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Abstract

Approximate solution of a linear hyperbolic interface problem on quadratic

finite element with time discretization based on modified centered difference

scheme is proposed. With the assumption that the unknown is of low

regularity across the interface, the stability of the scheme is established and

convergence rate of optimal order in L2(Ω) norm is proved. The theoretical

result is confirmed with an example.
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Introduction

Hyperbolic partial differential equations are encountered in various physical problems such as

vibrating string, vibrating membrane, shallow water waves, etc (Rao, 2007; Leissa and Qatu,

2011; Debnath, 2012). Such differential equations become interface problems when the

solution domain contains materials with different properties (Brekhovskikh, 1980; Deka and

Sinha, 2012; Deka and Ahmed, 2013). Due to the nature of such problems, obtaining

solutions with high accuracy may be difficult (Babuška, 1970; Chen and Zou, 1998). The

study of interface problems by finite element method has gained the attention of researchers

within the last three decades. For recent works on elliptic interface problems, see (Karátson

and Korotov, 2009; Li et al., 2010; Payne et al., 2012; Lehrenfeld and Reusken, 2017) and

Deka and Ahmed (2012); Faragó et al. (2012); Mu et al. (2013); Yang (2015); Song and Yang

(2017); Adewole (2017); Gupta et al. (2017, 2018); Adewole; Adewole and Payne (2018) for

parabolic interface problems.
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Deka and Sinha (2012) considered the convergence of finite element solution of linear

hyperbolic interface problem. With the assumption that the interface can be fitted exactly

using interface elements with curved edges, the authors established convergence rates of

optimal order for both semi and full discretizations. Time discretization was based on

symmetric difference approximation around the nodal points. Deka and Ahmed (2013) also

proved convergence rates of optimal order for finite element solution of an homogenous

hyperbolic interface problem. Their time discretization was again based on symmetric

difference approximation around the nodal points. Approximation properties of interpolation

and projection operators were used in their analysis. Linear finite element with time

discretization based on implicit scheme was presented for wave equation with discontinuous

coefficient in (Deka, 2017).

Adewole (2018) investigated the error contributed by semi discretization to the finite element

solution of linear hyperbolic interface problems. With low regularity assumption on the

solution across the interface and with the assumption that the interface could be fitted

exactly, almost optimal convergence rates in L2(Ω) and H1(Ω) norms were established. In
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this work, we consider the finite element discretization where the interface is approximated

by polynomials of degree two which are joined end to end and propose a modified centered

difference scheme for the time discretization. Under certain regularity assumptions on the

input data, we show that optimal order of convergence in the L2(Ω) norm is obtainable for

full discretization.
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Notation and Preliminaries
Full Discretization

Problem Definition and Discretization

Let Ω be a convex polygonal domain in R2 with boundary ∂Ω and Ω1 ⊂ Ω be an open

domain with boundary Γ = ∂Ω1. Let Ω2 = Ω \ Ω1 be another open domain contained in Ω

with boundary Γ ∪ ∂Ω, see Figure 3.1. We consider the hyperbolic interface problem

utt −∇ · (a(x, t)∇u) + b(x, t)u = f(x, t) in Ω× (0, T ] (3.1)

with initial and boundary conditions
u(x, 0) = u0(x) in Ω

ut(x, 0) = u1(x) in Ω

u(x, t) = 0 on ∂Ω× [0, T ]

(3.2)

and interface conditions 
[u]Γ = 0[

a(x, t)
∂u

∂n

]
Γ

= g(x, t)
(3.3)
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Notation and Preliminaries
Full Discretization

where 0 < T <∞, the symbol [u] is a jump of a quantity u across the interface Γ and n is

the unit outward normal to the boundary ∂Ω1. The interface conditions are defined as the

difference of the limiting values from each side of the interface. The input functions a(x, t),

b(x, t) and f(x, t) are assumed continuous on each domain but discontinuous across the

interface for t ∈ [0, T ].

 
 
 

                   
 
 
 

                                           
 

                               
 
 

Figure: A polygonal domain Ω = Ω1 ∪ Ω2 with interface Γ
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Notation and Preliminaries
Full Discretization

Notation and Preliminaries

In this work, we use the standard notations for Sobolev spaces and norms. For a given

Banach space B, we define

W
m,p

(0, T ;B) =



u(t) ∈ B for a.e. t ∈ (0, T ) and

m∑
i=0

∫ T
0

∥∥∥∥∥∥
∂iu

∂ti
(t)

∥∥∥∥∥∥
p

B

dt < 0 for 1 ≤ p < ∞

u(t) ∈ B for a.e. t ∈ (0, T ) and
m∑
i=0

ess sup
0≤t≤T

∥∥∥∥∥∥
∂iu

∂ti
(t)

∥∥∥∥∥∥
B

< 0 for p = ∞

equipped with the norms

‖u‖Wm,p(0,T ;B) =



[
m∑
i=0

∫ T

0

∥∥∥∥∂iu∂ti (t)

∥∥∥∥p
B

dt

]1/p

1 ≤ p <∞

m∑
i=0

ess sup
0≤t≤T

∥∥∥∥∂iu∂ti (t)

∥∥∥∥
B

p =∞

We write L2(0, T ;B) = W 0,2(0, T ;B) and Hm(0, T ;B) = Wm,2(0, T ;B). We use the

definition and notation in (Adams, 1975) when m is negative or fractional.
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Notation and Preliminaries
Full Discretization

For

f(x, t) =

 f1(x, t) in Ω1 × (0, T ]

f2(x, t) in Ω2 × (0, T ]

with f1 ∈ Hm(Ω1) and f2 ∈ Hm(Ω2), m = 2, 3, we define

‖f‖Hm(Ω) = ‖f1‖Hm(Ω1) + ‖f2‖Hm(Ω2) , t ∈ (0, T ].

Throughout this presentation, C is a generic positive constant (which is independent of the

mesh parameter h and the time step size k) and may take on different values at different

occurrences.

We recall that for u ∈ H1(Ω), the boundary value of u (ie u|∂Ω) is defined on H1/2(∂Ω) the

trace space of H1(Ω). Similarly, the trace space on the interface Γ is H1/2(Γ). The trace

operator from H1(Ω) to H1/2(∂Ω) is continuous and satisfies the embedding

‖z‖L2(∂Ω) ≤ ‖z‖H1/2(∂Ω) ≤ c0‖z‖H1(Ω) ∀ z ∈ H1(Ω) (3.4)

See Atkinson and Han (2009) for more information on trace operator.
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Notation and Preliminaries
Full Discretization

Regarding the regularity for the solution of the interface problem (3.1)−(3.3), we have the

following result (Deka and Sinha, 2012):

Theorem 3.1

Let f ∈ H1(0, T ;L2(Ω)), g ∈ H1(0, T ;H1/2(Γ)), u0 ∈ H1
0 (Ω) and u1 ∈ Y ∩ L2

0(Ω). Then

problem (3.1)−(3.3) has a unique solution

u ∈ L2(0, T ;X ∩H1
0 (Ω)) ∩H1(0, T ;H2(Ω1) ∩H2(Ω2)) ∩H2(0, T ;Y )

where

X = H1(Ω) ∩H2(Ω1) ∩H2(Ω2) , Y = L2(Ω) ∩H1(Ω1) ∩H1(Ω2).

Dr. M.O. Adewole . . . Hyperbolic Interface Prob. on Quadratic Element



Abstract
Introduction

Problem Definition and Discretization
Main Results

Numerical Experiment
Conclusion
References

Notation and Preliminaries
Full Discretization

Full Discretization

Th denotes a partition of Ω into disjoint six-node triangles K (called elements) such that no

vertex of any triangle lies on the interior or side of another triangle. Let T?h denote the set of

all elements that are intersected by the interface Γ;

T?h = {K ∈ Th : K ∩ Γ 6= φ}

K ∈ T?h is called an interface element and we write Ω?h =
⋃
K∈T?

h
K. The triangulation Th of

the domain Ω satisfies the following conditions

(i) Ω̄ =
⋃

K∈Th

K̄

(ii) If K̄1, K̄2 ∈ Th and K̄1 6= K̄2, then either K̄1 ∩ K̄2 = ∅ or K̄1 ∩ K̄2 is a common vertex

or a common edge.
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Notation and Preliminaries
Full Discretization

(iii) The edge of K ∈ T?h that intersect with the interface is called the interface edge of K

and is denoted by KI , Γh =
⋃
K∈T?

h
KI . Each K ∈ T?h has only one interface edge and

Γ intersects KI at minimum of three nodes. The interface edge of each interface

element is a curve defined by a second degree polynomial through three nodes (see

Figure 3.2). These three nodes are chosen such that two are at the vertices and one

almost at the middle.

(iv) For each element K ∈ Th, let rK and r̄K be the diameters of its inscribed and

circumscribed circles respectively. It is assumed that, for some fixed h0 > 0, there

exists two positive constants C0 and C1, independent of h, such that

C0rK ≤ h ≤ C1r̄K ∀ h ∈ (0, h0)

Dr. M.O. Adewole . . . Hyperbolic Interface Prob. on Quadratic Element
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Notation and Preliminaries
Full Discretization

Let Sh ⊂ H1
0 (Ω) denote the space of continuous piecewise polynomials of degree two through

the nodes on each K ∈ Th and vanish on ∂Ω. We ensure that each element has six nodes.

This is necessary to ensure continuity across the element edges. All interface elements are

constructed from the reference element (triangle in this case) through a geometric

transformation. See Ciarlet (1978) for more information on the construction of isoparametric

finite elements.

    Nodes 
 
 
 

 
 

                                 

 
 
 
 

                

 
 
 
 
 
 

Figure: A typical interface element
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Notation and Preliminaries
Full Discretization

The FE solution uh(x, t) ∈ Sh is represented as

uh(x, t) =

Nh∑
j=1

αj(t)φj(x) ,

where each basis function φj , (j = 1, 2, . . . , Nh) is a second degree polynomial satisfying

φj(xi) =

{
1 i = j

0 i 6= j

For the approximation gh of g, let {zj}nhj=1 be the set of all nodes of the triangulation Th

that lie on the interface Γ and {ψj}nhj=1 be second degree polynomials corresponding to

{zj}nhj=1 in the space Sh then

gh(t, x) =

nh∑
j=1

βj(t)ψj(x) .

The finite element discretization determines the nature of the error obtained. With the

assumption that the interface can be fitted exactly using interface elements with curved

edges, optimal convergence rate is possible (see Sinha and Deka (2005) for example).
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Notation and Preliminaries
Full Discretization

Convergence rate of optimal order is also obtainable when the approximation to the interface

and the finite element spaces meet certain conditions (Li et al., 2010). Such conditions

include Ω?h ∈ Sδ where Sδ is a δ−neighbourhood of the interface, with δ = O(h3). With this

condition, interface elements need to divide more rapidly than non-interface elements to

guarantee the optimal convergence rate. In both cases, we have, by standard finite element

interpolation theory (Ciarlet, 1978; Thomée, 2006),

Lemma 3.2

For the Lagrange interpolation operator πh : C(Ω̄)→ Sh, we have

‖u− πhu‖Hm(Ω) ≤ Ch3−m(‖u‖H3(Ω1) + ‖u‖H3(Ω2)) , m = 0, 1, 2.

The weak form of (3.1)−(3.3) is obtained as: given u0, u1 ∈ H3(Ω), find

u : [0, T ]→ H1
0 (Ω) ∩H3(Ω) such that

(utt, v) +A(u, v) = (f, v) + 〈g, v〉Γ ∀ v(t) ∈ H1
0 (Ω), a.e. t ∈ [0, T ] (3.5)
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Notation and Preliminaries
Full Discretization

where

(φ, ψ) =

∫
Ω
φψ dx A(φ, ψ) =

∫
Ω

[a(x, t)∇φ · ∇ψ + b(x, t)φψ] dx

〈φ, ψ〉Γ =

∫
Γ
φψ dΓ

For the time discretization, the interval [0, T ] is divided into M equally spaced subintervals:

0 = t0 < t1 < . . . < tM = T

with tn = nk, k = T/M being the time step. Let

un = u(tn, x) , fn = f(tn, x) and gn = g(tn, x) .

For a given sequence {wn}Mn=0 ⊂ L2(Ω), we have the centered difference quotient defined by

∂wn =
wn+1 − 2wn + wn−1

k2
, n = 1, 2, . . . , (M − 1)

The fully discrete finite element approximation to (3.3) is defined as follows: Given U0
h and

U1
h, find Unh ∈ Sh, such that ∀ vh ∈ Sh,
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Notation and Preliminaries
Full Discretization

4(∂U
n
h , vh)h+Ah(U

n+1
h +2U

n
h+U

n−1
h , vh) = (f

n+1
+2f

n
+f

n−1
, vh)h+〈gn+1

h +2g
n
h+g

n−1
h , v

h〉Γh
∀ vh ∈ Sh, n = 1, 2, . . . , (M − 1). (3.6)

Where Ah(φ, ψ), (ξ, φ)h and 〈φ, ψ〉Γh are defined as

Ah(φ, ψ) =
∑
K∈Th

∫
K

[a∇φ · ∇ψ + bφψ] dx , (ξ, φ)h =
∑
K∈Th

∫
K
ξφ dx,

〈φ, ψ〉Γh =
∑
K∈T?

h

∫
KI

φψ ds

and s ∈ KI .

The analysis of this work is done with the assumption that
∂iu

∂ti
exists (for i = 1, . . . , 4). It

can be shown using Taylor expansion that

‖un − 2un−1 + un−2‖L2(Ω) ≤ k
2λ0 (3.7)

Let Ph : H3(Ω) ∩H1
0 (Ω)→ Sh be the elliptic projection of the exact solution u in Sh defined

by

Ah(Phν, φ) = A(ν, φ) ∀ φ ∈ Sh, t ∈ [0, T ] (3.8)
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Notation and Preliminaries
Full Discretization

For this projection, we have

Lemma 3.3

Let ai(x, t), bi(x, t) be continuous on Ωi × (0, T ], i = 1, 2 and ‖uttt‖ <∞. Assume that

u ∈ H3(Ω) ∩H1
0 (Ω) and let Phu be defined as in (3.8), then

‖(Phu− u)tt‖L2(Ω) + h‖(Phu− u)tt‖H1(Ω) ≤ Ch
3
(
‖u‖H3(Ω) + ‖ut‖H3(Ω) + ‖utt‖H3(Ω)

)

Proof.
It follows from Lemma 3.2 and an argument similar to (Adewole, 2017, Lemma 3.5).
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Main Results

In this section, we establish the stability of the proposed scheme and prove error estimates of

optimal order in L2(Ω) norm. For this presentation, we consider the case Γ = Γh.

Lemma 4.1

Let ai(x, t), bi(x, t) and fi(x, t) be continuous on Ωi × (0, T ], i = 1, 2. Suppose

g(x, t) ∈ L2(0, T ;H1/2(Γ)) and k ∈ (0, 1), there exists a constant C independent of k and h

such that

‖Unh ‖
2
L2(Ω)

≤ C
[
‖U0

h‖
2
L2(Ω)

+ ‖U1
h‖

2
L2(Ω)

+

∫ tn

t2

(
‖f‖2

L2(Ω)
+ ‖g‖2

H1/2(Γ)

)
dt

]
(4.1)

for n = 2, . . . ,M .
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Proof.

Let vh = Un+1
h + 2Unh + Un−1

h in (3.6) and use (3.4) and (3.7)
3

k2
‖Un+1

h ‖2
L2(Ω)

+ µ‖Un+1
h + 2Unh + Un−1

h ‖2
H1(Ω)

≤
16

k2

(
‖Unh ‖

2
L2(Ω)

+ ‖Un−1
h ‖2

L2(Ω)

)
+ ‖fn+1 + 2fn + fn−1‖L2(Ω)‖U

n+1
h + 2Unh + Un−1

h ‖L2(Ω)

+c0‖gn+1
h + 2gnh + gn−1

h ‖H1/2(Γ)‖U
n+1
h + 2Unh + Un−1

h ‖H1(Ω).

Using Young’s inequality and the fact that k ∈ (0, 1), we have

3

k2
‖Un+1

h ‖2
L2(Ω)

≤
16

k2

(
‖Unh ‖

2
L2(Ω)

+ ‖Un−1
h ‖2

L2(Ω)

)
+

1

2kµ
‖fn+1 + 2fn + fn−1‖2

L2(Ω)

+
c20

2kµ
‖gn+1
h + 2gnh + gn−1

h ‖2
H1/2(Γ)

, n = 1, 2, . . . , (M − 1).

(4.1) follows by iteration on n.
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The main result below establishes the convergence of the fully discrete solution to the exact

solution in the L2(Ω) norm.

Theorem 4.2

Let un and Unh be the solutions of (3.5) and (3.6) at tn respectively. Suppose

g(x, t) ∈ L2(0, T ;H3(Γ)) and ai(x, t), bi(x, t), fi(x, t),
∂4u
∂t4

are continuous on Ωi × (0, T ],

i = 1, 2. There exists a positive constant C independent of h and k such that

‖un − Unh ‖L2(Ω) ≤ C
[
k2 + h3

]
An

where

An = max


√
‖un‖2X +

∫ tn

0

(
‖u‖2X + ‖ut‖2X + ‖utt‖2X

)
dt,

√
‖untt‖2L2(Ω)

+

∫ tn

0

‖
∂4u

∂t4
‖2
L2(Ω)

dt


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Proof.
Letting zn = Phu

n − Unh in (3.6) and using (3.8), we have

(∂zn, vh) +
1

4
Ah(zn+1 + 2zn + zn−1, vh) = (∂(Phu

n − un), vh) + (∂un − untt, vh)

−(un+1
tt − 2untt + un−1

tt , vh) (4.2)

With vh = k
(
zn+1 + 2zn + zn−1

)
, we obtain

2

3k
‖zn+1‖2

L2(Ω)
+
µ1k

4
‖zn+1 + 2zn + zn−1‖2

H1(Ω)

≤
4

k

(
‖zn‖2

L2(Ω)
+ ‖zn−1‖2

L2(Ω)

)
+

3k2

4ε
‖zn+1 + 2zn + zn−1‖2

L2(Ω)

+ ε‖∂(Phu
n − un)‖2

L2(Ω)
+ ε‖∂un − untt‖2L2(Ω)

+ εk4‖
∂4un

∂t4
‖2

where µ1 = min{a, b} and ε > 0. We take ε = 3
µ1

and obtain for k ∈ (0, 1),

‖zn+1‖2
L2(Ω)

≤ C
(
‖zn‖2

L2(Ω)
+ ‖zn−1‖2

L2(Ω)
+ k‖∂(Phu

n − un)‖2
L2(Ω)

+ k‖∂un − untt‖2L2(Ω)
+ k5‖

∂4un

∂t4
‖2
)
, (4.3)

n = 1, . . . ,M − 1. By iteration on n, we have

‖zn‖2
L2(Ω)

≤ C

‖z0‖2
L2(Ω)

+ ‖z1‖2
L2(Ω)

+ k
n∑
j=2

‖∂(uj − Phuj)‖2L2(Ω)
+ k

n∑
j=2

‖∂uj − ujtt‖
2
L2(Ω)

+ k5
n∑
j=2

‖
∂4uj

∂t4
‖2
 ,
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Proof cont.
n = 2, . . . ,M . After a simple calculation, we have

‖zn‖2
L2(Ω)

≤ C
(
‖z0‖2

L2(Ω)
+ ‖z1‖2

L2(Ω)

)
+C

∫ tn

0
‖(u− Phu)tt‖2L2(Ω)

dt+ Ck4

∫ tn

0
‖
∂4u

∂t4
‖2
L2(Ω)

dt

≤ C

[
‖z0‖2

L2(Ω)
+ ‖z1‖2

L2(Ω)
+ h6

∫ tn

0

(
‖u‖2X + ‖ut‖2X + ‖utt‖2X

)
dt

]
+ Ck4

∫ tn

0
‖
∂4u

∂t4
‖2
L2(Ω)

dt

where use is made of Lemma 3.3 to obtain the last inequality. Taking U0
h = Phu0,

U1
h = U0

h + kPhu1 + k2

2
Ph[∇ · (a(x, 0)∇u0)− b(x, 0)u0 + f(x, 0)] and using triangle inequality,

‖un − Unh ‖
2
L2(Ω)

≤ Ch6

[
‖un‖2X +

∫ tn

0

(
‖u‖2X + ‖ut‖2X + ‖utt‖2X

)
dt

]
+ Ck4

[
‖untt‖2L2(Ω)

+

∫ tn

0
‖
∂4u

∂t4
‖2
L2(Ω)

dt

]
.

The result follows immediately.
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Numerical Experiment

Here, we present an example to verify our result. Globally continuous piecewise linear finite

element functions based on triangulation described in Subsection 2 are used. The mesh

generation and computation are done with FreeFEM++ (Hecht, 2012).

Example 5.1

Consider the domain Ω = (−1, 1)× (0, 1) where the interface Γ is the line x = 0.

Ω1 = {(x, y) ∈ Ω : x < 0}, Ω2 = Ω \ Ω1. On Ω× (0, T ], 0 < T <∞, we consider the problem

(3.1)−(3.3) whose exact solution, is

u =

 sin(πx) sin(2πy) ln(1 + t) sin t in Ω1 × (0, T ]

sin(2πx) sin(πy)t2 exp(−t) in Ω2 × (0, T ]
,

The source function f , interface function g and the initial data u0, u1 are determined from

the choice of u with
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Example 5.1 cont.

a =

 4 in Ω1 × (0, T ]

2 in Ω2 × (0, T ]
b =

 1 in Ω1 × (0, T ]

0 in Ω2 × (0, T ]

Table 1 discusses the errors in L2-norm with k = 0.0001. In this case, much of the errors are

contributed by spatial discretization.

 
Figure: Domain of Example 5.1 with h = 0.0945763
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Figure: Finite element solution of Example 5.1 with h = 0.0945763 and k = 0.0001
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Table: Error estimates for Example 5.1 with k = 0.0001.

h ‖Error‖L2(Ω) Convergence rate

0.1788870 6.64184× 10−4

0.0945763 8.11113× 10−5 3.299

0.0504485 1.13117× 10−5 3.135

0.0251338 1.49383× 10−6 2.906
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Conclusion

In this work, we investigate the convergence of approximate solution of a linear hyperbolic

interface problem on quadratic element with time discretization based on modified centered

difference scheme. Under certain regularity conditions on the input data, the scheme was

shown to be stable and that optimal order of convergence is guaranteed when the spatial

discretization meet certain requirements.
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THANK YOU FOR LISTENING
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