

KINETIC, THERMODYNAMIC AND EQUILIBRIUM STUDIES OF THE REMOVAL OF Cd²⁺ FROM AQUEOUS **SOLUTION BY HYDROXYAPATITE**

E. A. OFUDJE^{1&2}, A. I. ADEOGUN², M. A. IDOWU², S. O. KAREEM³, S. O. ALAYANDE⁴ AND G. V. HAMBATE⁵ ¹Department of Chemical Sciences, McPherson University, Seriki-Sotayo, Ogun State, Nigeria. ²Department of Chemistry, Federal University of Agriculture, Abeokuta, Nigeria. ³Department of Microbiology, Federal University of Agriculture, Abeokuta, Nigeria. ⁴Centre for Energy Research and Development, Obafemi Awolowo University, Ile Ife, Nigeria. ⁵*Higher Institute of the Sahel, University of Maroua, Cameroon.*

INTRODUCTION

The release of heavy metals into the ecosystem not only endangers the human and animal health but also affects the general physiology of plants, because of their toxicity, mutagenicity, and nonbiodegradability [1].

Many conventional methods such as coagulation, oxidations, electrochemical, membrane separation, ion-exchange have been discussed for the removal of pollutants in effluents and wastewater [2].

Some of these methods however do not eliminate the contaminant completely; sometimes they are very expensive and usually cause other waste pollutants as secondary products [2-3].

Therefore, the purification of wastewater discharges remains a problem for many industries and it is necessary to develop technologies to treat these new wastewaters.

Hydroxyapatite (HAp) is one of the apatite minerals with a major inorganic constituent with about 60-70 % of the inorganic portion of the bone matrix and possesses the high ability of ion-exchange against various cations which make it highly biocompatible, bioactive and as an adsorbent for removal of organic pollutants and other divalent metal cations [3-5].

OBJECTIVES

In this study, hydroxyapatite adsorbent was chemically synthesized for the adsorption of cadmium ion from aqueous solution and then characterized using XRD, FT-IR, SEM, EDAX, and TEM. The effects of initial concentration of adsorbates, contact time, adsorbent pH, and dosage were Kinetics, equilibrium, and investigated. thermodynamics of the adsorption process evaluated. also were

ANNUAL INTERNATIONAL CONFERENCE, WORKSHOP, EXHIBITION AND GENERAL MEETING OF THE CHEMICAL SOCIETY OF NIGERIA, HELD AT UNIVERSITY OF IBADAN, NIGERIA.

Fig.1: (a) Preparation of HAp (b) Prepared HAp cake

RESULTS

Fig.2: (a&b) EDAX, (c) FT-IR and (d) XRD analysis of CHAp powder

Fig.4: Effects of different parameters

Thermodynamic Parameters						
T (K)	K _D	ΔG	ΔΗ	ΔS	R ²	
		(kJ/mol)	(kJ/mol)	(kJ/mol)		
298	1.0028	-6.9372				
303	1.0035	-8.8170	175.5917	0.6100	0.968	
308	1.0044	-11.2671				

Equilibrium Parameters

			Q _{ma}	_{ax} (mg/g)		195.7	711
			R _L			0.008	3
			b (r	ng/L)		0.517	7
Langmuir			R ²			0.998	3
			K _F	(mg/g)(m	$g/L)^{-1/2}$	6.703	3
			1/n			0.624	Ļ
Freudlin	ch		R ²			0.981	
			$\alpha_{\rm T}$	L/g)		0.292	2
			b _T (J/mol)		62.37	78
Tempkin	l		R ²			0.959	
			Q (1	mg/g)		98.92	24
			E (1	kJmol ⁻¹)		0.106	5
			ε (n	nol/J) ²		15.550	
Dubinin	Dubinin- Radushkevich					0.921	
		not	ic Da	aran	noto	rc	
		iieu		aran	ICIC		
	C (mg/						
	C _o (mg/ L)	40	80	120	160	200	240
	C _o (mg/ L) Q _e (exp)	40	80	120	160	200	240
	C _o (mg/ L) Q _e (exp) (mg/g)	40 24.500	80 46.300	120 74.500	160 98.400	200 122.300	240 183.400
	C _o (mg/ L) Q _e (exp) (mg/g) Q _e (cal)	40 24.500	80 46.300	120 74.500	160 98.400	200 122.300	240 183.400
	C _o (mg/ L) Q _e (exp) (mg/g) Q _e (cal) (mg/g)	40 24.500 23.621	80 46.300 46.669	120 74.500 75.086	160 98.400 98.002	200 122.300 124.046	240 183.400 201.942
	C _o (mg/ L) Q _e (exp) (mg/g) Q _e (cal) (mg/g) k ₁	40 24.500 23.621	80 46.300 46.669	120 74.500 75.086	160 98.400 98.002	200 122.300 124.046	240 183.400 201.942
	C _o (mg/ L) Q _e (exp) (mg/g) Q _e (cal) (mg/g) k ₁ (mins ⁻¹)	40 24.500 23.621 0.017	80 46.300 46.669 0.024	120 74.500 75.086 0.027	160 98.400 98.002 0.029	200 122.300 124.046 0.036	240 183.400 201.942 0.036
First	C _o (mg/ L) Q _e (exp) (mg/g) Q _e (cal) (mg/g) k ₁ (mins ⁻¹) R ²	40 24.500 23.621 0.017 0.994	80 46.300 46.669 0.024 0.995	120 74.500 75.086 0.027 0.999	160 98.400 98.002 0.029 0.997	200 122.300 124.046 0.036 0.998	240 183.400 201.942 0.036 0.993
First order	C _o (mg/ L) Q _e (exp) (mg/g) Q _e (cal) (mg/g) k ₁ (mins ⁻¹) R ² % SSE	40 24.500 23.621 0.017 0.994 0.011	80 46.300 46.669 0.024 0.995 0.002	120 74.500 75.086 0.027 0.999 0.002	160 98.400 98.002 0.029 0.997 0.001	200 122.300 124.046 0.036 0.998 0.004	240 183.400 201.942 0.036 0.993 0.030
First order	C _o (mg/ L) Q _e (exp) (mg/g) Q _e (cal) (mg/g) k ₁ (mins ⁻¹) R ² % SSE Q _e (cal)	40 24.500 23.621 0.017 0.994 0.011	80 46.300 46.669 0.024 0.995 0.002	120 74.500 75.086 0.027 0.999 0.002	160 98.400 98.002 0.029 0.997 0.001	200 122.300 124.046 0.036 0.998 0.004	240 183.400 201.942 0.036 0.993 0.030
First order	C _o (mg/ L) Q _e (exp) (mg/g) Q _e (cal) (mg/g) k ₁ (mins ⁻¹) R ² % SSE Q _e (cal) (mg/g)	40 24.500 23.621 0.017 0.994 0.011 32.987	80 46.300 46.669 0.024 0.995 0.002 56.705	120 74.500 75.086 0.027 0.999 0.002 91.366	160 98.400 98.002 0.029 0.997 0.001 116.896	200 122.300 124.046 0.036 0.998 0.004 151.544	240 183.400 201.942 0.036 0.993 0.030 267.324
First order	C _o (mg/ L) Q _e (exp) (mg/g) Q _e (cal) (mg/g) k ₁ (mins ⁻¹) R ² % SSE Q _e (cal) (mg/g) k ₂ x 10 ⁴	40 24.500 23.621 0.017 0.994 0.011 32.987	80 46.300 46.669 0.024 0.995 0.002 56.705	120 74.500 75.086 0.027 0.999 0.002 91.366	160 98.400 98.002 0.029 0.997 0.001 116.896	200 122.300 124.046 0.036 0.998 0.004 151.544	240 183.400 201.942 0.036 0.993 0.030 267.324
First order	$\begin{array}{c} C_{o}(mg/\\ L) \\ Q_{e}(exp) \\ (mg/g) \\ Q_{e}(cal) \\ (mg/g) \\ k_{1} \\ (mins^{-1}) \\ R^{2} \\ \% SSE \\ Q_{e}(cal) \\ (mg/g) \\ k_{2} \\ x \\ 10^{4} \\ (g/mg/m) \end{array}$	40 24.500 23.621 0.017 0.994 0.011 32.987	80 46.300 46.669 0.024 0.995 0.002 56.705	120 74.500 75.086 0.027 0.999 0.002 91.366	160 98.400 98.002 0.029 0.997 0.001 116.896	200 122.300 124.046 0.036 0.998 0.004 151.544	240 183.400 201.942 0.036 0.993 0.030 267.324
First order	C _o (mg/ L) Q _e (exp) (mg/g) Q _e (cal) (mg/g) k ₁ (mins ⁻¹) R ² % SSE Q _e (cal) (mg/g) k ₂ x 10 ⁴ (g/mg/m in)	40 24.500 23.621 0.017 0.994 0.011 32.987 6.802	80 46.300 46.669 0.024 0.995 0.002 56.705 4.824	120 74.500 75.086 0.027 0.999 0.002 91.366 3.200	160 98.400 98.002 0.029 0.997 0.001 116.896 2.904	200 122.300 124.046 0.036 0.998 0.004 151.544 1.831	240 183.400 201.942 0.036 0.993 0.030 267.324 5.323
First order Second	C _o (mg/ L) Q _e (exp) (mg/g) Q _e (cal) (mg/g) k ₁ (mins ⁻¹) R ² % SSE Q _e (cal) (mg/g) k ₂ x 10 ⁴ (g/mg/m in) R ²	40 24.500 23.621 0.017 0.994 0.011 32.987 6.802 0.991	80 46.300 46.669 0.024 0.995 0.002 56.705 4.824 0.997	120 74.500 75.086 0.027 0.999 0.002 91.366 3.200 0.999	160 98.400 98.002 0.029 0.997 0.001 116.896 2.904 0.999	200 122.300 124.046 0.036 0.998 0.004 151.544 1.831 0.999	240 183.400 201.942 0.036 0.993 0.030 267.324 5.323 0.994

order	% SSE	0.104	0.068	0.068	0.057	0.072	0.138
	a(mg/g/						
	mins)	2.868	2.527	4.284	7.087	6.758	4.891
	β(g/mg)	0.179	0.073	0.045	0.037	0.027	0.013
Elovich	R ²	0.999	0.998	0.998	0.999	0.998	0.994
	K _p (mg/g						
Intra	/mins ^{1/2})	1.752	3.547	5.798	7.433	9.533	14.891
particle	С						
diffusio	(mg/g)	3.971	3.941	6.631	11.428	10.511	0.742
n	R ²	0.990	0.995	0.992	0.992	0.992	0.994
CONCLUSION							

The adsorption of Cd(II) ions from aqueous solutions by CHAp powder was investigated different under experimental conditions. The uptake of Cd²⁺ was best described with first-order kinetic model, while Langmuir isotherm well with the adsorption fitted behaviour. Thus, HAp powder can serve as an excellent adsorbent for the removal of cadmium ions from contaminated wastewater

BIBLIOGRAPHY

[1]. S.A. Abo-Farha (2010). Comparative study of oxidation of some azo dyes by different advanced oxidation processes: Fenton, Fenton-like, photo-Fenton and photo-Fenton-like. Journal of American Science, 6(10):128-142.

[2]. E.H. Mohammadine, R. Abdelmajid, L. My-Rachid, M. Rachid and S. Nabil (2014). Use of Fenton reagent as advanced oxidative process for removing textile dyes from aqueous solutions. Journal of Material Environmental Science, 5(3):667-674.