1 − p||2 = ||(1− αn − tn)un + αnTun + tnu− p||2

= ||(1− αn − tn)(un − p) + αn(Tun − p) + tn(u− p)||2

≤ (1− αn − tn)||un − p||2 + αn||Tun − p||2 + tn||u− p||2

≤ (1− αn − tn)||un − p||2 + αn||un − p||2 + tn||u− p||2

= (1− tn)||un − p||2 + tn||u− p||2 (3.5)

= (1− tn)||xn − p||2 + tn||u− p||2

≤ max{||xn − p||2, ||u− p||2}
...

≤ max{||x1 − p||2, ||u− p||2}.

Therefore, {xn} is bounded. Consequently, {yn}, {un} and {Tun} are all bounded.
Now using (3.3) and (3.5), we have that

||xn+1 − p||2 = (1− tn)||un − p||2 + tn||u− p||2

≤ (1− tn)||yn − p||2 − (1− tn)

m∑
i=1

θn,i
(1− ξi)2

4
||(Si − I)yn||2

+ tn||u− p||2

≤ tn||u− p||2 + (1− tn)||xn − ρDxn − (p− ρDp)||2

− (1− tn)

m∑
i=1

θn,i
(1− ξi)2

4
||(Si − I)yn||2

≤ tn||u− p||2 + (1− tn)
{
||xn − p||2 + ρ(ρ− 2µ)||Dxn −Dp||2

}
− (1− tn)

m∑
i=1

θn,i
(1− ξi)2

4
||(Si − I)yn||2

= tn||u− p||2 + (1− tn)||xn − p||2 + (1− tn)ρ(ρ− 2µ)||Dxn −Dp||2

− (1− tn)

m∑
i=1

θn,i
(1− ξi)2

4
||(Si − I)yn||2. (3.6)

We divide our proof into two cases.
Case 1: Assume that {||xn − p||2} is a monotonically non-increasing sequence. It then
follows that {||xn − p||2} is convergent and hence

||xn − p|| − ||xn+1 − p|| → 0, n→∞.

From (3.6), conditions (ii) and (iii) of (3.1), we have that

(1− tn)ρ(2µ− ρ)‖Dxn −Dp‖2 ≤ tn‖u− p‖2 + (1− tn)‖xn − p‖2 − ‖xn+1 − p‖2,

which implies that

lim
n→∞

‖Dxn −Dp‖ = 0. (3.7)
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Also, using (3.6), conditions (i), (ii) and (iii) of (3.1), we have that

lim
n→∞

‖(Si − I)yn‖ = 0. (3.8)

Indeed from Lemma 2.4, we obtain that

‖yn − p‖2 = ‖JM,ρ(xn − ρDxn)− JM,ρ(p− ρDp)‖2

≤ 〈xn − ρDxn − (p− ρDp), yn − p〉

=
1

2

{
‖xn − ρDxn − (p− ρDp)‖2 + ‖yn − p‖2

− ‖xn − ρDxn − (p− ρDp)− (yn − p)‖2
}

≤ 1

2

{
‖xn − p‖2 + ‖yn − p‖2 − ‖xn − yn − ρ(Dxn −Dp)‖2}

=
1

2

{
‖xn − p‖2 + ‖yn − p‖2 − ‖xn − yn‖2

+ 2ρ〈xn − yn, Dxn −Dp〉 − ρ2‖Dxn −Dp‖2}. (3.9)

Hence,

‖yn − p‖2 ≤ ‖xn − p‖2 − ‖xn − yn‖2 + 2ρ〈xn − yn, Dxn −Dp〉
− ρ2‖Dxn −Dp‖2. (3.10)

From (3.1) and (3.10), it is clear that

||xn+1 − p||2 ≤ (1− tn)||yn − p||2 + tn||u− p||2

≤ (1− tn)[||xn − p||2 − ||xn − yn||2

+ 2ρ〈xn − yn, Dxn −Dp〉 − ρ2||Dxn −Dp||2] + tn||u− p||2

= (1− tn)||xn − p||2 − (1− tn)||xn − yn||2

+ 2(1− tn)ρ〈xn − yn, Dxn −Dp〉
− ρ2(1− tn)||Dxn −Dp||2 + tn||u− p||2. (3.11)

We have from (3.11) that

(1− tn)||xn − yn||2 ≤ (1− tn)||xn − p||2− ||xn+1 − p||2− ρ2(1− tn)||Dxn −Dp||2

+ 2(1− tn)ρ〈xn − yn, Dxn −Dp〉+ tn||u− p||2. (3.12)

Using (3.12) and condition (ii) of (3.1), we obtain that

lim
n→∞

||xn − yn|| = 0. (3.13)

By applying Lemma 2.6 (i) and Lemma 2.5, we get

||xn+1 − p||2 = ||(1− αn)(un − p) + αn(Tun − p) + tn(p− un)||2

= ||(1− αn)(un − p) + αn(Tun − p)||2 + t2n||un − p||2

+ 2tn〈p− un, (1− αn)(un − p) + αn(Tun − p)〉
≤ ||un − p||2 − αn(1− αn)||Tun − un||2 + t2n||un − p||2

+ 2tn〈p− un, (1− αn)(un − p) + αn(Tun − p)〉
≤ ||xn − p||2 − αn(1− αn)||Tun − un||2

+ tn
[
tn||xn− p||2+ 2〈p− un, (1− αn)(un− p)+ αn(Tun− p)〉

]
. (3.14)
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From (3.14), we have that

αn(1− αn)||Tun − un||2 ≤ ||xn − p||2 − ||xn+1 − p||2 + tn
[
tn||xn − p||2

+ 2〈p− un, (1− αn)(un − p) + αn(Tun − p)〉
]
.

From condition (ii) and (iii) of (3.1), we have that

lim
n→∞

||Tun − un|| = 0. (3.15)

From (3.1) and (3.8), we have that

||un − yn|| ≤
m∑
i=1

θn,i
1− ξi

2
||Siyn − yn|| → 0, as n→∞. (3.16)

Using (3.13) and (3.16), we have that

||un − xn|| ≤ ||un − yn||+ ||xn − yn|| → 0, as n→∞. (3.17)

Also, using condition (i) of (3.1) and (3.17), we have that

lim
n→∞

||xn+1 − xn|| = 0. (3.18)

Since {xn} is bounded, there exists a subsequences {xnj
} of {xn} that converges weakly

to x∗ ∈ H. Consequently, from (3.13) and (3.17), we also have subsequence {ynj
} and

{unj} which converges weakly to x∗ ∈ H. By (3.16) and the demiclosedness principle of
T − I, we get that x∗ ∈ F (T ). Now, from (3.8) and the demiclosedness of Si − I at the
origin, we also get that x∗ ∈ ∩mi=1F (Si).
Next, we prove that x∗ ∈ V I(H,D,M).
Since D is µ-ism, it follows from Lemma 2.10 that D is an 1

α -Lipschitz continuous mapping
and Dom(D) = H. By applying Lemma 2.9, we have that M +D is maximal monotone.
Let (a, f) ∈ Gra(M +D), i.e.f −Da ∈M(a). Now, since we have that ynj = JM,ρ(xnj −
ρDxnj ), then xnj − ρDxnj ∈ (I + ρM)(ynj ) which implies that

1

ρ
(xnj

− ynj
− ρDxnj

) ∈M(ynj
).

Using the fact that M +D is maximal monotone, we have

〈a− ynj
, f −Aa− 1

ρ
{xnj

− ynj
− ρDxnj

}〉 ≥ 0,

and so

〈a− ynj , f〉 ≥ 〈a− ynj , Da+
1

ρ
{xnj − ynj − ρDxnj}〉

= 〈a− ynj , Da−Dynj +Dynj −Dxnj +
1

ρ
{xnj − ynj}〉

≥ 0 + 〈a− ynj
, Dynj

−Dxnj
〉

+ 〈a− ynj
,

1

ρ
{xnj

− ynj
}〉. (3.19)

From (3.13), we have that

lim
n→∞

||Dxnj
−Dynj

|| = 0. (3.20)
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Using the fact that ynj ⇀ x∗ and substituting (3.20) into (3.19), we have

lim
j→∞
〈a− ynj , f〉 = 〈a− x∗, f〉 ≥ 0.

Since A + M is maximal monotone, this implies that θ ∈ (M + D)(x∗) i.e. x∗ ∈
V I(H,M,D). Hence, we conclude that x∗ ∈ Ω = ∩mi=1F (Si) ∩ F (T ) ∩ V I(H,M,D).
Now, we prove that {xn} converges strongly to x∗. From (3.1), we have

||xn+1 − x∗||2 = ||(1− αn − tn)un + αnTun + tnu− x∗||2

= ||(1− αn − tn)(un − x∗) + αn(Tun − x∗) + tn(u− x∗)||2

≤ ||(1− αn − tn)(un − x∗) + αn(Tun − x∗)||2

+ 2tn〈xn+1 − x∗, u− x∗〉

≤
[
(1− αn − tn)||un − x∗||+ αn||Tun − x∗||

]2
+ 2tn〈xn+1 − x∗, u− x∗〉
≤ (1− tn)2||un − x∗||2 + 2tn〈xn+1 − x∗, u− x∗〉
≤ (1− tn)||xn − x∗||2 + 2tn〈xn+1 − x∗, u− x∗〉. (3.21)

Since xn → x∗, then 〈xn+1 − x∗, u − x∗〉 → 0. Using Lemma 2.12 in (3.21), we obtain
that ||xn − x∗|| → 0, as n→∞. Therefore, {xn} → x∗ ∈ Ω.
Case II: Assume that {||xn − x∗||2} is not a monotone decreasing sequence. Set Γn :=
||xn−x∗||2 and let τ : N→ N be a mapping defined for all n ≥ n0 (for some large enough
n0) by

τ(n) := max{k ∈ N : k ≤ n,Γk ≤ Γk+1}.

Clearly, {τ(n)} is a non decreasing sequence such that τ(n)→∞. Hence,

Γτ(n) ≤ Γτ(n)+1, for n ≥ n0.

It follows from (3.6) that

(1− tτ(n))

m∑
i=1

θτ(n),i
(1− ξi)2

4
||(Si − I)yτ(n)||2

≤ tτ(n)||u− x∗||2 + (1− tτ(n))||xτ(n) − x∗||2 − ||xτ(n)+1 − x∗||2.

Hence, we have from conditions (i) and (ii) of (3.1) that

lim
τ(n)→∞

||(Si − I)yτ(n)|| = 0.

Following the same manner as in case 1, we can show that

lim
τ(n)→∞

||Dxτ(n) −Dp|| = 0. (3.22)

and

lim
τ(n)→∞

||Tuτ(n) − uτ(n)|| = 0. (3.23)
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Now, for all n ≥ n0, we have from (3.21) that

0 ≤ ||xτ(n)+1 − x∗||2 − ||xτ(n) − x∗||2

≤ (1− tτ(n))
2||uτ(n) − x∗||2 + 2tτ(n)〈xτ(n)+1 − x∗, u− x∗〉 − ||xτ(n) − x∗||2

≤ (1− tτ(n))||xτ(n) − x∗||2 + 2tτ(n)〈xτ(n)+1 − x∗, u− x∗〉 − ||xτ(n) − x∗||2.

Thus,

||xτ(n) − x∗||2 ≤ 2〈xn+1 − x∗, u− x∗〉 → 0.

Hence,

lim
τ(n)→∞

||xτ(n) − x∗|| = 0.

Therefore,

lim
τ(n)→∞

Γτ(n) = lim
τ(n)→∞

Γτ(n)+1 = 0.

More so, for n ≥ n0, it can be seen that Γτ(n) ≤ Γτ(n)+1 if n 6= τ(n) ( that is τ(n) < n)
because Γk > Γk+1 for {τ(n) + 1} ≤ k < n. Consequently for all n ≥ n0,

0 ≤ Γn ≤ max{Γτ(n),Γτ(n)+1} = Γτ(n)+1.

So, limn→∞ Γn = 0. Hence, {xn} converges strongly to x∗ ∈ Ω.

Remark 3.2. The problem discussed in this paper extends work of Takahashi, Wen and
Yao [20] in the sense that variational inequality problem is a special case of problem (1.1)
discussed in this paper. Moreso, the mappings considered in this paper generalizes the
one considered by Lee and Chan [19].

Remark 3.3. The iterative scheme considered in this article has an advantage over the
one considered in [20] in the sense that we do not use any projection of a point on
the intersection of closed and convex sets which creates some difficulties in a practical
calculation of the iterative sequence. The Halpern iteration considered in this article
provides more flexibility in defining the algorithm parameters which is important for the
numerical implementation perspective.

Corollary 3.4. Let C be a nonempty closed and convex subset of a real Hilbert space H,
and D : H → H be an µ-ism. Let M : H → 2H be a maximal monotone mapping and
T : H → H be a quasi-nonexpansive mapping. Suppose ∆ := F (T ) ∩ V I(H,D,M) 6= ∅,
then the sequences {yn} and {xn} generated iteratively for x0 ∈ C and a fixed u ∈ C by{

yn = JM,ρ(xn − ρDxn);

xn+1 = (1− αn − tn)yn + αnTyn + tnu;
(3.24)

where ρ ∈ (0, 2µ], {αn} is a sequence in (0, 1), {tn} is a sequence in (0, 1 − a) for some
a > 0 satisfying the following conditions:

(i) limn→∞ tn = 0 and
∑∞
n=1 tn =∞;

(ii) 0 < lim inf αn ≤ lim supαn < 1.

Then, the sequence {xn} converges strongly to p = P∆u.
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4. Application and Numerical Example

4.1. Variational Inequality Problem

Let C be a nonempty closed and convex subset of H and D : C → H be a mapping.
Recall that the classical variational inequality problem is to find x ∈ C such that

〈Dx, y − x〉 ≥ 0, ∀ y ∈ C. (4.1)

We denote by V I(C,D), the solution set of (4.1). It is known that x is a solution set of
(4.1) if and only if x is a fixed point of the mapping PC(I − λD), where I denotes the
identity onH. Let iC be a function defined by iC(x) = 0, x ∈ C and iC(x) =∞, x /∈ C. It
is easy to see that iC is a proper, convex and lower semicontinuous function on H, and the
subdifferential ∂iC of iC is maximal monotone. Define the resolvent JiC ,ρ = (I + ρ∂iC )−1

of the subdifferential operator ∂iC . Letting x = JiC ,ρy, we have that

y ∈ x+ ρ∂iCx⇔ y ∈ x+ ρNCx⇔ x = PCy,

where NCx := {e ∈ H : 〈e, v − x〉 ∀ x ∈ C}. On substituting M = ∂iC in Theorem 3.1,
we have the following result.

Theorem 4.1. Let C be a nonempty closed and convex subset of a real Hilbert space
H, and D : H → H be an µ-ism. Let T : H → H be a quasi-nonexpansive mapping.
For {ξi}mi=1, let {Si}mi=1 : H → H be a finite family of ξi-demimetric mappings such that
Si− I is demiclosed at the origin. Suppose ∆ := ∩mi=1F (Si)∩F (T )∩ V I(C,D) 6= ∅, then
the sequences {yn}, {un} and {xn} generated iteratively for x0 ∈ C and a fixed u ∈ C by

yn = PC(xn − ρDxn);

un = yn +
∑m
i=1 θn,i

1−ξi
2 (Si − I)yn;

xn+1 = (1− αn − tn)un + αnTun + tnu;

(4.2)

where ρ ∈ (0, 2µ], {αn} is a sequence in (0, 1), {tn} is a sequence in (0, 1 − a) for some
a > 0 satisfying the following conditions:

(i)
∑m
i=1 θn,i = 1 and lim infn→∞ θn,i > 0,

(ii) limn→∞ tn = 0 and
∑∞
n=1 tn =∞;

(iii) 0 < lim inf αn→∞ ≤ lim supαn→∞ < 1.

Then, the sequence {xn} converges strongly to p = P∆u.

4.2. Numerical Example

Example 4.2. Let H = R, the set of all real numbers, with inner product defined by
〈x, y〉 = xy ∀ x, y ∈ R, and induced usual norm |.|. Let M(x) = {3x} ∀ x ∈ R and define
D : R→ R by D(x) = x+ 6 with µ = 1

4 . Suppose S(x) = −9
2 x, ∀ x ∈ R with ξ = 7

11 and

T (x) = 2
3x, with F (T ) = {0},∀ x ∈ R, then let αn = n+1

2(n+1) and tn = 1
2(n+2) , then (3.1)

becomes
un = 16−3xn

4 ;

un = yn +
∑m
i=1 θn,i

1−ξi
2 (Si − I)yn;

xn+1 = n+1
2(n+2) + n+1

3(n+2) + tn
2(n+2) .

Case 1: x1 = (2, 1)T , u = (−1, 3)T .
Case 2: x1 = (−0.2,−1)T , u = (−1, 1)T .
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Case 3: x1 = (1, 2)T , u = (4, 1)T .
Case 4: x1 = (400, 100)T , u = (300, 100)T .
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