
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/340975008

Detection of Cross-Site Scripting Attacks using Dynamic Analysis and Fuzzy

Inference System

Conference Paper · March 2020

DOI: 10.1109/ICMCECS47690.2020.240871

CITATIONS

3
READS

31

5 authors, including:

Some of the authors of this publication are also working on these related projects:

protection of critical information infrastructure from cyber attack View project

Design and Implementation of a Mobile-based Multimedia Diagnosis System in Veterinary Medicine View project

Olorunjube Falana

Federal University of Agriculture, Abeokuta

8 PUBLICATIONS 4 CITATIONS

SEE PROFILE

Ife Olalekan Ebo

Mountain Top University Ogun State Nigeria

7 PUBLICATIONS 7 CITATIONS

SEE PROFILE

Oreoluwa Carolyn Oloruntoba-Tinubu

University of Agriculture, Abeokuta

3 PUBLICATIONS 4 CITATIONS

SEE PROFILE

Adejimi Alaba

University of Agriculture, Abeokuta

2 PUBLICATIONS 3 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ife Olalekan Ebo on 13 April 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/340975008_Detection_of_Cross-Site_Scripting_Attacks_using_Dynamic_Analysis_and_Fuzzy_Inference_System?enrichId=rgreq-fe227620cdc239acce9f4e8ec8c51302-XXX&enrichSource=Y292ZXJQYWdlOzM0MDk3NTAwODtBUzoxMDEyMTE2NjU1OTY4MjU3QDE2MTgzMTg4MjM0Nzg%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/340975008_Detection_of_Cross-Site_Scripting_Attacks_using_Dynamic_Analysis_and_Fuzzy_Inference_System?enrichId=rgreq-fe227620cdc239acce9f4e8ec8c51302-XXX&enrichSource=Y292ZXJQYWdlOzM0MDk3NTAwODtBUzoxMDEyMTE2NjU1OTY4MjU3QDE2MTgzMTg4MjM0Nzg%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/protection-of-critical-information-infrastructure-from-cyber-attack?enrichId=rgreq-fe227620cdc239acce9f4e8ec8c51302-XXX&enrichSource=Y292ZXJQYWdlOzM0MDk3NTAwODtBUzoxMDEyMTE2NjU1OTY4MjU3QDE2MTgzMTg4MjM0Nzg%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Design-and-Implementation-of-a-Mobile-based-Multimedia-Diagnosis-System-in-Veterinary-Medicine?enrichId=rgreq-fe227620cdc239acce9f4e8ec8c51302-XXX&enrichSource=Y292ZXJQYWdlOzM0MDk3NTAwODtBUzoxMDEyMTE2NjU1OTY4MjU3QDE2MTgzMTg4MjM0Nzg%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-fe227620cdc239acce9f4e8ec8c51302-XXX&enrichSource=Y292ZXJQYWdlOzM0MDk3NTAwODtBUzoxMDEyMTE2NjU1OTY4MjU3QDE2MTgzMTg4MjM0Nzg%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Olorunjube-Falana?enrichId=rgreq-fe227620cdc239acce9f4e8ec8c51302-XXX&enrichSource=Y292ZXJQYWdlOzM0MDk3NTAwODtBUzoxMDEyMTE2NjU1OTY4MjU3QDE2MTgzMTg4MjM0Nzg%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Olorunjube-Falana?enrichId=rgreq-fe227620cdc239acce9f4e8ec8c51302-XXX&enrichSource=Y292ZXJQYWdlOzM0MDk3NTAwODtBUzoxMDEyMTE2NjU1OTY4MjU3QDE2MTgzMTg4MjM0Nzg%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Olorunjube-Falana?enrichId=rgreq-fe227620cdc239acce9f4e8ec8c51302-XXX&enrichSource=Y292ZXJQYWdlOzM0MDk3NTAwODtBUzoxMDEyMTE2NjU1OTY4MjU3QDE2MTgzMTg4MjM0Nzg%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ife-Ebo?enrichId=rgreq-fe227620cdc239acce9f4e8ec8c51302-XXX&enrichSource=Y292ZXJQYWdlOzM0MDk3NTAwODtBUzoxMDEyMTE2NjU1OTY4MjU3QDE2MTgzMTg4MjM0Nzg%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ife-Ebo?enrichId=rgreq-fe227620cdc239acce9f4e8ec8c51302-XXX&enrichSource=Y292ZXJQYWdlOzM0MDk3NTAwODtBUzoxMDEyMTE2NjU1OTY4MjU3QDE2MTgzMTg4MjM0Nzg%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ife-Ebo?enrichId=rgreq-fe227620cdc239acce9f4e8ec8c51302-XXX&enrichSource=Y292ZXJQYWdlOzM0MDk3NTAwODtBUzoxMDEyMTE2NjU1OTY4MjU3QDE2MTgzMTg4MjM0Nzg%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oreoluwa-Oloruntoba-Tinubu?enrichId=rgreq-fe227620cdc239acce9f4e8ec8c51302-XXX&enrichSource=Y292ZXJQYWdlOzM0MDk3NTAwODtBUzoxMDEyMTE2NjU1OTY4MjU3QDE2MTgzMTg4MjM0Nzg%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oreoluwa-Oloruntoba-Tinubu?enrichId=rgreq-fe227620cdc239acce9f4e8ec8c51302-XXX&enrichSource=Y292ZXJQYWdlOzM0MDk3NTAwODtBUzoxMDEyMTE2NjU1OTY4MjU3QDE2MTgzMTg4MjM0Nzg%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Agriculture_Abeokuta?enrichId=rgreq-fe227620cdc239acce9f4e8ec8c51302-XXX&enrichSource=Y292ZXJQYWdlOzM0MDk3NTAwODtBUzoxMDEyMTE2NjU1OTY4MjU3QDE2MTgzMTg4MjM0Nzg%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oreoluwa-Oloruntoba-Tinubu?enrichId=rgreq-fe227620cdc239acce9f4e8ec8c51302-XXX&enrichSource=Y292ZXJQYWdlOzM0MDk3NTAwODtBUzoxMDEyMTE2NjU1OTY4MjU3QDE2MTgzMTg4MjM0Nzg%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adejimi-Alaba?enrichId=rgreq-fe227620cdc239acce9f4e8ec8c51302-XXX&enrichSource=Y292ZXJQYWdlOzM0MDk3NTAwODtBUzoxMDEyMTE2NjU1OTY4MjU3QDE2MTgzMTg4MjM0Nzg%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adejimi-Alaba?enrichId=rgreq-fe227620cdc239acce9f4e8ec8c51302-XXX&enrichSource=Y292ZXJQYWdlOzM0MDk3NTAwODtBUzoxMDEyMTE2NjU1OTY4MjU3QDE2MTgzMTg4MjM0Nzg%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Agriculture_Abeokuta?enrichId=rgreq-fe227620cdc239acce9f4e8ec8c51302-XXX&enrichSource=Y292ZXJQYWdlOzM0MDk3NTAwODtBUzoxMDEyMTE2NjU1OTY4MjU3QDE2MTgzMTg4MjM0Nzg%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adejimi-Alaba?enrichId=rgreq-fe227620cdc239acce9f4e8ec8c51302-XXX&enrichSource=Y292ZXJQYWdlOzM0MDk3NTAwODtBUzoxMDEyMTE2NjU1OTY4MjU3QDE2MTgzMTg4MjM0Nzg%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ife-Ebo?enrichId=rgreq-fe227620cdc239acce9f4e8ec8c51302-XXX&enrichSource=Y292ZXJQYWdlOzM0MDk3NTAwODtBUzoxMDEyMTE2NjU1OTY4MjU3QDE2MTgzMTg4MjM0Nzg%3D&el=1_x_10&_esc=publicationCoverPdf

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Detection of Cross-Site Scripting Attacks using
Dynamic Analysis and Fuzzy Inference System

Olorunjube James Falana

Department of Computer Science
Federal University of Agriculture

Abeokuta, Nigeria
falanaoj@funaab.edu.ng

Olusesi Alaba Adejimi
Department of Computer Science
Federal University of Agriculture

Abeokuta, Nigeria
adejimioa@funaab.edu.ng

Ife Olalekan Ebo
Department of Computer Science and

Mathematics
Mountain Top University

Ibafo, Nigeria
ioebo@mtu.edu.ng

Andeson Ntuk
Department of Computer Science and

Mathematics
Mountain Top University

Ibafo, Nigeria
andexdguy08@gmail.com

Carolyn Oreoluwa Tinubu
Department of Computer Science
Federal University of Agriculture

Abeokuta, Nigeria
tinubuco@funaab.edu.ng

Abstract- Many prevalent problems of web
applications are induced by injected codes, which pose great
security threats. Vulnerabilities found in web applications are
commonly typically exploited to perpetrate attacks. With
cross-site scripting (XSS), attackers can infuse malevolent
contents into website pages, in this way gaining access-
privileges to sensitive page content of the user such as, session
cookies, user’s data or credentials and several other
information often kept up by the browser on behalf of the
users. This paper presents a hybrid mechanism for detecting
XSS attacks using Dynamic Analysis and Fuzzy Inference. The
approach scans the website for possible points of injection
before generating an attack vector launched via an HTTP
request to a web application. The analysis of the HTTP
response predicts the presence of an attack vector. The
detection capability of the system is evaluated using some
active world web applications and the results show a high rate
of detection.

Keywords: Cross-Site Scripting (XSS), internet,
vulnerability, web application, code injection

I. INTRODUCTION
Recently, the use of the Internet has rapidly

increased through the use of sophisticated computers and
portable devices coupled with interactive web pages.
Records show that in June 2019, a total number of 4.5
billion individuals accessed the internet [2]. This usage will
continue to increase as web applications, which are client-
server software programs that run on web browser continue
to drive various sectors of the economy such as e-
commercial, health, banking, academic, entertainment etc.

Web applications are becoming one of the standard
platforms for representing data and services released over
the World Wide Web. Several vulnerabilities have been
found in modern web applications. A high fraction of
Internet-based web applications is increasingly becoming
vulnerable. Consequently, major security concerns have
been raised on web applications and Internet-based services.

Cross-site scripting (XSS) attack is one of the
topmost attacks plaguing web applications. With the

existence of cross-site scripting, every user of the web is a
potential victim to an attack that could lead to various kind
of cyber-thefts. Symantec reportedly blocked more than 3.7
million form-jacking attempts in 2018 [24]. With XSS
attack, an attacker can execute some malicious scripts on a
victim’s web browser resulting in consequences such as data
compromise, theft of cookies, passwords, credit card
numbers etc.

XSS is an application layer attack that injects
malicious code into trusted content of vulnerable web
applications. The user executes the web application and is
served the malicious content, which disguises as part of
legitimate code of the web application on the victim’s
browser. The browser runs the embedded malicious script
because of its inability to differentiate between malicious
and genuine content [3]. One of the major vulnerabilities in
a web application is the lack of validation of input data [4],
which permits input data sent back as output without
validating or scrutinizing, paving way for injected malicious
code

The major cause of XSS attack is the inability of

the vulnerable web application to validate and sanitize user
inputs before generating output to the victim that requested
the page [4]. The vulnerability depends on the failure of the
application to check up on its input. XSS attack takes
advantage of exact guidelines to gain access to system
resources just like a genuine web application with access
privilege [5]. The client's browser at that point succumbs to
the malicious aims of the attacker, as it cannot separate
between the authentic and malicious content conveyed by a
similar site [3]. Once the user runs the web application, the
affected application serves the malicious code as part of the
page and is then executed in the context of the trusted and
legitimate web application. At the end of successful
execution, the victim is hence open to any type of attack
dependent on the attacker.

XSS attacks occur almost daily. Websites such as
Twitter, Facebook and Google have already become victims
for XSS attacks. Effects of XSS attacks include session

20
20

 I
nt

er
na

tio
na

l C
on

fe
re

nc
e

in
 M

at
he

m
at

ic
s,

 C
om

pu
te

r
E

ng
in

ee
ri

ng
 a

nd
 C

om
pu

te
r

Sc
ie

nc
e

(I
C

M
C

E
C

S)
 9

78
-1

-7
28

1-
31

26
-9

/2
0/

$3
1.

00
 ©

20
20

 I
E

E
E

 1
0.

11
09

/I
C

M
C

E
C

S4
76

90
.2

02
0.

24
08

71

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 25,2020 at 10:30:58 UTC from IEEE Xplore. Restrictions apply.

hijacking, account hijacking, Distributed Denial of Services
(DDoS) attacks, evasion by worms, disclosure of sensitive
information, loss of confidentiality, etc.

In this paper, a framework to process web activities
and capture fuzzy boundaries between web activities is
proposed for the detection of cross-site scripting attack.

The rest of the paper is organized as follows.

Section II describes a cross-scripting attack in details, as
well as existing defense mechanisms. Section III presents
the architecture for the proposed system. In Section IV, the
implementation and results are discussed. The paper
concludes in Section V.

II. LITERATURE REVIEW
Recently, websites have become more user-

friendly, interactive and dynamic, as these sites no longer
make use of static web pages. This enhances more activities
to be carried out on web applications leading to injectable
flaws that are prone to manipulations. Cross-site scripting
(XSS) is one of the injection-based attacks and one of the
most dangerous web-application based attacks that arose
from the adaptation of dynamic web pages in web browsers.

There are three types of XSS attacks namely
Reflected XSS, Stored XSS and Document Object Model–
based (DOM) XSS. A Reflected XSS attack is a non-
persistent or type I attack where an attacker tricks the victim
to click or access a link that contains the malicious code,
after which the malicious code is sent back to the user from
the trusted context of the vulnerable web application [5].
The vulnerability of the web application of not encoding or
sanitizing the input causes the malicious code within the
HyperText Mark-up Language (HTML) code to be executed
within the trust context of the trusted site. This causes the
cookies of the trusted site to be sent to the repository of the
hacker’s site. These actions make the attacker have access to
sensitive information of victims, which can be used to carry
out account hijacking [6]. The server, however, does not
store the malicious script but bounces the original input
from the server to the user, which cannot be traced since the
victim deliberately initiated the execution of malicious code
[7].

In the case of stored XSS attack or persistent
attack, the targeted server stores the input in form of a
message to either a database or visited logs and this data
becomes part of the server and is not reflected [7, 8]. This
attack is difficult to spot, as it does not require any form of
social engineering. For instance, in a blog, that accepts
comment via a text box and stores the message in the
database. If an attacker injects a malicious code like tracking
session ID cookie and if the server fails to validate the input,
the code is stored on the server and executed, stealing the
cookie.
Unlike the other, two types of XSS attacks that exploit the
vulnerabilities on the server-side, DOM-based XSS exploits
the vulnerabilities at the client’s side [3]. The attack
executes when JavaScript in the page gets a uniform
resource locator (URL) parameter and utilizes this data to
compose HTML to the page [9]. The attacker controls the
items in the DOM and improperly handles the properties of

the page; such attacks are hard to distinguish, as they are not
included in the response but part of the DOM of the HTML
page [10].

Detection Methods
There are majorly three detection techniques for

identifying cross-site scripting attacks. They are static
analysis, dynamic analysis and hybrid analysis.

1. Static analysis: focuses on the application’s source
code where it reviews the source code aimed at finding
security flaws. This method does not involve the execution
of the web application. An application can be reviewed
either manually by inspection or automatically with the use
of automated analysis tools [3, 7, 11, 12]. The approach has
the benefits of detecting potential vulnerabilities that can
prove too expensive, time-consuming and prone to a human
error leading to lack of accuracy.

2. Dynamic analysis: implements on the runtime
behavior of an application in contrast to static analysis.
Hallaraker and Vigna [14] proposed an auditing mechanism
to detect malicious JavaScript code by monitoring and
logging the JavaScript code execution within the Mozilla
Web. These techniques which do not go through source
codes are relatively precise in distinguishing vulnerabilities
resulting in lower false-positive rates.

3. Hybrid Analysis: combines the mechanism of both
static and dynamic analysis to thwart XSS attack. Patil and
Patil [15] proposed a client-side automated sanitizer for
detecting cross-site scripting attacks based on the hybrid
analysis. In [17], a dynamic analysis was also utilized for
the identification and evacuation of XSS in web
applications.

In [18], a few software-testing techniques such as

fault injection, black box testing and web application
monitoring were used to prove the existence of
vulnerabilities. However, it was unable to provide instant
web application protections, and could not detect flaws. In
[19], the authors introduced an algorithm called the Boyer-
Moore string match algorithm to detect XSS vulnerabilities.
It works by looking at the characters of the inputted design
with the characters of the page from ideal to left utilizing the
two heuristics called bad character shift and good-suffix
shift. The main goal of this module was to scan from the
right to left, scanning character by character for the inputted
pattern. However, took a long time to scan when the length
of the URL is long. XSS architecture proposed by [20] to
search for assault marks by utilizing channels for the
HyperText Transfer Protocol (HTTP) use identification
segment to decide if a content tag is available or not. If the
content tag is not in the database, the tag is automatically
removed. The approach will fail to identify an attack if there
are multiple instances in the database.

Krugel and Vigna [21] proposed an anomaly
detection of web-based attacks using log file with an HTTP
request. Log files were used to learn the behavior of a web
page for anomaly detection. JavaScript monitoring, data
tainting, code rewriting [22, 23, 24] and intrusion detection
have been proposed mitigating XSS attacks. Code-rewriting
technique uses applications like BrowserShield and

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 25,2020 at 10:30:58 UTC from IEEE Xplore. Restrictions apply.

CoreScript as well as other tools for rewriting codes and
executing them according to a security policy alongside
monitoring their runtime behavior of JavaScript
.

III. METHODOLOGY
The general architecture of our proposed approach is

shown in 1. The proposed system is an intelligent system
capable of detecting XSS attack using a hybrid methodology
consisting of dynamic analysis and fuzzy logic to detect
vulnerabilities in web applications. The system carries out a
series of dynamic security analysis check on the web
application using attack vectors that are previously
recognized by Application Entry Points (AEP). AEP
comprises of fields that require filling by the user (i.e. GET
and POST parameters, forms with their elements as well as
anchor or links with parameters) which are required for
generation of the HTTP requests sent to the web application
in a testing phase.

Figure 1: The Proposed Detection System

The detection system is divided into four modules namely:
Web Crawler, Vulnerability checker, Attack vector and
Fuzzy engine

A. Web Crawler
A web crawler also known as crawler or spider is a bot

that scans the World Wide Web (WWW) for indexing. The
Crawler module scans the web application and collects all
the information belonging to the web application. Crawling
process starts with the URL and proceeds to the web link
tree to collect all the web pages, and this is done by
interacting with the web application for gathering AEPs and
the Web pages, which are further sent to the parser
function. The crawler employs a queue scheduling system to
access all input URLs and terminates when the queue is
empty and all accessible web pages have been identified and
parsed. The crawler-parser function scans through the
gathered information and sorts the web pages to extract the
AEPs that are further sent to the “Vulnerability Checker”
module.

The crawler in the system has been configured to avoid
links that will terminate the current session and scan. The
crawler carries out three functions:

i. Scanning: The module gathers all the necessary
parameters from the URL of the target website.
These parameters are used to scan for DOM

vulnerability, the result of the scan is transferred to
Requesting Module in an encoded form.

ii. Requester: Receives the parameters given by the
Scanning Module and replaces the input data with
XSS_test data (a non-malicious script to test for
vulnerability and receive a response). The receive
response is stored in an encoded format which is
thereafter converted to a text file and passed to the
vulnerability checker.

iii. HTML Parser: The result of Requester is checked
against xss_test script by attributes (position,
context, and value) through series of searching for
script in HTML context, attribute context, and
comment and displays the position. Algorithm 1
shows the steps for performing HTML parser.

Algorithm 1: HTML Parser

B. Vulnerability Checker
A vulnerability checker is a program that scans the

website for security issues. Based on the information
returned by parsing function in the filter checker and the
Inject checker module, the attack vector generator module
analyse this information to determine the payload scheme
that perfectly fits the attack properly. It scans each
occurrence of a reflected string and uses the context
information to constructs the malicious scripts to be injected
by the Inject function. It also assigns a value of confidence
to every allocated set of attack code generated by the Attack
vector for each AEP and passes the payload to the checker
to determine the payload success. The number of confidence
is from range (0-10), the higher the number, the more
effective it is. The efficiency value is derived from
comparing the injected string and the reflected string in the
response and the list are ranked according to efficiency
value where greater efficiency is injected first.

C. Fuzzy Inference Engine
The Fuzzy Inference is designed to bypass the Web

Application Firewall (WAF). The fuzzy module is called
when the request is blocked due to the script being
recognized by the signatures of the Web Application
firewall

1. The Web Application Firewall Detector

The Web Application detector sends a noisy malicious
string in the data to be requested by the web application to

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 25,2020 at 10:30:58 UTC from IEEE Xplore. Restrictions apply.

check if the web applications security would block and deny
response, if the string is flagged and blocked, the
information is sent to the Fuzzy engine.

2. The Fuzzy Engine

The Fuzzy Engine extracts a string from a list of fuzz
strings and replaces the string with another to be tested
again by the Web Application Firewall Detector. If the
string is blocked, the string is returned to the fuzzy engine to
be replaced with a less “noisy” string; this module randomly
generates a delay before sending a new request with the
newly fuzzy generated string until the Firewall is evaded as
shown in Algorithm 3. The Fuzzy Engine applies a formula
known as the Levenshtein distance to compare and switch
strings in the system.

The Levenshtein Distance is a string metric for
estimating the distinction between two successions.
Informally, the Levenshtein distance between two words is
the minimum number of single-character edits (i.e.
insertions, deletions, or substitutions) required to change
one word into the other. Mathematically, the Levenshtein
distance between two strings, a and b (of
length |a| and |b| respectively), is given by lev a, b
(|a|,|b|) where:

�������	�
� �
��
�� ����	�
�

�	� � �������	 � ��
� � ��������	�
 � �� � ��������	 � ��
 � �� � ��������

�	� � !�	�
� � "� #$%�&'	(� (1)

Where 1(ai�bj) is the indicator function equal to 0
when ai=bi and equal to 1 otherwise, and leva,b(i, j) is the
distance between the first i characters of a and the
first j characters of b. i and j are 1-based indices.

Algorithm 2: Fuzzy Engine

IV. IMPLEMENTATION
The hardware and software requirements of the

system are as follows:

Operating System: Kali Linux

RAM: 4GB or greater
Processor Speed: 1.8GHz or greater
Processor: Dual Core or greater
Python version: 3.4

After consideration of various blueprints for the
proposed XSS defense strategy, we translated the design and
system specifications into implementable programming
codes using python programming language and fuzzywuzzy
package [1] to run on the terminal. The proposed system
was tested live on the internet by scanning a few targeted
websites to gather vulnerability information to carry out the
scan.

Table 1 shows different sample data used to test our
simulated model.

TABLE 1: SAMPLE OF TEST DATA USED
S/N Web Site
1 www.dramaonline.pk
2 www.mtu.edu.ng
3 www.sherylblas.com
4 www.tabletworld.com
5 www.nichegardens.com

Figure 2 shows the result of scanning and

executing an injected payload on www.dramaonline.pk (a
movie retails site). The injected payload revealed that
parameter ‘q’ was found and prioritized (sent as request),
reflection was found, proving vulnerability in the website.
WAF status is offline because there is no firewall protecting
the website. The result of the scan proved that the web
application was vulnerable to XSS attack.

Figure 3 shows the result of scanning
www.mtu.edu.ng an academic website. The result of this
scan revealed a potential vulnerability for DOM-based
attack due to the presence of an object function found in the
web-tree of the website.

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 25,2020 at 10:30:58 UTC from IEEE Xplore. Restrictions apply.

Figure 3: URL Scan for DOM Vulnerability

Scanning www.sherylblas.com URL for hidden

parameters in the website revealed some hidden parameters
even though it was not vulnerable to attack as shown in
Figure 4. WAF status is offline because there is no firewall
protecting the website

Figure 4: Hidden Parameters Check

Using fuzz scan to analyze www.tabletworld.com,
it showed that the fuzz string could not bypass the website
as firewall filtered had blocked all fuzz string requested as
shown in Figure 5.

Figure 5: Fast check of a WAF protected site

In a similar experiment in Figure 6, the result

showed that fuzz scan on www.nichegardens.com was able
to reveal all the strings requested.

Figure 6: Result of Fuzz Scan

Fuzz strings were able to bypass all fuzz strings

requested and filtered two strings. This result shows that the
website is not protected hence vulnerable to attack.

V. CONCLUSION
Cross-site scripting (XSS) attack has been a major

threat in web applications. This attack leverages on
vulnerabilities in web applications. Effects of XSS attacks
include session hijacking, account hijacking, DDoS attacks,
evasion by worms, disclosure of sensitive information, loss
of confidentiality, etc. Therefore, in this paper, we presented

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 25,2020 at 10:30:58 UTC from IEEE Xplore. Restrictions apply.

a framework for detecting XSS attack. A hybrid system
consisting of dynamic analysis and fuzzy techniques was
employed. Fuzzy model incorporates Levenshtein distance
to compare and switch string in the system The performance
of the detection system shows the high accuracy of detecting
vulnerabilities in web applications, thus, providing users
with a reliable and effective way of mitigating XSS attacks.

REFERENCES
[1] C. Adam. “FuzzyWuzzy” https://pypi.org/project/fuzzywuzzy/

[Accessed: 19-Dec. 2019]
[2] Internet World Stats, “Internet Usage Statistics,

the Internet Big Picture,
World Internet Users and 2019 Population Stats”. [Online]. Available:
https://www.internetworldstats.com/stats.htm. [Accessed: 13- Dec-
2019]

[3] U. Sarmah, , D. Bhattacharyya, K, J. Kalita, K. “A survey of detection
methods for XSS attacks”, Journal of Network and Computer
Applications, 2018, doi: 10.1016/j.jnca.2018.06.004

[4] B. K. Ayeni, B, J. B Sahalu, and K. R. Adeyanju, “Detecting Cross-
Site Scripting in Web Applications Using Fuzzy Inference System”,
Journal of Computer Networks and Communications 2018, Vol.
2018, pp. 10.

[5] J. Ruderman, “The same origin policy”, 2001.[Online]. Available:
http://www.mozilla.org/projects/sec urity/components/same-
origin.html [Accessed: 25-Nov.-2019]

[6] J. Garcia-alfaro, G. Navarro-arribas, “Prevention of cross-site
scripting attacks on current web applications”, OTM, Lecture Notes
Comput. Sci., vol. 4804, 2007.

[7] G. R. K Rao, R. S. Prasad, and M. Ramesh, “Neutralizing Cross-Site
Scripting Attacks using Open Source Technologies”, Proceedings of
the Second International Conference on ICT for Competitive
Strategies No 24 2016 doi: https://doi.org/10.1145/2905055.2905230.

[8] A. Kie�un, J. G Philip, J. Karthick, and D. E Michael, “Automatic
creation of SQL injection and cross-site scripting attacks”, In ICSE
Proceedings of the 31st International Conference on Software
Engineering, (Vancouver, BC, Canada), May 2009, pp. 199-209.

[9] E. Kirda, N. Jovanovic, C. Kruegel and G. Vigna, “Client-side cross-
site scripting protection”, Computer and Society 28(7), pp. 592-604,
2009, doi: 10.1016/j.cose.2009.04.008

[10] Wang et al C.-H.Wang, Y.-S. Zhou, A New Cross-Site Scripting
Detection Mechanism Integrated with HTML5 and CORS Properties
by Using Browser Extensions, in: 2016 International Computer
Symposium (ICS), IEEE, 2016, pp. 264–269.

[11] P. Bhojak, K. Patel, V. Agrawal and V. Shah, “SQL Injection and
XSS Vulnerability Detection in web Application”, Int.Journal of
Advanced Research in Computer Science and Software Engineering 5
(12) Dec. 2015, pp. 110-115.

[12] G. Lucca , A. Fasolino, M. Mastroianni., and P. Tramontana,
“Identifying Cross Site Scripting Vulnerabilities in Web
Applications” In Sixth IEEE International Workshop on Web Site
Evolution (WSE), pages 71 – 80, 2004.

[13] G. Wassermann, Z. Su, Static Detection of Cross-site Scripting
Vulnerabilities, in: Proceedings of the 30th International
Conference on Software Engineering, ACM, 2008, pp. 171–180.

[14] O. Hallaraker and G. Vigna, “Detecting malicious JavaScript code in
Mozilla ”, 10th Proceedings of IEEE International Conference of Eng.
of Complex Computer Systems 2005, doi: 10.1109/iceccs.2005.35

[15] D. K. Patil, and K. Patil, “Client-side Automated Sanitizer for Cross-
Site Scripting Vulnerabilities”, International Journal of Computer
Applications 121, 2015

[16] Curtsinger C., Livshits B., ZornB. G., Seifert C, (2011). ZOZZLE:
Fast and Precise In-Browser JavaScript Malware Detection, in:
USENIX Security Symposium, 2011, pp. 33–48.

[17] H. Isatou, S. Abubakr, Z. Hazura, and A. Novia, “An approach for
cross site scripting detection and removal based on genetic
algorithms,” in Proceedings of the Ninth International Conference on
Software Engineering Advances: France, pp. 227–232, Nice, France,
October 2014.

[18] Huang Y.-W., Yu F.,Hang C., Tsai C.-H., Lee D.-T., Kuo S.-Y.,
(2004). Securing Web Application Code by Static Analysis and
Runtime Protection, in: Proceedings of the 13th International
Conference on World Wide Web, ACM, 2004, pp. 40–52.

[19] A. Saleh, B Rozalia, B. Bujaa, A. Kamarulari�n, A. Mohd, and A.
Faradilla, “A method for web application vulnerabilities detection by
using Boyer-Moore string matching algorithm,” Information Systems
International Conference, vol. 72, no. 3, p. 112, 2015.

[20] M. Koli, S. Pooja, H. K. Pranali, and N. G. PraSthmesh, “SQL
injection and XSS vulnerabilities countermeasures in web
applications,” International Journal on Recent and Innovation Trends
in Computing and Communication, vol. 4, no. 4, pp. 692–695, 2016

[21] C. Krugel and G. Vigna, “Anomaly detection of web-based attacks”
Proceedings of 10th ACM Conference onComputer and
Communications Security, CSC 2003, Washington, DC, USA,
October.

[22] H. Oystein and V. Giovanni, “Detecting malicious javascript code in
mozilla”, in ICECCS ’05: Proceedings of the 10th IEEE International
Conference on Engineering of Complex Computer Systems, pages
85–94, Washington, DC, USA, IEEE Computer Society, 2005.

[23] C. Reis, J. Dunaga, H. Wang, O. Dubrovsky, and S. Esmeir,
“Browsershield: Vulnerability-driven �ltering of dynamic html”,
ACM Transactions on the Web, 1(3), 2007.

[23] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, G. Vigna,
“Cross-Site Scripting Prevention with Dynamic Data Tainting and
Static Analysis”, 14th Annual Network and Distributed System
Security Symposium, NDSS, Vol. 2007, p. 12, 2007.

[24] Symantec. (2019). Internet Security Threat Report. 23.

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 25,2020 at 10:30:58 UTC from IEEE Xplore. Restrictions apply. View publication statsView publication stats

https://www.researchgate.net/publication/340975008

