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Abstract

In this paper, we introduce a new class of mappings called the (ψ, φ)-Suzuki-type mapping and (ψ, φ)-
Jungck-Suzuki contraction type mappings and we establish the existence, uniqueness and coincidence
results for (ψ, φ)-Suzuki-type mapping and (ψ, φ)-Jungck-Suzuki contraction mappings in the frame
work of complete metric spaces. Furthermore, we applied our results to the existence and uniqueness
of solutions of a differential equation. Our results improve, extend and generalize some known results
in the literature.
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1. Introduction and Premilinaries

Banch contraction principle [3] can be seen as the pivot of the theory of fixed point and its appli-
cations. The theory of fixed point plays an important role in nonlinear functional analysis and its
very useful for showing the existence and uniqueness theorems for nonlinear differential and integral
equations. The importance of the Banach contraction principle cannot be over emphasized in the
study of fixed point theory and its applications. We recall that a mapping T : X → X is said to be
an α-contraction if there exists α ∈ [0, 1) such that

d(Tx, Ty) ≤ αd(x, y), ∀ x, y ∈ X. (1.1)
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Thereafter, the Banach contraction theorem have been extended and generalized by researchers in
this area. Researchers in this area generalizes the well celebrated Banach contraction principle
by considering a class of nonlinear mappings and spaces which are more general than the class of
a contraction mappings and metric spaces (see [1, 4, 16, 17, 18, 19, 21, 22, 25, 27, 28, 33] and the
references therein). For example, in 1973, Geraghty [9] introduced a generalized contraction mapping
called Geraghty-contraction and established the fixed point theorem for this class of contraction
mappings in the frame work of metric spaces. We recall the following definition and result from [9].

Definition 1.1. Let (X, d) be a metric space. A mapping T : X → X is called a Geraghty-
contraction mapping if and only if

d(Tx, Ty) ≤ φ(d(x, y))d(x, y) (1.2)

for all x, y ∈ X, where φ : R+ → [0, 1) satisfies the following condition:

φ(tn)→ 1 as n→∞⇒ tn → 0 as n→∞.

Theorem 1.2. Let (X, d) be a complete metric space and T : X → X be a self map that satisfies
condition (1.2). Then T has a unique fixed point x∗ ∈ X such that for each x ∈ X, limn→∞ T

nx = x∗.

In [10] Goebel generalized (1.1) by introducing a continuous mapping S in place of the identity
mapping (Ix = x), such that S commute with T and T (X) ⊂ S(X). More precisely, he introduced
the following definition.

Definition 1.3. Let S, T : Y → X be two mappings, T is called a Jungck-contraction if there exists
a real number δ ∈ [0, 1) such that

d(Tx, Ty) ≤ δd(Sx, Sy) (1.3)

for all x, y ∈ X.

In 1976, Jungck [7], proved a common fixed point theorem for commuting maps under the condition
that X = Y. The result is as follows:

Theorem 1.4. Let (X, d) be a complete metric space. Suppose the mappings S, T : X → X satisfies
condition (1.3) such that (T, S) are commuting pair, T (X) ⊆ S(X) and S is continuous. Then T
and S have a unique common fixed point say p ∈ X.

Remark 1.5. Clearly, if we take Sx = x in (1.3) for all x ∈ X, we obtain condition (1.1).

Definition 1.6. [8] Let X be a nonempty set and S, T : X → X be any two mappings.

1. A point x ∈ X is called:

(a) coincidence point of S and T if Sx = Tx,
(b) common fixed point of S and T if x = Sx = Tx.

2. If y = Sx = Tx for some x ∈ X, then y is called the point of coincidence of S and T.

3. A pair (S, T ) is said to be:

(a) commuting if TSx = STx for all x ∈ X,
(b) weakly compatible if they commute at their coincidence points, that is STx = TSx, when-

ever Sx = Tx.
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In 1984, Khan, Swaleh and Sessa in [15] introduced the concept of alternating distance function,
which is defined as follows: A function ψ : R+ → R+ is called an alternating distance function if the
following conditions are satisfied:

1. ψ(0) = 0,

2. ψ is monotonically nondecreasing,

3. ψ is continuous.

They established the following result.

Theorem 1.7. Let (X, d) be a complete metric space, let ψ be an altering distance function, and let
T : X → X be a self mapping which satisfies the following condition

ψ(d(Tx, Ty)) ≤ δψ(d(x, y))

for all x, y ∈ X, where δ ∈ (0, 1). Then T has a unique fixed point.

Remark 1.8. Clearly, if we take ψ(x) = x, for all x ∈ X, we obtain condition (1.1).

In what follows, we present some examples of an alternating distance functions.

Example 1.9. A function ψ : R+ → R+ is defined by

1. ψ(t) = nt, for all n ∈ N,
2. ψ(t) = tn, for all n ∈ N,
3. ψ(t) = cosh(t)− 1.

In 1997, Alber and Guerre-Delabriere [2] introduced a generalization of Banach contraction mapping
called weakly contraction mapping in the frame work of Hilbert space. They established some fixed
point results. We recall that a mapping T : H → H is a weakly contractive mapping if

d(Tx, Ty) ≤ d(x, y)− φ(d(x, y)),

for all x, y ∈ X, where H is an Hilbert space and φ : R+ → R+ is a continuous and nondecreasing
function such that φ(t) = 0 if and only if t = 0.

Remark 1.10. Clearly, if we take φ(x) = (1 − α)x, were 0 ≤ α < 1 for all x ∈ X, we obtain
condition (1.1).

Rhoades [26] extend the concepts of weakly contraction mapping to metric spaces and he established
the following result.

Theorem 1.11. Let (X, d) be a complete metric space. Suppose the mapping T : X → X is a weakly
contractive, then T have a unique fixed point.

Using the concept of alternating distance function, Doric [5], Dutta and Choudhury [6], Harjani
and Sadarangani [11, 12] established some fixed points results for weak contraction and generalized
contrac tion mappings in the frame work of partially ordered metric spaces. They established the
following results.
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Theorem 1.12. [6] Let (X, d) be a complete metric space and T : X → X be a mapping satisfying

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− φ(d(x, y))

for all x, y ∈ X where φ, ψ : [0,∞) → [0,∞) is continuous and nondecreasing function such that
ψ(t) > 0, φ(t) > t, for t > 0 and φ(0) = ψ(0) = 0 if and only if t = 0. Then T has a unique fixed
point.

Theorem 1.13. [5] Let (X, d) be a complete metric space and T : X → X be a mapping satisfying

ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− φ(M(x, y))

for all x, y ∈ X where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)
2

}, φ, ψ : [0,∞) →
[0,∞) such that ψ is continuous and nondecreasing function with ψ(t) > 0, for t > 0 and φ(0) = 0
if and only if t = 0 and φ a lower semi-continuous function with φ(t) = 0 if and only if t = 0. Then
T has a unique fixed point.

Theorem 1.14. [11] Let (X,≤) be a partially ordered set and suppose that there exists a metric d
such that (X, d) is a complete metric space. Let T : X → X be a continuous and nondecreasing
mapping such that

d(Tx, Ty) ≤ d(x, y)− ψ(d(x, y))

for x ≥ y, where ψ : [0,∞) → [0,∞) is continuous and nondecreasing function such that ψ(t) >
0, ψ(0) = 0 and limt→∞ ψ(t) =∞. If there exists x0 ∈ X with x0 ≤ Tx0, then T has a fixed point.

Theorem 1.15. [12] Let (X,≤) be a partially ordered set and suppose that there exists a metric d
such that (X, d) is a complete metric space. Let T : X → X be a continuous and nondecreasing
mapping such that

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− φ(d(x, y))

for x ≥ y, where ψ, φ are alteranting distance function. If there exists x0 ∈ X with x0 ≤ Tx0, then
T has a fixed point.

In 2008, Suzuki in [29] introduced the concept of mappings satisfying condition (C) which is also
known as Suzuki-type generalized nonexpansive mapping and he proved some fixed point theorems.

Definition 1.16. Let (X, d) be a metric space. A mapping T : X → X is said to satisfy condition
(C) if for all x, y ∈ X,

1

2
d(x, Tx) ≤ d(x, y)⇒ d(Tx, Ty) ≤ d(x, y).

The concept of alternating distance functions, weakly contractive mappings and mappings satis-
fying condition (C) have been explored by researchers in this area. For some notable works (see
[11, 12, 14, 21, 29, 30, 31, 32] and the references therein).

Motivated by the above works and the research in this direction. The purpose of this paper is to
introduce a new class of mappings called the (ψ, φ)-Suzuki-type mapping and (ψ, φ)-Jungck-Suzuki
contraction type mappings and we establish the existence, uniqueness and coincidence results for
(ψ, φ)-Suzuki-type mapping and (ψ, φ)-Jungck-Suzuki contraction mappings in the frame work of
complete metric spaces. Furthermore, we applied our results to the existence and uniqueness of
solutions of a differential equation. Our results improve, extend and generalize some known results
in the literature.
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2. Existence and Uniqueness of Fixed Point of (ψ, φ)-Suzuki type Mappings

In this section, we introduce the notion of (ψ, φ)-Suzuki type mapping and established the existence
and uniqueness result for this class of mappings.

Definition 2.1. Let (X, d) be a metric space. A mapping T : X → X is said to be (ψ, φ)-Suzuki
type, if for all x, y ∈ X,

1

2
d(x, Tx) ≤ d(x, y)⇒ ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− kφ(N(x, y)) + Lφ(N1(x, y)), (2.1)

where 0 < k ≤ 1, L ≥ 0,M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)},
N(x, y) = max{d(x, y), d(y, Ty)}, N1(x, y) = min{d(x, Ty), d(x, Tx), d(y, Tx)} and ψ, φ are alternat-
ing distance functions.

Theorem 2.2. Let (X, d) be a complete metric space and T : X → X be a mapping satisfying
condition (2.1). Then T has a unique fixed point.

Proof . Let x0 ∈ X. We define the sequence xn+1 = Txn for all n ∈ N. If we suppose that xn = xn+1

for some n ∈ N, we have xn = Txn, which is the required result. So, suppose xn 6= xn+1 for all n ∈ N.
Now observe that

1

2
d(xn, Txn)

=
1

2
d(xn, xn+1) ≤ d(xn, xn+1)

⇒ψ(d(xn+1, xn+2)) = ψ(d(Txn, Txn+1)) ≤ ψ(M(xn, xn+1))− kφ(N(xn, xn+1)) + Lφ(N1(xn, xn+1)),
(2.2)

where

M(xn, xn+1) = max{d(xn, Txn), d(xn+1, Txn+1), d(xn, xn+1)} = max{d(xn, xn+1), d(xn+1, xn+2)}
N(xn, xn+1) = max{d(xn, xn+1), d(xn+1, Txn+1)} = max{d(xn, xn+1), d(xn+1, xn+2)}
N1(xn, xn+1) = min{d(xn, Txn+1), d(xn, Txn), d(xn+1, Txn)} = 0.

If we take max{d(xn, xn+1), d(xn+1, xn+2)} = d(xn+1, xn+2) for some n ∈ N, then (2.2) becomes

ψ(d(xn+1, xn+2)) ≤ ψ(d(xn+1, xn+2))− kφ(d(xn+1, xn+2))

⇒φ(d(xn+1, xn+2)) ≤ 0.

Using the fact that φ(t) > 0 and φ(t) = 0 if t = 0, we have that d(xn+1, xn+2) = 0, which implies that
xn+1 = xn+2, which is a contradiction. Thus, we have that the max{d(xn, xn+1), d(xn+1, xn+2)} =
d(xn, xn+1) and so

d(xn+1, xn+2) ≤ d(xn, xn+1),

d(xn, xn+1) ≤ d(xn−1, xn) (2.3)

and (2.2) becomes

ψ(d(xn+1, xn+2)) ≤ ψ(d(xn, xn+1))− kφ(d(xn, xn+1)). (2.4)
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From (2.3), we have that {d(xn+1, xn+2)} is a nonincreasing sequence. Thus, there exists c ≥ 0 such
that

lim
n→∞

d(xn+1, xn+2) = c,

lim
n→∞

d(xn, xn+1) = c. (2.5)

Taking the limit as n→∞ in (2.4), we have

ψ(c) ≤ ψ(c)− kφ(c)

⇒φ(c) ≤ 0 (using the definition of φ)

⇒c = 0.

And so, we have

lim
n→∞

d(xn+1, xn+2) = 0,

lim
n→∞

d(xn, xn+1) = 0. (2.6)

We now show that {xn} is a Cauchy sequence in X. Assume on contrary that the sequence {xn} is
not Cauchy. Then there exists ε > 0 for which we can find subsequences {xnk

} and {xmk
} of {xn}

with nk > mk > k such that

d(xmk
, xnk

) ≥ ε and d(xmk
, xnk−1) < ε. (2.7)

Then, we have

ε ≤ d(xmk
, xnk

) ≤ d(xmk
, xnk−1) + d(xnk−1, xnk

)

< ε+ d(xnk−1, xnk
). (2.8)

Setting k →∞ and using (2.6), we have

lim
n→∞

d(xmk
, xnk

) = ε. (2.9)

Also, using (2.6) and (2.9), we have

d(xmk
, xnk

) ≤ d(xmk
, xmk+1) + d(xmk+1, xnk+1) + d(xnk+1, xnk

)

and

d(xmk+1, xnk+1) ≤ d(xmk+1, xmk
) + d(xmk

, xnk
) + d(xnk

, xnk+1).

Setting k →∞, we have

lim
n→∞

d(xmk+1
, xnk+1

) = ε. (2.10)

More so, using (2.6) and (2.9), we have

d(xmk
, xnk

) ≤ d(xmk
, xnk+1) + d(xnk+1, xnk

)
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and

d(xmk
, xnk+1

) ≤ d(xmk
, xnk

) + d(xnk
, xnk+1).

Setting k →∞, we have

lim
n→∞

d(xmk
, xnk+1) = ε. (2.11)

Furthermore, using (2.6) and (2.10), we have

d(xmk+1, xnk+1) ≤ d(xmk+1, xnk
) + d(xnk

, xnk+1)

and

d(xmk+1, xnk
) ≤ d(xmk+1, xnk+1) + d(xnk+1, xnk

).

Setting k →∞, we have

lim
n→∞

d(xmk+1, xnk
) = ε. (2.12)

In addition, for the ε > 0, the convergence of the sequence {d(xn, xn+1)} implies that there exists
n0 ∈ N such that d(xn, xn+1) < ε for all n ≥ n0. Let N1 = max{mi, n0}. Then, for all mk > nk ≥ N1,
we have

d(xnk
, xnk+1

) < ε ≤ d(xnk
, xmk

),

where mk > nk and so
1

2
d(xnk

, xnk+1
) ≤ d(xnk

, xmk
)

which implies that

ψ(d(xnk+1
, xmk+1

)) = ψ(d(Txnk
, Txmk

)) ≤ ψ(M(xnk
, xmk

))− kφ(N(xnk
, xmk

)) + Lφ(N1(xnk
, xmk

)),
(2.13)

where

M(xnk
, xmk

) = max{d(xnk
, Txnk

), d(xm, Txmk
), d(xnk

, xmk
)}

= max{d(xnk
, xnk+1), d(xm, xm+1), d(xnk

, xmk
)}

N(xnk
, xmk

) = max{d(xnk
, xmk

), d(xmk
, Txmk

)}
= max{d(xnk

, xmk
), d(xm, xm+1)}

N1(xnk
, xmk

) = min{d(xnk
, Txmk

), d(xnk
, Txnk

), d(xmk
, Txnk

)}
= min{d(xnk

, xmk+1), d(xnk
, xnk+1), d(xmk

, xnk+1)}.

Setting k →∞ and using (2.6), (2.9), (2.10), (2.11) and (2.12), (2.13) becomes

ψ(ε) ≤ ψ(ε)− kφ(ε) + Lφ(0)

⇒φ(ε) ≤ 0 (using the definition of φ)

⇒ε = 0.
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This contradict our assumption that ε > 0. Thus {xn} is Cauchy. Since X is complete, then there
exists say y ∈ X such that limn→∞ xn = y. Now, suppose that for every n ∈ N, we have

d(xn, y) <
1

2
d(xn, xn+1)

and

d(xn+1, y) <
1

2
d(xn+1, xn+2).

Now, observe that

d(xn, xn+1) ≤ d(xn, y) + d(y, xn+1)

<
1

2
d(xn, xn+1) +

1

2
d(xn+1, xn+2)

⇒d(xn, xn+1) < d(xn+1, xn+2).

The above inequality has been shown as a contradiction in (2.2). Hence, we have that

1

2
d(xn, xn+1) ≤ d(xn, y)

and

1

2
d(xn+1, xn+2) ≤ d(xn+1, y).

It then follows that

1

2
d(xn, Txn) =

1

2
d(xn, xn+1) ≤ d(xn, y),

which implies that

ψ(d(xn+1, T y)) = ψ(d(Txn, T y)) ≤ ψ(M(xn, y))− kφ(N(xn, y)) + Lφ(N1(xn, y)), (2.14)

where

M(xn, y) = max{d(xn, Txn), d(y, Ty), d(xn, y)}
N(xn, y) = max{d(xn, y), d(y, Ty)}
N1(xn, y) = min{d(xn, T y), d(xn, Txn), d(y, Txn)}.

Setting n→∞, we have (2.14) becomes

ψ(d(y, Ty)) ≤ ψ(d(y, Ty))− kφ(d(y, Ty)) + Lφ(0)

⇒φ(d(y, Ty)) ≤ 0 (using the definition of φ)

⇒d(y, Ty) = 0

⇒y = Ty.

To show that the fixed point is unique, we suppose on the contrary that there exists another fixed
point say z ∈ X such that z = Tz and y 6= z.

1

2
d(y, Ty) = 0 ≤ d(y, z),
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which implies that

ψ(d(y, z)) = ψ(d(Ty, Tz)) ≤ ψ(M(y, z))− kφ(N(y, z)) + Lφ(N1(y, z),

we obtain

ψ(d(y, z)) ≤ ψ(d(y, z))− kφ(d(y, z))

⇒φ(d(y, z)) ≤ 0 (using the definition of φ)

⇒d(y, z) = 0

⇒y = z.

Hence, the fixed point is unique. �

Example 2.3. Let X = {0, 1, 2, 3, 4, · · · }. We define

d(x, y) =

{
x+ y + 4 if x 6= y

0 if x = y,

T : X → X by

Tx =

{
x− 1 if x ≥ 1

0 if x = 0,

and ψ, φ : [0,∞) → [0,∞) by ψ(x) = x2 and φ(x) = x. Clearly, (X, d) is a complete metric space
(see, [4]). Then for any k ∈ (0, 1] and L ≥ 0, T is a (ψ, φ)-Suzuki type mapping.

Proof . To establish that T is a (ψ, φ)-Suzuki type mapping, we consider the following cases.
Case 1: If x = y, we consider the following sub-cases.
Case 1(a): If x = y = 0. We have that d(Tx, Ty) = 0 and ψ(0) = 0. Clearly, we have that

1

2
d(x, Tx) ≤ d(x, y)⇒ ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− kφ(N(x, y)) + Lφ(N1(x, y)).

Case 1(b): If x = y 6= 0. We have

1

2
d(x, Tx) =

1

2
d(x, x− 1) =

2x+ 3

2
> 0 = d(x, y).

Thus, we have nothing to show.
Case 2: If x > y and y = 1.

1

2
d(x, Tx) =

1

2
d(x, x− 1) =

2x+ 3

2
< x+ 5 = d(x, y),

and

d(Tx, Ty) = d(x− 1, y − 1) = d(x− 1, 0) = x+ 3

d(x, y) = d(x, 1) = x+ 5

d(x, Tx) = d(x, x− 1) = 2x+ 3

d(y, Ty) = d(1, 0) = 5.
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Therefore, we have that

M(x, y) = 2x+ 3, N(x, y) = x+ 5

and

(x+ 3)2 ≤ (2x+ 3)2 − (x+ 5),

we have

1

2
d(x, Tx) ≤ d(x, y)⇒ ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− kφ(N(x, y)) + Lφ(N1(x, y)).

Case 3: If x > y and y = 0. We consider the following sub-cases.
Case 3(a): If x = 1 and y = 0.

1

2
d(x, Tx) =

1

2
d(1, 0) = 5 = d(x, y),

and

d(Tx, Ty) = d(x− 1, 0) = d(0, 0) = 0.

Therefore, we have that

1

2
d(x, Tx) ≤ d(x, y)⇒ ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− kφ(N(x, y)) + Lφ(N1(x, y)).

Case 3(b): If x > 1 and y = 0.

1

2
d(x, Tx) =

1

2
d(x, x− 1) =

2x+ 3

2
< x+ 4 = d(x, y),

and

d(Tx, Ty) = d(x− 1, 0) = x+ 3

d(x, y) = d(x, 0) = x+ 4

d(x, Tx) = d(x, x− 1) = 2x+ 3

d(y, Ty) = d(0, 0) = 0.

Therefore, we have that

M(x, y) = 2x+ 3, N(x, y) = x+ 4

and

(x+ 3)2 ≤ (2x+ 3)2 − (x+ 4),

we have

1

2
d(x, Tx) ≤ d(x, y)⇒ ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− kφ(N(x, y)) + Lφ(N1(x, y)).
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Case 4: If x > y and y ≥ 2. We consider the following sub-cases.
Case 4(a): If x = y + 1.

1

2
d(x, Tx) =

1

2
d(y + 1, y) =

2y + 5

2
< 2y + 5 = d(y + 1, y) = d(x, y),

and

d(Tx, Ty) = d(x− 1, y − 1) = d(y, y − 1) = 2y + 3

d(x, y) = (y + 1, y) = 2y + 5

d(x, Tx) = d(y + 1, y) = 2y + 5

d(y, Ty) = 2y + 3.

Therefore, we have that

M(x, y) = 2x+ 3, N(x, y) = x+ 4

and

(2y + 3)2 ≤ (2y + 5)2 − (2y + 5),

we have

1

2
d(x, Tx) ≤ d(x, y)⇒ ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− kφ(N(x, y)) + Lφ(N1(x, y)).

Case 4(b): If x > y + 1.

1

2
d(x, Tx) =

1

2
d(x, x− 1) =

2x+ 3

2
< x+ y + 4 = d(x, y),

and

d(Tx, Ty) = d(x− 1, y − 1) = x+ y + 2

d(x, y) = d(x, y) = x+ y + 4 ≤ 2x+ 3

d(x, Tx) = d(x, x− 1) = 2x+ 3

d(y, Ty) = d(y, y − 1) = 2y + 3.

Therefore, we have that

M(x, y) = 2x+ 3, N(x, y) = x+ y + 4

and

(x+ y + 2)2 ≤ (2x+ 1)2 ≤ (2x+ 3)2 − (2x+ 3),

we have

1

2
d(x, Tx) ≤ d(x, y)⇒ ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− kφ(N(x, y)) + Lφ(N1(x, y)).

Hence, T is a (ψ, φ)-Suzuki type mapping with a unique fixed point 0. �
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3. Coincidence Point Theorem for (ψ, φ)-Jungck-Suzuki type Mappings

In this section, we introduce the concept of (ψ, φ)- Jungck-Suzuki type mapping and established the
existence of a coincidence point for this class of mappings.

Definition 3.1. Let (X, d) be a metric space, Y an arbitrary nonempty set and S, T : Y → X be
two mappings. A mapping T is said to be (ψ, φ)-Jungck-Suzuki type mapping, if for all x, y ∈ Y,

1

2
d(Sx, Tx) ≤ d(Sx, Sy)

⇒ψ(d(Tx, Ty)) ≤ ψ(M(Sx, Sy))− kφ(N(Sx, Sy)) + Lφ(N1(Sx, Sy)), (3.1)

where 0 < k ≤ 1, L ≥ 0,M(Sx, Sy) = max{d(Sx, Sy), d(Sx, Tx), d(Sy, Ty)},
N(x, y) = max{d(Sx, Sy), d(Sy, Ty)}, N1(Sx, Sy) = min{d(Sx, Ty), d(Sx, Tx), d(Sy, Tx)}
and ψ, φ are alternating distance functions.

Theorem 3.2. Let (X, d) be a complete metric space. Suppose the mappings S, T : Y → X satisfying
condition (3.1) such that T (Y ) ⊆ S(Y ) and S(Y ) is a complete subspace of X, then T and S have a
coincidence point.

Proof . For every x0 ∈ Y, there exists x1 ∈ Y such that Sx1 = Tx0, since T (Y ) ⊆ S(Y ). Using this
fact, for any xn ∈ Y, there exists xn+1 such that Sxn+1 = Txn. Now observe that

1

2
d(Sxn, Txn)

=
1

2
d(Sxn, Sxn+1) ≤ d(Sxn, Sxn+1)

⇒ψ(d(Sxn+1, Sxn+2)) = ψ(d(Txn, Txn+1))

≤ ψ(M(Sxn, Sxn+1))− kφ(N(Sxn, Sxn+1)) + Lφ(N1(Sxn, Sxn+1)), (3.2)

where

M(Sxn, Sxn+1) = max{d(Sxn, Txn), d(Sxn+1, Txn+1), d(Sxn, Sxn+1)}
= max{d(Sxn, Sxn+1), d(Sxn+1, Sxn+2)}

N(Sxn, Sxn+1) = max{d(Sxn, Sxn+1), d(Sxn+1, Txn+1)}
= max{d(Sxn, Sxn+1), d(Sxn+1, Sxn+2)}

N1(Sxn, Sxn+1) = min{d(Sxn, Txn+1), d(Sxn, Txn), d(Sxn+1, Txn)} = 0.

Using similar approach as in Theorem 2.2, we have that the max{d(Sxn, Sxn+1), d(Sxn+1, Sxn+2)} =
d(Sxn, Sxn+1) and so

d(Sxn+1, Sxn+2) ≤ d(Sxn, Sxn+1),

d(Sxn, Sxn+1) ≤ d(Sxn−1, Sxn) (3.3)

and (3.2) becomes

ψ(d(Sxn+1, Sxn+2)) ≤ ψ(d(Sxn, Sxn+1))− kφ(d(Sxn, Sxn+1)). (3.4)
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From (3.3), we have that {d(Sxn+1, Sxn+2)} is a nonincreasing sequence. Thus, there exists c ≥ 0
such that

lim
n→∞

d(Sxn+1, Sxn+2) = c,

lim
n→∞

d(Sxn, Sxn+1) = c. (3.5)

Taking the limit as n→∞ in (3.4), we have

ψ(c) ≤ ψ(c)− kφ(c)

⇒φ(c) ≤ 0 (using the definition of φ)

⇒c = 0.

lim
n→∞

d(Sxn+1, Sxn+2) = 0,

lim
n→∞

d(Sxn, Sxn+1) = 0. (3.6)

Using similar approach as in Theorem 2.2, it is easy to show that {Sxn} is Cauchy. Since S(Y ) is
complete, then there exists say x ∈ S(Y ) such that limn→∞ Sxn = x. More so, we can find y ∈ Y
such that Sy = x. Now suppose that for every n ∈ N, we have

d(Sxn, y) <
1

2
d(Sxn, Sxn+1)

and

d(Sxn+1, y) <
1

2
d(Sxn+1, Sxn+2).

Now, observe that

d(Sxn, Sxn+1) ≤ d(Sxn, y) + d(y, Sxn+1)

<
1

2
d(Sxn, Sxn+1) +

1

2
d(Sxn+1, Sxn+2)

⇒d(Sxn, Sxn+1) < d(Sxn+1, Sxn+2).

Which is a contradiction. Hence, we have that

1

2
d(Sxn, Sxn+1) ≤ d(Sxn, y) and

1

2
d(Sxn+1, Sxn+2) ≤ d(Sxn+1, y).

It then follows that

1

2
d(Sxn, Txn) =

1

2
d(Sxn, Sxn) ≤ d(Sxn, y),

which implies that

ψ(d(Sxn+1, T y)) = ψ(d(Txn, T y)) ≤ ψ(M(Sxn, Sy))− kφ(N(Sxn, Sy)) + Lφ(N1(Sxn, Sy)), (3.7)

where

M(Sxn, Sy) = max{d(Sxn, Txn), d(Sy, Ty), d(Sxn, Sy)} = max{d(Sxn, Sxn+1), d(x, Ty), d(Sxn, x)}
N(Sxn, Sy) = max{d(Sxn, Sy), d(Sy, Ty)} = max{d(Sxn, x), d(x, Ty)}
N1(Sxn, Sy) = min{d(Sxn, T y), d(Sxn, Txn), d(Sy, Txn)} = min{d(Sxn, T y), d(Sxn, Sxn+1), d(x, Sxn+1)}.



976

Setting n→∞, we have (3.7) becomes

ψ(d(x, Ty)) ≤ ψ(d(x, Ty))− kφ(d(x, Ty)) + Lφ(0)

⇒φ(d(x, Ty)) ≤ 0 (using the definition of φ)

⇒d(x, Ty) = 0

⇒x = Ty.

It follows that

lim
n→∞

d(Sxn, T y) = 0 and lim
n→∞

d(Sxn, Sy) = 0

Thus, we have x = Sy = Ty. This completes the proof. �

4. Application

In this section, we present an application on existence of a solution of a differential equation. Let
C(I) be the space of all continuous function defned on I = [0, 1]. Consider the following second order
differential equation with the associated boundary conditions

−d2x
dt2

= f(t, x(t)), t ∈ I, x ∈ [0,∞) (4.1)

x(0) = x
′
(1) = 0.

If x ∈ C2(I) is a zero of (4.1), then x ∈ C(I) is also the zero of the following integral equation

x(t) =

∫ 1

0

G(t, τ)f(τ, x(τ))dτ t ∈ I,

where G(t, τ) is the Green function defined by

G(t, τ) =

{
t(1− τ) if 0 ≤ t ≤ τ ≤ 1

τ(1− t) if 0 ≤ τ ≤ t ≤ 1.

Theorem 4.1. Considering the differential equation (4.1) and a mapping f : I ×C(I)→ R defined
by

f(t, x)− f(t, y) = δ
√

(x− y)2 + A(x− y), x ≥ y,

where δ ∈ (0, 8], A = L − 1 > 0. Suppose that f is weakly increasing with respect to the second
variable, then there exists a unique nonnegative solution of the differential equation (4.1).

Proof . Suppose that X = {x ∈ C(I) : x(t) ≥ 0} and d(x, y) = supt∈I{|x(t)−y(t)|} for all x, y ∈ X.
Clearly, (X, d) is a complete metric space. We define T : C(I)→ C(I) by

Tx(t) =

∫ 1

0

G(t, τ)f(τ, x(τ))dτ. (4.2)
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If x ∈ C(I) is a fixed point of T, then x ∈ C1(I) is a zero of (4.1). By our hypothesis that x ≥ y, we
have

Ty(t) =

∫ 1

0

G(t, τ)f(τ, y(τ)) ≤
∫ 1

0

G(t, τ)f(τ, x(τ)) = Tx(t).

More so, we have that

sup
t∈I
{|Tx(t)− x(t)|} ≤ sup

t∈I
{|x(t)− y(t)|}

that is

1

2
d(Tx, x) ≤ d(Tx, x) ≤ d(x, y),

which implies that

d(Tx, Ty) = sup
t∈I
{|Tx(t)− Ty(t)|} = sup

t∈I

∫ 1

0

G(t, τ)[f(τ, x(τ))− f(τ, y(τ))]dτ

= sup
t∈I

∫ 1

0

G(t, τ)δ
√

(x(τ)− y(τ))2 + A(x(τ)− y(τ))dτ (4.3)

= δ
√
d(x, y)2 + A(d(x, y)) sup

t∈I

∫ 1

0

G(t, τ)dτ.

Clearly, the supt∈I
∫ 1

0
G(t, τ)dτ = 1

8
. And so (4.3) becomes

d(Tx, Ty) = δ
1

8

√
d(x, y)2 + Ad(x, y) ≤

√
d(x, y)2 + Ad(x, y)

⇒d(Tx, Ty)2 ≤ d(x, y)2 + Ad(x, y) ⇒ d(Tx, Ty)2 ≤ d(x, y)2 + (L− 1)d(x, y),

where A = L− 1. Suppose that ψ(t) = t2, φ(t) = t. Therefore, the last inequalities, becomes

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− φ(d(x, y)) + Lφ(d(x, y))

≤ ψ(M(x, y))− φ(N(x, y)) + Lφ(N1(x, y)).

Since all of the conditions of Theorem 2.2 are satisfied, as a result, the mapping T has a unique fixed
point which is a solution of (4.2) and consequently a solution of (4.1). �

5. Conclusion

In this work, we have extend and improve various fixed point results in metric spaces. More so, the
result obtain in this paper generalizes and complements many well-known results in Banach spaces.
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