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Abstract. The concepts of new classes of mappings are introduced in the spaces which

are more general space than the usual metric spaces. The obtained results are new and are

extension of Banach contraction principle. The existence and uniqueness of common fixed

points and fixed point results for the newly introduced classes of mappings are established

in the setting of complete complex valued b-metric spaces. An illustration is given by es-

tablishing the existence of solution of periodic differential equations in the framework of a

complete complex valued b-metric spaces. The results obtained in this work provide exten-

sion as well as substantial generalization and improvement of several well-known results on

fixed point theory and its applications. The classes of mappings which are being considered

in this paper are more general and the results are obtained in more broad spaces.
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1. Introduction and Premilinaries

The pivot of theory of fixed point and its applications is traceable to Banach
contraction principle [10]. The theory of fixed point plays an important role in
nonlinear functional analysis (See e.g [4, 5] and the references therein). Fixed
point theory is very useful for showing the existence and uniqueness theorems
for nonlinear differential and integral equations. There are reports on the
extension and generalization to the Banach contraction principle. Different
spaces and classes of nonlinear mappings which are respectively more general
than the metric spaces and class of contraction mappings have been investi-
gated (See e.g [1, 7, 8, 12, 19, 21, 22, 27, 29, 34, 35] and the references therein).
For instance, the notion of α-admissible mapping was introduced by Samet et
al. [28].
Definition 1.1. [28] Let α : X × X → [0,∞) be a function. We say that a
self mapping T : X → X is α-admissible if for all x, y ∈ X,

α(x, y) ≥ 1⇒ α(Tx, Ty) ≥ 1.

Definition 1.2. [28] Let T : X → X and α : X ×X → [0,∞) be mappings.
We say that T is a triangular α-admissible if

(1) T is α-admissible and
(2) α(x, y) ≥ 1 and α(y, z) ≥ 1⇒ α(x, z) ≥ 1 for all x, y, z ∈ X.

Samet et al. [28] obtained the fixed point results for this class of mappings
in the axiom stated below.

Theorem 1.3. [28] Let (X, d) be a complete metric space and T : X → X be
an α-admissible mapping. Suppose that the following conditions hold:

(1) for all x, y ∈ X, we have α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)), where ψ :
[0,∞)→ [0,∞) is a nondecreasing function such that

∑∞
n=1 ψ

n(t) <∞
for all t > 0;

(2) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(3) either T is continuous or for any sequence {xn} in X with α(xn, xn+1) ≥

1 for all n ≥ 0 and xn → x as n→∞, then α(xn, x) ≥ 1.

Then T has a fixed point.

In 2014, the notion of C-class function was introduced, some fixed point results
were proved by using the concept of C-class function and it was also estab-
lished that the C-class function is a generalization of a whole lot of contractive
conditions (See Ansari [6]).
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Definition 1.4. [6] A mapping F : [0,∞) × [0,∞) → R is called a C-class
function if it is continuous and the following axioms hold:

(1) F (s, t) ≤ s for all s, t ∈ [0,∞);
(2) F (s, t) = s implies either s = 0 or t = 0.

Example 1.5. The following are examples of C-class functions where F :
[0,∞)× [0,∞)→ R is defined for all s, t ∈ [0,∞) by:

(1) F (s, t) = s− t, F (s, t) = s implies t = 0;
(2) F (s, t) = ms, 0 < m < 1, F (s, t) = s implies s = 0;
(3) F (s, t) = sβ(s), β : [0,∞)→ [0, 1) is a continuous function, F (s, t) = s

implies s = 0.

For details about C-class function see [6].

In 2015, the notion of Z-contraction was introduced, which generalizes the
well-known Banach contraction and a host of other contractive conditions
(See Khojasteh et al. [18]).

Definition 1.6. Let ζ : [0,∞)× [0,∞)→ R be a mapping, then ζ is called a
simulation function if it satisfies the following conditions:

(1) ζ(0, 0) = 0;
(2) ζ(t, s) < s− t, for all t, s > 0;
(3) If {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn >

0, then lim supn→∞ ζ(tn, sn) < 0.

The set of all simulation functions is denoted by Z.

Example 1.7. Suppose ζi : [0,∞) × [0,∞) → [0,∞), i = 1, 2, 3, 4 is defined
as

(1) ζ1(t, s) = s− φ(s)− t for all t, s ∈ [0,∞), where φ : [0,∞)→ [0,∞) is
a continuous function such that φ(t) = 0 if and only if t = 0.

(2) ζ2(t, s) = η(s) − t for all t, s ∈ [0,∞), where η : [0,∞) → [0,∞) is an
upper semicontinuous mapping such that η(t) < t for all t > 0 η(t) = 0
if and only if t = 0.

(3) ζ3(t, s) = λs− t for all t, s ∈ [0,∞), where 0 < λ < 1.
(4) ζ4(t, s) = s

s+1 − t for all t, s ∈ [0,∞).

Definition 1.8. Let (X, d) be a metric space, T : X → X a mapping and
ζ ∈ Z. Then T is called a Z-contraction with respect to ζ, if the following
condition is satisfied

ζ(d(Tx, Ty), d(x, y)) > 0,

for all distinct x, y ∈ X.
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Theorem 1.9. Let (X, d) be a complete metric space and T : X → X be
a Z-contraction with respect to a simulation function ζ ∈ Z. Then T has a
unique fixed point x∗ ∈ X and for every x0 ∈ X, the Picard sequence {xn},
where xn = Txn−1 for all n ∈ N converges to the fixed point of T.

A slightly modification to the notion of simulation function which strengthened
and generalizes the definition of Khojasteh et al. in [18] was proposed by
Antonio-Francisco et al. [23].

Definition 1.10. Let ζ : [0,∞)× [0,∞)→ R be a mapping, then ζ is called
a simulation function if it satisfies the following conditions:

(1) ζ(0, 0) = 0;
(2) ζ(t, s) < s− t, for all t, s > 0;
(3) if {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn >

0 and tn < sn for all n ∈ N, then lim supn→∞ ζ(tn, sn) < 0.

An example is presented to show that every simulation function in the sense
of Definition 1.6 is also a simulation function in the sense of Definition 1.10.
However, the conserve is not true.

Example 1.11. [23] Let k ∈ R be such that k < 1 and let ζ : [0,∞)×[0,∞)→
R be the function defined by

ζ(t, s) =

{
2(s− t) if s < t

ks− t if otherwise.

In 2018, the notion of C-class function was engaged to generalize the concept
of simulation function by Liu et al. [20].

Definition 1.12. A mapping F : [0,∞) × [0,∞) → R has the property CF ,
if there exists a CF ≥ 0 such that

(1) F (s, t) > CF ⇒ s > t;
(2) F (t, t) ≤ CF for all t ∈ [0,∞).

Definition 1.13. A CF simulation function is a mapping ζ : [0,∞)×[0,∞)→
R satisfying the following conditions:

(1) ζ(t, s) < F (s, t), for all t, s > 0, where F is a C-class function;
(2) if {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn >

0 and tn < sn for all n ∈ N, then lim supn→∞ ζ(tn, sn) < CF .

Some examples of a C-class functions that have property CF are as follows:

(1) F (s, t) = s− t, CF = r, r ∈ [0,∞);
(2) F (s, t) = s

1+kt , k ≥ 1, CF = r
1+k , r ≥ 2.
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Remark 1.14. It is easy to see that if r ≥ 2 in the above example the required
result will not hold. More so, it is worth mentioning that every simulation
function in the sense of Definition 1.6 is also a CF simulation function, but
the converse is not true. This claim is easy to see using Example 1.11 with
F (s, t) = s− t.
Remark 1.15. It is natural to ask if we can further generalize the notion CF
simulation function.

One of the interesting generalization of metric spaces is the concept of b-metric
spaces which was introduced by Czerwik in [13]. Banach contraction principle
was established with the fact that b need not be continuous. Thereafter, several
results have been extended from metric spaces to b-metric spaces. Indeed, a
lot of results on the fixed point theory of various classes of mappings in the
frame work of b-metric spaces has been established by different researchers in
this area (see [11, 13, 25] and the references therein). For example in [30],
Sintunavarat introduced the concept of α-admissible mapping type S as a
generalization of α-admissible mapping [28].

Definition 1.16. [30] Let X be a nonempty set and s ≥ 1 be a given real
number. Let α : X ×X → [0,∞) and T : X → X be mappings. The mapping
T is said to be an α-admissible mapping type S if for all x, y ∈ X

α(x, y) ≥ s⇒ α(Tx, Ty) ≥ s.
Remark 1.17. Clearly, if s = 1, we obtain Definition 1.1.

Remark 1.18. It is also natural to ask, if the notion of α-admissible mapping
type S can further be generalized.

Coming up with new algebraic structures to improve and extend the obtained
results in the literature is always a worthwhile research effort. In [9], Azam et
al. introduce the notion of complex valued metric space and established some
common fixed point results for mapping satisfying generalized contractive con-
ditions. Thereafter, several results and applications has been extended from
metric spaces to complex valued metric spaces. Furthermore, a lot of results
on the fixed point theory and common fixed point results of various classes of
mappings in the framework of complex valued metric spaces has been estab-
lished by different researchers in this area (see[31, 32, 33] and the references
therein).
The following symbols, notation and definition can be found in [9] will be use-
ful in this study. Let C be the set of complex numbers and z1, z2 ∈ C. Define
a partial order - on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).

It follows that z1 - z2 if one of the following conditions is satisfied:
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(1) Re(z1) = Re(z2), Im(z1) < Im(z2);
(2) Re(z1) < Re(z2), Im(z1) = Im(z2);
(3) Re(z1) < Re(z2), Im(z1) < Im(z2);
(4) Re(z1) = Re(z2), Im(z1) ≤ Im(z2).

In particular, we write z1 � z2 if z1 6= z2 and one of (1), (2) and (3) is satisfied
and we we write z1 ≺ z2 if only (3) is satisfied. Note that

(1) a, b ∈ R and a ≤ b implies that az - bz for all z ∈ C;
(2) 0 - z1 � z2 implies that |z1| < |z2|;
(3) z1 - z2 and z2 ≺ zz implies that z1 ≺ z2.

Definition 1.19. Let X be a nonempty set. Suppose that the mapping d :
X ×X → C, satisfies:

(1) 0 - d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, y) - d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a complex valued metric and (X, d) is called a complex valued
metric space.

Example 1.20. Let X = C, zi ∈ X, i = 1, 2, 3 and d : X×X → C be defined
as

(1) d(z1, z2) = |z1 − z2| for all z1, z2 ∈ X;
(2) d(z1, z2) = eik|z1 − z2| for all z1, z2 ∈ X and k ∈ R;
(3) d(z1, z2) = eiθ|z1 − z2| for all z1, z2 ∈ X and θ ∈ (0, Π

2 ).

Motivated by the concept of b-metric spaces and complex valued metric spaces
[13, 9], Rao et al. in [24], introduced the notion of complex valued b-metric
spaces and established some common fixed point results. Thereafter, several
results and applications has been extended from metric spaces, b-metric spaces
and complex valued metric spaces to complex valued b-metric spaces (see [24,
14] and the reference therein). The notion of complex valued b-metric spaces
generalizes, improves and unifies the results in metric spaces, b-metric spaces
and complex valued metric spaces.

Definition 1.21. Let X be a nonempty set and s ≥ 1 be a given real number.
Suppose that the mapping db : X ×X → C, satisfies:

(1) 0 - db(x, y) for all x, y ∈ X and db(x, y) = 0 if and only if x = y;
(2) db(x, y) = db(y, x) for all x, y ∈ X;
(3) db(x, y) - s[d(x, z) + d(z, y)] for all x, y, z ∈ X, where d retains its

usual definition.

Then db is called a complex valued b metric and (X, db) is called a complex
valued metric space.
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Example 1.22. [24] Let X = C defined the mapping db : X × X → C by
db(z1, z2) = |z1 − z2|2 + i|z1 − z2|2 for all z1, z2 ∈ X.

Definition 1.23. Suppose that (X, db) is a complex valued b-metric space
and {zn} is a sequence in X, then the sequence {zn}

(1) converges to an element z0 ∈ X if for every 0 ≺ c ∈ C, there exist an
integer N such that db(zn, z0) ≺ c for all n ∈ N.

(2) is a Cauchy sequence if for every 0 ≺ c ∈ C, there exist an integer N
such that db(zn, zm) ≺ c for all n,m ∈ N.

Definition 1.24. Suppose that (X, db) is a complex valued b-metric space, the
space (X, db) is said to be complete if every Cauchy sequence in X converges
to a point in X.

Definition 1.25. [17] Let X be a nonempty set and S, T : X → X be any
two mappings.

(1) A point x ∈ X is called:
(a) coincidence point of S and T if Sx = Tx,
(b) common fixed point of S and T if x = Sx = Tx.

(2) If y = Sx = Tx for some x ∈ X, then y is called the point of coincidence
of S and T.

(3) A pair (S, T ) is said to be:
(a) commuting if TSx = STx for all x ∈ X,
(b) weakly compatible if they commute at their coincidence points,

that is STx = TSx, whenever Sx = Tx.

Motivated by the works of Samet et al. [28], Liu et al. [20], Khojasteh et
al. [18], Antonio-Francisco [23] and the current research interest in this direc-
tion, the purpose of this work is to introduce new concepts which are based
on simulation functions in the framework of complex valued b-metric spaces.
The notions of b-CF simulation function, αsS-admissible mapping, αsS-ZF -
contraction type I mappings and αsS-ZF -contraction type II mappings with
respect to the simulation function, ζ are introduced. Moreover, some com-
mon fixed point results and fixed point results are established for these newly
introduced classes of mappings in the framework of complete complex val-
ued b-metric spaces. The consequence of our results is the establishment of
existence of solutions of periodic differential equations.

2. Main Results

In this section, the notions of b-CF simulation function, αsS-admissible map-
ping, αsS-ZF -contraction type I mappings and αsS-ZF -contraction type II
mappings with respect to ζ in the framework of complex valued b-metric spaces
are introduced. The existence and uniqueness results of the common fixed
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point and fixed point results for these classes of mappings in the framework
of a complete complex valued b-metric spaces are established.

Let the common fixed point of mappings T and S be denoted by C(T, S) and
define S = {z ∈ C : 0 - z}. As a start, the below definition is given in the
framework of complex valued metric spaces which is due to Liu et al. [20].
Definition 2.1. A mapping F : S × S → C has the property CF , if there
exists a 0 � CF such that

(1) F (s, t) � CF ⇒ t ≺ s;
(2) F (t, t) � CF for all t ∈ S.

We propose the following definitions which are based on simulation functions
in the framework of complex valued b-metric spaces.

Definition 2.2. A CF simulation function is a mapping ζ : S × S → C
satisfying the following conditions:

(1) ζ(t, s) ≺ F (s, t), for all t, s > 0, where F is a C-class function;
(2) if {tn}, {sn} are sequences in (0,∞) such that 0 ≺ limn→∞ |tn| =

limn→∞ |sn| and |tn| ≺ |sn| for all n ∈ N,
then lim supn→∞ ζ(|tn|, |sn|) ≺ CF .

Definition 2.3. A b-CF simulation function is a mapping ζ : S × S → C
satisfying the following conditions:

(1) ζ(t, s) ≺ F (s, t), for all t, s > 0, where F is a C-class function;
(2) if {tn}, {sn} are sequences in (0,∞) such that 0 ≺ limn→∞ |tn| ≺

lim infn→∞ |sn| ≺ lim supn→∞ |sn| ≤ b limn→∞|tn| ≺ ∞ and |tn| ≺ |sn|
for all n ∈ N,

then

lim sup
n→∞

ζ(b|tn|, |sn|) ≺ CF .

Remark 2.4. It is easy to see that if b = 1, Definition 2.2 is obtained.

Definition 2.5. Let X be a nonempty set with s ≥ 1 a given real number,
T : X → X and α, β : X × X → S be mappings. Then T is called αsS-
admissible type mapping if for all x, y ∈ X with

α(Sx, Sy) � s⇒ α(Tx, Ty) � s.

Remark 2.6.

(1) If Sx = x, Definition 1.16 is obtained in the framework of complex
valued b-metric spaces.

(2) If Sx = x and s = 1, Definition 1.1 is obtained in the framework of
complex valued metric spaces.
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Definition 2.7. Let X be a nonempty set with s ≥ 1 a given real number,
T : X → X and α : X ×X → S be mappings. We say that T is a triangular
αsS-admissible if

(1) T is αsS-admissible and
(2) α(Sx, Sy) � s and α(Sy, Sz) � s⇒ α(Sx, Sz) � s for all x, y, z ∈ X.

Lemma 2.8. Let X be a nonempty set with s ≥ 1 a given real number
and T be a triangular αsS-admissible and there exists Sx0 ∈ X such that
α(Sx0, Tx0) � s. Suppose that the sequence {Sxn} is defined by Sxn+1 = Txn,
then α(Sxm, Sxn) � s for all n,m ∈ N ∪ {0}, with m < n.

Proof. Suppose that T is triangular αsS-admissible and there exists Sx0 ∈ X
such that α(Sx0, Tx0) � s, we then have that α(Sx0, Tx0) = α(Sx0, Sx1) � s
which implies that α(Tx0, Tx1) = α(Sx1, Sx2) � s. Continuing the process,
we obtain that α(Sxn, Sxn+1) � s. For all n,m ∈ N ∪ {0} with m < n,
observe that since α(Sxm, Sxm+1) � s and α(Sxm+1, Sxm+2) � s, we obtain
α(Sxm, Sxm+2) � s. Also, since α(Sxm, xm+2) � s and α(Sxm+2, Sxm+3),� s
we obtain α(Sxm, Sxm+3) � s. Continuing the process, we have that

α(Sxm, Sxn) � s.

�

Definition 2.9. Let (X, db) be a complex valued b-metric space with s ≥ 1,
α : X ×X → S be functions and S, T be a self map on X. The mapping T is
said to be αsS-ZF -contraction type I mapping with respect to ζ, if

α(Sx, Sy) � s⇒ ζ(sdb(Tx, Ty), db(Sx, Sy)) � CF (2.1)

for all distinct x, y, z ∈ X.

Remark 2.10. Suppose s = 1 and CF = 0, a new type of generalized Z-
contraction with respect to ζ is obtained

α(Sx, Sy) � 1⇒ ζ(db(Tx, Ty), db(Sx, Sy)) � 0 (2.2)

for all distinct x, y ∈ X. It is easy to see that (2.2) is a generalization of
Definition 1.8.

Theorem 2.11. Let (X, db) be a complete complex valued b-metric space with
s ≥ 1 and T : X → X be an αsS-ZF -contraction type I mapping with respect
to ζ. Suppose the following conditions hold:

(1) T is triangular αsS-admissible,
(2) T (X) ⊆ S(X),
(3) there exists Sx0 ∈ X such that α(Sx0, Tx0) % s,
(4) T (X) is complete in S(X),
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(5) if for any sequence {Sxn} in X with α(Sxn, xn+1) % s for all n ≥ 0
and Sxn → Sx as n→∞, then α(Sxn, Sx) % s.
Then the pair (T, S) has a coincidence point in X.

In addition, if the pair (T, S) is weakly compatible. Then (T, S) have a common
fixed point.

Proof. Let Sx0 ∈ X be such that α(Sx0, Tx0, Tx0) � s, using condition (ii),
we define the sequence {Sxn} in T (X) by Sxn+1 = Txn for all n ∈ N ∪ {0}.
If we suppose that Sxn+1 = SxnTxn, for some n ∈ N ∪ {0}, we have that xn
is a coincidence point. Now, suppose that Sxn+1 6= Sxn for all n ∈ N ∪ {0}.
From Lemma 2.8, it is easy to see that

α(Sxn, Sxn+1) � s
for all n ∈ N ∪ {0}. Using ζ∗(i), η(i) and from (2.1), we have that

CF - ζ(sdb(Txn, Txn+1), db(Sxn, Sxn+1, ))

= ζ(sdb(Sxn+1, Sxn+2), db(Sxn, Sxn+1)) (2.3)

≺ F (db(Sxn, Sxn+1), sdb(Sxn+1, Sxn+2)).

From (2.3), we obtain

F (db(Sxn, Sxn+1), sdb(Sxn+1, Sn+2)) % CF ,

which implies that

sdb(Sxn+1, Sxn+2) ≺ db(Sxn, Sxn+1).

That is

|db(Sxn+1, Sxn+2)| ≤ |sdb(Sxn+1, Sxn+2)| < |db(Sxn, Sxn+1)|. (2.4)

It is easy to see from (2.4) that the sequence |{db(Sxn, Sxn+1}| is mono-
tonically decreasing and nonnegative. More so, inductively, we have that
|{db(Sxn, Sxn+1)}| is bounded. Therefore, there exists c ≥ 0 such that

lim
n→∞

|db(Sxn, Sxn+1)| = c.

Suppose that c > 0, clearly limn→∞ |db(Sxn+1, Sxn+2)| = c. Since T is an
αsS-ZF -contraction type I mapping with respect to ζ ∈ Z and using ζ∗(ii),
we have

CF ≤ lim sup
n→∞

ζ(s|db(Sxn+1, Sxn+2)|, |db(Sxn, Sxn+1)|) < CF .

This is a contradiction, thus c = 0 and so we have that

lim
n→∞

|db(Sxn, Sxn+1)| = 0. (2.5)

In what follows, we will show that {Sxn} is bounded.
Suppose that {Sxn} is not a bounded sequence, then there exists a subsequence
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{Sxnk
} of {Sxn} such that for n1 = 1 and for each k ∈ N, nk+1 is the minimum

integer such that

db(Sxnk
, Sxnk+1

) � 1 and db(Sxnk
, Sxm) - 1 (2.6)

for nk ≤ m ≤ nk+1 − 1. Using (2.6), we have

1 ≺ db(Sxnk
, Sxnk+1

) - sdb(Sxnk
, Sxnk+1−1) + sdb(xnk+1−1, Sxnk+1

)

- sdb(Sxnk+1−1, Sxnk+1
) + s.

Letting k →∞ and using (2.5), we obtain

1 ≤ lim inf
k→∞

|db(Sxnk
, Sxnk+1

)| ≤ lim sup
k→∞

|db(Sxnk
, Sxnk+1

)| ≤ s. (2.7)

From (2.4), we deduce that

sdb(Sxnk
, Sxnk+1

) - db(Sxnk−1, Sxnk+1−1)

- sdb(Sxnk−1, Sxnk
) + sdb(Sxnk

, Sxnk+1−1) (2.8)

- sdb(Sxnk−1, Sxnk
) + s.

Letting k →∞, using (2.5) and (2.7), we obtain that

lim
n→∞

|db(Sxnk−1, Sxnk+1−1)| = s.

From Lemma 2.8, it is easy to see that α(Sxnk−1, Sxnk+1−1) � s and by
definition of αsS-ZF -contraction type I mapping with respect to ζ, and by
ζ∗(ii), we obtain

CF ≤ lim sup
k→∞

ζ(s|db(Sxnk
, Sxnk+1

)|, |db(Sxnk−1, Sxnk+1−1)|) < CF .

This is a contradiction. Thus {Sxn} is bounded.
We now establish that {Sxn} is Cauchy.

Suppose that Cn = max{db(Sxi, Sxj , xj) : i, j � n}, n ∈ N. Since {Sxn} is
bounded, we have that Cn < ∞ for all n ∈ N, as such {Cn} is a positive
monotonically decreasing sequence which converges. That is limn→∞Cn =
C ≥ 0. Suppose that C > 0, then by definition of Cn, for every k ∈ N, we can
find nk,mk such that mk > nk > k and

Cn −
1

K
≺ db(Sxmk

, Sxnk
) - Ck,

letting k →∞, we obtain

lim
k→∞

|db(Sxmk
, Sxnk

)| = C. (2.9)

From (2.4) and using the definition of Cn, we deduce that

sdb(Sxmk
, Sxnk

) - db(Sxmk−1, Sxnk−1) - Ck−1.
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Letting k →∞ and using (2.9), we obtain

sC ≤ lim inf
k→∞

|db(Sxmk−1, Sxnk−1) ≤ lim sup
k→∞

|db(Sxmk−1, Sxnk−1)| ≤ C.

(2.10)

It is easy to see from Lemma 2.8 that α(Sxmk−1
, Sxnk−1

) � s, so by definition
of αsS-ZF -contraction type I with respect to ζ and using ζ∗(ii), we have that

CF ≤ lim sup
n→∞

ζ(s|db(Sxmk
, Sxnk

)|, |db(Sxmk−1
, Sxnk−1

)|) < CF .

This is a contradiction, thus C = 0. Hence, {Sxn} is a Cauchy sequence.
Finally, we show the existence of a common fixed point of the pair (T, S).

Since T (X) is precomplete in S(X), there exists x ∈ X such that limn→∞ Sxn =
Sx. Using condition (5), we have that α(Sxn, Sx) � s, and since T is αsS-ZF -
contraction type I mapping with respect to ζ and using η(i), we have that

CF -ζ(sdb(Txn, Tx), db(Sxn, Sx))

= ζ(sdb(Sxn+1, Tx), db(Sxn, Sx))

≺ F (db(Sxn, Sx), sdb(Sxn+1, Tx)),

that is F (db(Sxn, Sx), sdb(Sxn+1, Tx)) � CF , which implies that sdb(Sxn+1, Txx) ≺
db(Sxn, Sx), so that

|db(Sxn+1, Tx)| ≤ |sdb(Sxn+1, Tx)| < |db(Sxn, Sx)|,

taking limit as n→∞, we have that

db(Sx, Tx) ≤ 0⇒ Sx = Tx

Hence, x a coincidence point for the pair (T, S).
Now suppose that y = Tx = Sx, using condition (6), we have that

Ty = T (Sx) = S(Tx) = Sy.

It is easy to see that α(Sx, Sy) � s, and since T is αbS-ZF -contraction with
respect to ζ and using η(ii), we obtain

CF -ζ(sdb(Tx, Ty), db(Sx, Sy))

= ζ(sdb(y, Ty), db(y, Sy)) ≺ CF ,

a contradiction. Hence, we have

y = Ty = Sy.

Hence y is a common fixed point of the pair (T, S). �
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Theorem 2.12. Suppose that the hypothesis of Theorem 2.11 holds and in
addition suppose α(x, y) � s for all x, y ∈ C(T, S), where C(T, S) is the set of
common fixed point of the pair (T, S). Then (T, S) has a unique fixed common
fixed point.

Proof. Let x, y ∈ C(T, S), that is x = Tx = Sx and y = Ty = Sy such that
x 6= y. Using our hypothesis, we have α(x, y) � sb, we obtain from (2.1) that

CF -ζ(sdb(Tx, Ty), db(Sx, Sy))

= ζ(sdb(x, y), db(x, y))

≺ F (db(x, y), sdb(x, y)).

It follows that F (db(x, y), sdb(x, y)) % CF , which implies that

sdb(x, y) < db(x, y)

which is a contradiction, as such, we must have that db(x, y) = 0 ⇒ x = y.
Hence (T, S) has a unique common fixed point. �

Definition 2.13. Let (X, db) be a complex valued b-metric space with s ≥ 1,
α;X ×X → S be functions and S, T be a self map on X. The mapping T is
said to be αsS-ZF -contraction type II mapping with respect to ζ, if

ζ(α(Sx, Sy)db(Tx, Ty), db(Sx, Sy)) � CF (2.11)

for all distinct x, y, z ∈ X.

Remark 2.14. If we suppose that α(Sx, Sy) = 1 and CF = 0, we obtain a
new type of generalized Z-contraction with respect to ζ,

ζ(db(Tx, Ty), db(Sx, Sy)) � 0 (2.12)

for all distinct x, y ∈ X. It is easy to see that (2.12) is a generalization of
Definition 1.8.

Theorem 2.15. Let (X, db) be a complete complex valued b-metric space with
s ≥ 1 and T : X → X be an αsS-ZF -contraction type II mapping with respect
to ζ. Suppose the following conditions hold:

(1) T is triangular αsS-admissible,
(2) T (X) ⊆ S(X),
(3) there exists Sx0 ∈ X such that α(Sx0, Tx0) % s,
(4) T (X) is complete in S(X),
(5) if for any sequence {Sxn} in X with α(Sxn, xn+1) % s for all n ≥ 0

and Sxn → Sx as n→∞, then α(Sxn, Sx) % s.
Then the pair (T, S) has a coincidence point in X.

(6) In addition, if the pair (T, S) is weakly compatible.

Then (T, S) have a common fixed point.
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Proof. The proof is similar to Theorem 2.11, as such we omit it. �

Theorem 2.16. Suppose that the hypothesis of Theorem 2.15 holds and in
addition suppose α(x, y) � s for all x, y ∈ C(T, S), where C(T, S) is the set of
common fixed point of the pair (T, S). Then (T, S) has a unique fixed common
fixed point.

Proof. The proof is similar to Theorem 2.12, as such we omit it. �

3. Consequences of Main Result

In this section, we present some consequences of our main result.
Corollary 3.1. Let (X, db) be a complete complex valued b-metric spaces space
with s ≥ 1 and S, T : X → X be a mapping satisfying

α(Sx, Sy) % s⇒ ζ(sdb(Tx, Ty), λdb(Sx, Sy)) % 0, (3.1)

for all distinct x, y, z ∈ X, where λ ∈ (0, 1). Suppose the following conditions
hold:

(1) T is triangular αsS-admissible,
(2) T (X) ⊆ S(X),
(3) there exists Sx0 ∈ X such that α(Sx0, Tx0) % s,
(4) T (X) is complete in S(X),
(5) if for any sequence {Sxn} in X with α(Sxn, xn+1) % s for all n ≥ 0

and Sxn → Sx as n→∞, then α(Sxn, Sx) % s.
Then the pair (T, S) has a coincidence point in X.

(6) In addition, if the pair (T, S) is weakly compatible.

Then (T, S) have a common fixed point.

Proof. The result follows from Theorem 2.11. Since by taking CF = 0, and
defining ζ(t, s) = s− t, for all s, t ≥ 0, we obtain

α(Sx, Sy) % s⇒ sdb(Tx, Ty) - λdb(Sx, Sy).

�

Remark 3.2. Corollary 3.1 can be seen as a generalization of the well-known
Banach contraction priniciple [10] in the framework of complete complex val-
ued db-metric spaces.

Corollary 3.3. Let (X, db) be a complete complex valued b-metric spaces space
with s ≥ 1 and S, T : X → X be a mapping satisfying

α(Sx, Sy) % s⇒ ζ(sdb(Tx, Ty), db(Sx, Sy)− ψ(db(Sx, Sy))) ≥ 0, (3.2)

where ψ : R → R is a lower semicontinuous function with ψ−1(0) = (0).
Suppose the following conditions hold:

(1) T is triangular αsS-admissible,
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(2) T (X) ⊆ S(X),
(3) there exists Sx0 ∈ X such that α(Sx0, Tx0) % s,
(4) T (X) is complete in S(X),
(5) if for any sequence {Sxn} in X with α(Sxn, xn+1) % s for all n ≥ 0

and Sxn → Sx as n→∞, then α(Sxn, Sx) % s.
Then the pair (T, S) has a coincidence point in X.

(6) In addition, if the pair (T, S) is weakly compatible.

Then (T, S) have a common fixed point.

Proof. The result follows from Theorem 2.11. Since by taking CF = 0, and
defining ζ(t, s) = λs− ψ(s)− t, for all s, t % 0, we obtain

α(Sx, Sy) � s⇒ sdb(Tx, Ty) - db(Sx, Sy)− ψ(db(Sx, Sy)).

�

Remark 3.4. Corollary 3.3 can be seen as a generalization of Rhoades fixed
point result [22] in the framework of complete complex valued b-metric spaces.

Corollary 3.5. Let (X, db) be a complete complex valued b-metric space with
s ≥ 1 and T : X → X be a mapping satisfying

α(x, y) � 1⇒ ζ(sdb(Tx, Ty), db(x, y)) ≥ 0, (3.3)

for all distinct x, y ∈ X. Suppose the following conditions hold:

(1) T is triangular α-admissible mapping,
(2) there exists x0 ∈ X such that α(x0, Tx0, ) � 1,
(3) if for any sequence {xn} in X with α(xn, xn+1) � 1, for all n ≥ 0 and

xn → x as n→∞, then α(xn, x) � 1.

Then T has a fixed point.

Proof. The result follow similar argument as in Theorem 2.11, by taking CF =
0. Since by defining ζ(t, s) = s− t, for all s, t ≥ 0, we obtain

α(x, y, z) � 1⇒ sdb(Tx, Ty) - db(x, y).

�

Corollary 3.6. Let (X, d) be a complete complex valued metric space and
S, T : X → X be a mapping satisfying

α(Sx, Sy) % 1⇒ ζ(d(Tx, Ty), d(Sx, Sy)) ≥ 0, (3.4)

for all distinct x, y, z ∈ X. Suppose the following conditions hold:

(1) T is triangular α-admissible,
(2) T (X) ⊆ S(X),
(3) there exists Sx0 ∈ X such that α(Sx0, Tx0) % 1,
(4) T (X) is complete in S(X),
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(5) if for any sequence {Sxn} in X with α(Sxn, xn+1) % 1 for all n ≥ 0
and Sxn → Sx as n→∞, then α(Sxn, Sx) % 1.
Then the pair (T, S) has a coincidence point in X.

(6) In addition, if the pair (T, S) is weakly compatible.

Then (T, S) have a common fixed point.

Corollary 3.7. Let (X, d) be a complete complex valued metric space and
S, T : X → X be a mapping satisfying

ζ(α(Sx, Sy)d(Tx, Ty), d(Sx, Sy)) ≥ 0, (3.5)

for all distinct x, y, z ∈ X. Suppose the following conditions hold:

(1) T is triangular α-admissible,
(2) T (X) ⊆ S(X),
(3) there exists Sx0 ∈ X such that α(Sx0, Tx0) % 1,
(4) T (X) is complete in S(X),
(5) if for any sequence {Sxn} in X with α(Sxn, xn+1) % 1 for all n ≥ 0

and Sxn → Sx as n→∞, then α(Sxn, Sx) % 1.
Then the pair (T, S) has a coincidence point in X.

(6) In addition, if the pair (T, S) is weakly compatible.

Then (T, S) have a common fixed point.

4. Application

In this section, the application is presented to establish the existence of a
solution of periodic differential equation.

u′(t) = f(t, u(t)), t ∈ I = [0, 1]

u(0) = u(1), (4.1)

where f : [0, 1]×Rn → Rn is a continuous function. It is easy to see that (4.1)
can be rewritten as

u′(t) + 2u(t) = f(t, u(t)) + 2u(t), t ∈ I = [0, 1]

u(0) = u(1), (4.2)

which is equivalent to

u(t) =

∫ 1

0
G(t, s)[f(s, u(s)) + 2u(s)]ds.

The Green function G(t, s) associated with (4.1) is given by

G(t, s) =

{
e2(1+s−t)

e2−1
if 0 ≤ s ≤ t ≤ 1

e2(s−t)

e2−1
if 0 ≤ t ≤ s ≤ 1.
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It is easy to see that maxt∈[0,1]

∫ 1
0 G(t, s)ds = 1

2 . Let X = C([0, 1],Rn) be
the space of continuous function, u : [0, 1] → Rn and ‖(u1, u2, · · · , un)‖ =
max{|u1|, |u2|, · · · , |un|} and d : X ×X → C be defined as

db(u, v) =

[
max
t∈[0,1]

‖u(t)− v(t)‖
√

1 + a2ei tan−1 a

]2

where s = 2. It is well-known that (X, db) is a complete complex valued b-
metric space. Define T : X → X as

Tu(t) =

∫ 1

0
G(t, s)[f(s, u(s)) + 2u(s)]ds

Theorem 4.1. Suppose the following conditions hold:

(1) there exists β : X × X → S, such that t ∈ I and a, b ∈ X with
β(a, b) % 1,

‖f(t, u) + 2u(s)− f(t, v) + 2v(s)‖ - ‖u(s)− v(s)‖; (4.3)

(2) there exists u0 ∈ X such that for all t ∈ I, we have

β

(
u0,

∫ 1

0
G(t, s)f(s, u0(s))ds

)
% 1;

(3) for all t ∈ I and u, v ∈ X

β(u(t), v(t)) % 1⇒ β

(∫ 1

0
G(t, s)f(s, u(s))ds,

∫ 1

0
G(t, s)f(s, v(s))ds

)
% 1;

(4) if un → u ∈ X and β(un+1, un) % 1 for all n ∈ N then β(un, u) % 1
for all n ∈ N.

Then Equation 4.1 has a solution.

Proof. It is well-known that u ∈ X is a fixed point of T if and only if u is a
solution of problem (4.1). We define α as follows:
α : X ×X ×X → S is defined by

α(u, v) =

{
1 if β(u(t), v(t)) � 1 ∀ t ∈ I
0 if otherwise.

It is easy to see that

α(u, v) � 1⇒ β(u(t), v(t))⇒ β(Tu(t), T v(t)) � 1⇒ α(Tu, Tv) � 1,
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Thus T is α-admissible mapping. Also, for all u, v ∈ X, we have that

d(Tx, Ty) =

[
max
t∈[0,1]

‖Tu(t)− Tv(t)‖
√

1 + a2ei tan−1 a

]2

=

[
max
t∈[0,1]

∥∥∥∥∫ 1

0
G(t, s)[f(s, u(s)) + 2u(s)− f(s, v(s))− 2v(s)]ds

∥∥∥∥√1 + a2ei tan−1 a

]2

-

[
max
t∈[0,1]

∫ 1

0
G(t, s)|u(s)− v(s)|ds

√
1 + a2ei tan−1 a

]2

=

[
max
t∈[0,1]

|u(s)− v(s)|
√

1 + a2ei tan−1 a

]2(
max
t∈[0,1]

∫ 1

0
G(t, s)ds

)2

(4.4)

= d(u, v)
1

4
.

Thus, we have that 2d(Tu, Tv) - 4d(Tu, Tv) - d(u, v). Clearly, all conditions
in Corollary 3.5 are satisfied and guarantees the existence of the fixed point
x ∈ X. Thus, x is the solution of the integral equation 4.1. �

Conclusion

The notions of b-CF simulation function, αsS,-admissible, αsS-ZF -contraction
type I mapping and αsS-ZF -contraction type II mapping were introduced with
respect to ζ in the framework of complex valued b-metric spaces. Furthermore,
some common fixed point and fixed point results for these newly introduced
classes of mappings were established. The results were applied to establish the
existence of a solution of periodic differential equation. The obtained results
in this paper generalize, unify and improve the fixed point results of Samet et
al. [28], Liu et al., [20], Antonio-Francisco et al. [23], Khojasteh et al. [18]
and other results in this direction, which are in the literature. The classes of
mappings which are being considered in this paper are more general and the
results are obtained in a more broad space.
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