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The dynamics of two coupled and periodically driven plasma oscillators is investigated in
this paper. It is shown that the two oscillators exhibit rich dynamical transition to
quasi-synchronized state. Stability and sufficient criteria for synchronization are analyti-
cally obtained using linear matrix inequality (LMI) and the Routh–Hurwitz criterion; and
qualitatively characterized by the system’s interaction energies. Moreover, the transition
dynamics is rich with abundant complex bifurcation structures, including Hopf bifurca-
tions. Based on the method of multiple time-scale, steady state equations for the vibration
of the coupled oscillators have also been obtained, and bi-resonance induced by coupling at
distinct frequencies are reported.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Coupled nonlinear oscillators are ubiquitous in nature
and well known for their rich varieties of dynamical behav-
ior which includes higher-order chaos (hyperchaos),
multi-stability of attractors and synchronization. While in
general, synchronization phenomena are of fundamental
importance in the study of biological, physical and techno-
logical problems [1–3]; multi-stability of attractors has
been shown to accompany some synchronization transi-
tions [4–6]. The history of synchronization dates back to
the earlier observation of synchronization in the popular
two clock pendula by Huygens [7]. A similar observation
in the output of adjacent organ pipes was reported by
Bleckman, whereby the individual effects of the pipes
reduce collective output to either silence or peak [1,8].
These earlier studies were more specific to regular or
periodic oscillations. In 1990, Pecora and Carroll [9]
presented their results on the synchronization of identical
chaotic systems which opened new directions of research
activities in chaos synchronization [2]. The study of syn-
chronized dynamics of chaotic systems derived its motiva-
tions from several potential applications in secure
communication systems, time series analysis, modeling
brain and cardiac rhythm activity and earthquake dynam-
ics [1,2,10].

In recent years, full (identical/complete) synchroniza-
tion have been extensively studied in the context of many
specific problems. For general coupled chaotic systems
with two phase space trajectories xðtÞ and yðtÞ, the fulfill-
ment of the condition, limt!1kxðtÞ � yðtÞk ¼ 0 signifies full
synchronization between xðtÞ and yðtÞ. In reality and for
many practical cases, the limit does not always approach
zero asymptotically but a constant value, � according to
the inequality, limt!1kxðtÞ � yðtÞk < �, implying imperfect
complete or practical synchronization [8,11,12]; which in
most cases arises from parameter mismatches between
the two coupled systems. In practical situations, parameter
mismatch is inevitable in synchronization implementa-
tions [13–15], and it has significant effects on the collective
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behaviors of coupled systems. Loss of synchronization may
take place in some cases [14]; while in other cases,
complete synchronization can be maintained even with
large parameter mismatch [15]. Imperfect complete syn-
chronization phenomena are intriguing in nature as well
as in practical situations and therefore deserves to be
understood. Despite the huge results so far on other forms
of synchronization, only few works have reported on
quasi-synchronization due partly to its rare occurrence
(See for instance Ref. [13,16–19]). More recently, renewed
interest has been devoted to investigate this phenomenon
and has been reported in [20–22]. In this paper, we report
our observations of quasi-synchronization behavior in a
model of coupled plasmas exhibiting chaotic dynamics.

Chaotic behavior in nonlinear plasma oscillations has
been observed in several theoretical and experimental
investigations [23–28]. For instance, the early work of
Keen and Fletcher [23] showed that a marginal ion sound
instability in a plasma behaves in a chaotic manner similar
to that predicted by a Van der Pol type of nonlinear system.
Hur et al. [24] observed period-doubling route to chaos in
an ion beam going through dusts and electrons without
collision; and bounded by two electrodes. Intermittent
chaotic behavior in nonlinear three-wave model of space
plasma was reported by Miranda et al. [25]. Sheridan
[26] reported experimental observation of chaotic dynam-
ics in a complex (dusty) plasma of three particles [27].
Recently, Enjieu-Kadji et al. [29,30] showed that the
plasma oscillation maybe modeled as a nonlinear anhar-
monic oscillator of the Duffing-type displaying varieties
of chaotic domain; and more recently considered chaos
control problem for the same system [31]. Earlier investi-
gations on the problem of chaos suppression in plasmas
systems were experimentally carried out by Bezruchko
et al. [32] and Koronovski et al. [33] in which by tuning
the frequency of the external signal, chaos suppression
was realized. In another related investigation, Viana et al.
[28], analyzed the fractal structures of nonlinear plasma,
emphasizing that fractals appear in certain applications
in plasma physics, like the magnetic field line behavior in
tokamaks with ergodic limiters. Viana et al. [28] further
demonstrated the observable consequences of fractal
structures in terms of the transport properties in the
plasma edge of tokamaks and also discussed the role of
the fractal structures in the understanding of mesoscale
phenomena in plasmas.

Notwithstanding the increasing interest in plasma
chaos research, only few studies have been devoted to
the investigation of chaos synchronization in a nonlinear
plasmas [34–37]. For instance Filatov et al. [35] investi-
gated chaotic synchronization regimes for coupled
spatially extended beamplasma Pierce systems and
observed different synchronization regimes, namely phase
synchronization, generalized synchronization, time-scale
synchronization and complete synchronization. Similarly,
an impulsive synchronization was employed by Li et al.
[36] to realize chaos synchronization in a laser plasma
system.

In this paper, we investigate the synchronization behav-
ior of two linearly coupled plasma oscillators with a single
external periodic driving. The single periodic forcing could
be realized using some physical mechanism such as an
externally applied electric field or an ultraviolet light. For
instance, by means of photodetachment, ultraviolet light
which can extract electrons from materials can be used
as an external force to control the charge transport on a
dust particle. This is because, it is well known that the
transport of dust particles into plasma is proportional to
the dust charge and the coagulation of small particles into
larger ones due to the attraction or repulsion between
charged particles through the coulomb potential (See Ref.
[29] and references therein). In general, nonlinear systems
with single external periodic driving exhibit varieties of
nontrivial complex dynamics [38,39], including the
possibility of mode locking phenomenon occurring at
rational multipliers of driving frequency [2], among others.
These are relevant nonlinear characteristics which are of
immense practical applications, in areas such as optical
tomography as well as communications [40]. Here, we
report the occurrence of quasi-synchronization phenome-
non in two coupled and driven plasma oscillators, in which
the defining limit of synchronization is bounded within a
definite small region around zero. i.e. limt!1k xðtÞ�
yðtÞk ¼ �– 0. We derive sufficient synchronization criteria
using linear matrix inequality (LMI). Although LMI is a well
established method for determining the stability and syn-
chronization threshold for linearly coupled systems,
including oscillators with periodic and parametric driving
(See for instance [41–46,4–6]), however, previous LMI-
based approaches assume a mutual and identical external
forcing on the oscillators, which eliminates the effect of
periodic forcing on chaos synchronization criteria. We
show explicitly that the external forcing parameters, which
hitherto has been neglected, plays significant role in the
robustness of the criteria.

Furthermore, we also report coupling-induced nonlin-
ear dynamics associated with quasi-synchronization,
namely complex bifurcation structures, with co-existing
attractors and multiple resonances. The rest of the paper
is organized as follows: In the next section, we describe
our model system and obtain the synchronization criteria
in Section 3. In Section 4, the transition to synchronization
is examined. Section 5 is concerned with coupling-induced
resonances. The paper is concluded in Section 6 with
summary.

2. System description

Most of the models of plasma oscillations are concen-
trated on unmagnetized and collisionless dusty plasma,
made up of electrons, ions and dust grains. They are
usually characterized by micron or submicron sized dust
particles (See Ref [47], and references therein). In dusty
plasma, the dust grain charge is variable, and capable of
causing significant modification on the plasma’s proper-
ties, including its dissipative and nonlinear properties
[47,48]. Here, we consider magnetized plasma, whose par-
ticle species form separate conducting fluids. The dynam-
ics of this type of plasma has been extensively studied
[29–31]. It consists of two interpenetrating fluids of
positive ion (i) with charge þe and electron (e) with charge
�e. The Eulerian equations can be written as:
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Fig. 1. The equipotential contour plots of Vðx1;2Þ for x ¼ 1;j ¼ 3:05; d ¼ 1:5 and F ¼ 0. The colors evolves from white (minima) to dark green (maxima): (a)
No interaction, kc ¼ 0, (b) weak coupling, kc ¼ 1, (c) moderate kc ¼ 5, (d) strong coupling, kc ¼ 35. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)
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naMa
dva

ds ¼ naqaðEþ va � B� lJÞ � DPa;

@na

@s
þ D � ðnavaÞ ¼ S; ð1Þ

d
ds
ðPan�c

a Þ ¼ 0;

where the effect of ionization or large amplitude vibrations
in the plasma is denoted by S;a is the indexing for each of
the species (i and e), na is the density with respect to the
species; va and Pa represent their velocity and pressure,
respectively, c is the specific heat ratio, and la ¼ Mama=

nae2 is the resistive collision with ma being the collision fre-
quency. Ma denotes the mass of each specie a. Recently,
Enjieu et al. [29–31] showed explicitly that the plasma
oscillation maybe modeled as a nonlinear anharmonic
oscillator of the Duffing-type as follows:

d2n1

ds2 þðv iþ2kþ3ln2
1Þ

dn1

ds
þx2n1þv iðkn2

1þln3
1Þ ¼ F0 cosX t:

ð2Þ

Re-defining the variables in Eq. (2) as t ¼ x0s; n1 ¼
v iþ2k

3l

� �
x ¼ Nx; � ¼ v iþ2k

x0
; j¼ v ikN

x2 ; d¼ v ilN2

x2
0
; F¼ F0

Nx2
0

and X ¼ x
x0

,

Eq. (2) in dimensionless form now reads

€xþ l 1þ x2� �
_xþ dVðxÞ

dx
¼ 0; ð3Þ

where VðxÞ is the plasma potential given as

VðxÞ ¼
X4

j¼2

bj

j
xj � xF cos Xt ð4Þ

and b2 ¼ x2; b3 ¼ j and b4 ¼ d; the dots represent the dif-
ferentiation with respect to time (t), l;x;X and F are the
damping coefficients, fundamental frequency, forcing fre-
quency and amplitude of the external force respectively,
j and d are quadratic and cubic nonlinearity parameters,
respectively.
Here, we consider two coupled plasma oscillators in a
perturbed two-dimensional potential given as

Vðx1;2Þ ¼
X4

j¼2

bj

j
xj

1 þ xj
2

� �
þ Vpðx1;2Þ � x1F cos Xt; ð5Þ

where Vpðx1;2Þ ¼ kc
2 ðx2 � x1Þ2 is a perturbation correspond-

ing to the difference between the charge densities, kc being
the strength of the interaction. The last term in the poten-
tial (5) ensures that only a single external periodic forcing
is applied to the system. Consequently, their equation of
motion reads,

€x1;2 þ l 1þ x2
1;2

� �
_x1;2 þ

dVðx1;2Þ
dx1;2

¼ 0: ð6Þ

For the purpose of this study, we use the same set of
system potential parameters as in Ref. [29], namely
x ¼ 1;j ¼ 3:05 and d ¼ 1:5 and plot the 2D plasma
potential (5) as shown in Fig. 1 for four different values
of kc and F ¼ 0. The points around the minima and max-
ima of Vðx1;2Þ are marked with white and dark-green col-
ors, respectively. In the absence of external forcing and
for kc ¼ 0;Vðx1;2Þ is a bounded double-well asymmetric
potential as shown in Fig. 4(a), with two minima located
at ðx1; x2Þ ¼ ð0;0Þ and (�1:65;�1:65), respectively. As kc

increases, so that the difference between the charge densi-
ties of the two oscillators is negligible, the heights of Vðx1;2Þ
collapses, opening up a valley along the diagonal, in which
the two oscillators may most likely share in their synchro-
nized states.
3. Stability and synchronization criteria

In this section, we would employ the Linear matrix
inequalities (LMI) and Routh–Hurwitz criterion to obtain
a sufficient criteria for global synchronization. Consider
the following coupled plasmas derived from Eq. (6):
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€x1 ¼ �l 1þ x2
1

� �
_x1 �

dVðx1;2Þ
dx1

; ð7Þ

€x2 ¼ �l 1þ x2
2

� �
_x2 �

dVðx1;2Þ
dx2

: ð8Þ

By letting _x1 ¼ y1 and _x2 ¼ y2 the second order differential
equations (7) and (8) are expressed as systems of first-
order differential equations with variables ðx1; y1Þ and
ðx2; y2Þ, respectively. In compact matrix form each system
in Eqs. (7) and (8) may be written as:

_X1 ¼ AX1 þ fðX1Þ þmðtÞ � U; ð9Þ
_X2 ¼ AX2 þ fðX2Þ þ U; ð10Þ

where A ¼ 0 1
�x2 �l

� �
, X1 ¼ ðx1; y1Þ

T 2 R2;

X2 ¼ ðx2; y2Þ
T 2 R2, fðX1Þ ¼

0
�ðly1 þ jþ dx1Þx2

1

� �
, fðX2Þ ¼

0
�ðly2 þ jþ dx2Þx2

2

� �
; mðtÞ ¼ F cos xt;U ¼ kcðx1 � x2Þ;

kc 2 R2�2. Defining the error between Eqs. (9) and (10) as

e ¼ X1 � X2, we obtain the error dynamics

_e ¼ A� 2kc þ Q ðtÞð Þe; ð11Þ

where

Q ðtÞ ¼
0 0

qðtÞ 0

� �
; qðtÞ ¼

qy þmðtÞ
x1 � x2

: ð12Þ

qy ¼ lðx2
2y2 � x2

1y1Þ þ jðx2
2 � x2

1Þ þ dðx3
2 � x3

1Þ. We assume
that the attractors in each subsystem are bounded within
the regions C and K, respectively; requiring that the
maximum, maxjx1j 6 q, where jx1jP jx2j and that global
synchronization is implied if there exist a s P t0 for which
limt!1kX1ðtÞ � X2ðtÞk 6 �8t > s; and that the synchroniza-
tion is independent of initial conditions [7,16,31]. Follow-
ing Ref. [4], it is easy to show that Eq. (12) may be
written as

jqðtÞj 6 lq2 þ 2jqþ 3dq2 þ jFj
2q

: ð13Þ

If the control (coupling) matrix kc 2 R2�2 is defined as

kc ¼
k11 k12

k21 k22

� �
; ð14Þ

then, the following theorem holds:

Theorem 1. Suppose the coupling matrix (14) is chosen such
that Eqs. (15) and (16) are satisfied, then the coupled plasmas
(7) and (8) achieves global synchronization.

k11 þ k22 þ l > 0; ð15Þ
4k11ðk22þ lÞ > Px; ð16Þ

where
Px ¼ j1� k12 � k21j �x2 þ lq2 þ 2jqþ 3dq2 þ jFj2q

� �2
.

Proof. The stability theory related to the linear time-var-
ied systems requires that global synchronization is
achieved if matrix, G 2 R2�2, defined in Eq. (14) is negative
definite.
G ¼
�2k11 h

h �2ðk22 þ lÞ

� �
; ð17Þ

where G ¼ ðA� Kc þ Q Þ þ ðA� kc þ Q ÞT and h ¼ qðtÞ�
x2� ðk12 þ k21Þ þ 1. Applying the Routh–Hurwitz criterion
to the eigenvalue equation of Eq. (17), one obtains:

k11 þ k22 þ l > 0; ð18Þ
4k11ðk22 þ lÞ � qðtÞ �x2 � ðk12 þ k21Þ þ 1 > 0: ð19Þ

Using (13) in (19) we have,

j1þ qðtÞ �x2 � ðk12 þ k21Þj 6 j1�x2 � ðk12 þ k21Þj þ jlq2

þ 2jqþ 3dq2j þ jFj
2q

: ð20Þ

Substituting Eq. (20) in Eq. (19), Eqs. (13) and (14) become
Eqs. (15) and (16). This ends the proof. h

In order to obtain an explicit synchronization criteria
which depends on the systems’ parameters, we first con-
sider the following corollaries based on Theorem 1.

Corollary 1. If the coupling matrix is chosen as

kc ¼
k1 0
0 k2

� �
, (15) and (16) may be written as

k1 þ k2 þ l > 0; ð21Þ

4k1ðk2 þ lÞ > j1�x2 þ jlq2 þ 2jqþ 3dq2j þ jFj
2q

� �2

;ð22Þ

which guarantees global synchronization.
Corollary 2. If the coupling matrix is chosen as kc ¼
kc 0
0 kc

� �
, then (22) is implies that

kc >
�lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ðj1�x2 þ qjÞ2

q
2

: ð23Þ
Corollary 2, given by Eq. (23) gives the criteria for the

synchronization of the coupled systems (7) and (8).

Next, we illustrate the synchronization process by
numerical simulation of the coupled systems (7) and (8).
The fourth-order Runge Kutta algorithm has been used to
obtain our numerical results. Unless otherwise stated, all
simulations were carried out with the following
parameters fixed: l ¼ 0:02;x ¼ 1;j ¼ 3:05; d ¼ 1:5, and
F ¼ 22:0; and starting with initial conditions, ðx1; _x1Þ ¼
ð0;0:5Þ; ðx2; _x2Þ ¼ ð1:5;2:5Þ. First, we obtain the threshold

coupling, kth
c , which is an important synchronization

parameter that is of general interest. From the bounded-
ness condition, the limiting constant q ¼ 3:0, so that an
estimate of kc directly from (23) gives the synchronization

threshold, kth
c � 31:31 – a minimum value of kc for which

the limt!1kx2ðtÞ � x1ðtÞk < �– 0 is guaranteed. Note that
the smaller the value of �, the closer quasi-synchronization
is to be equivalent to complete synchronization. For kc ¼ 0
which corresponds to the uncoupled case the two oscilla-
tors are independent running dynamical systems - chaotic
and limit cycle oscillators, respectively (See Fig. 5(a)). The
detail dynamics for the driven part has been presented
by Enjieu Kadji et al. [29]. Fig. 2 shows the error dynamics
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for four different values of kc . In brief, for kc ¼ 0 (uncoupled

case), � oscillates chaotically; for kc ¼ 20 < kth
c ; � � 0:065,

for kc ¼ 30 < kth
c (and in neighborhood of kth

c ), � � 0:02

and for kc ¼ 35 > kth
c ; � � 0:01. The behavior of � for

kc ¼ 20;30 and 35 typifies quasi-synchronization as clearly
depicted in the inset of Fig. 2.

The threshold coupling, kth
c can be estimated from

microscopy point of view. In principle, when the oscillators
are synchronized, any microscopic property of the systems
are equal or nearly equal; and one of such is the average
bare energies [49] written as

h1;2 ¼
1
2

Z T

0

p2
1;2

2
þ Vðx1;2Þdt; ð24Þ

where p1;2 the momentum and Vðx1;2Þ is the potential
energy. To eliminate transient effect, the computation of
h1;2 is done by ensuring that the trajectories run for a suf-
ficiently long time, while measurement is carried out after
discarding a sufficient initial transient (typically 2000 pre-
iterates). Fig. 3 shows the computed h1 and h2 as functions
of kc , together with the average interaction energy, defined
by
EIðtÞ ¼
1
T

Z T

0

k
2
ðx1 � x2Þ2dt: ð25Þ

EIðtÞ characterizes the contributions to the total energy
that is caused by an interaction, respectively. As kc

becomes increasingly large (say, kth
c > kth

c � 23:94), the cor-
relation in the dynamics becomes stronger while they
asymptotically approach near identical trajectories, typical
of quasi-synchronization.
4. Bifurcations and attractors

In this section, we seek to examine the dynamics pre-
ceding the quasi-synchronized state of systems (7) and
(8) when the control parameter, namely kc evolves. In this
regards, bifurcation diagrams and their corresponding
Lyapunov exponents spectra are useful tools for numerical
as well as experimental exploration studies when there is a
tunable parameter, which in this case is the coupling
strength kc . When kc varies, several new bifurcation
sequences which were not observed in the singled plasma
oscillator were found. For the numerical computations, kc

is increased from an initial value ki
c ¼ 0:0 to a final value

kf
c ¼ 50; and then decreased from kf

c to ki
c. In this way, all

possible attractors that may co-exist would be captured
in phase space. Starting with initial conditions
ðx1; _x1Þ ¼ ð0;0:5Þ; ðx2; _x2Þ ¼ ð1:5;2:5Þ, systems (7) and (8)
is again integrated using the fourth-order Runge–Kutta
method. Since the extended phase space is five-dimen-
sional (IR4 �u1), an element of the state space is denoted
by (x1; dx1=dt; x2; dx2=dt; h); u1 being the unit circle con-
taining the phase angle, h ¼ xt. Thus, to visualize the
attractors in the subspace along with their bifurcations,
we follow the same approach as in [38], by exploring the
dynamics in the Poincaré cross section defined by
X
¼ ðx1;dx1=dt; x2;dx2=dt; h ¼ h0Þ 2 IR4 �u1
n o

; ð26Þ

where h0 is a constant determining the location of the
Poincaré cross section on which the coordinates
Xðx1; dx1=dt; x2; dx2=dtÞ of the attractors are expressed.
The simulation is carried out for 100 periods of the driving
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force until the transient died out, so that trajectories are
attractors with insignificant local calculation error. To
ensure periodic, quasiperiodic and chaotic trajectories,
the system is integrated for the next 180 periods, allowing
one to observe coexisting attractors evolving from differ-
ent initial conditions. So the bifurcation diagrams obtained
here only show the projection of attractors in the Poincaré
section onto the synchronization manifold, x2 � x1 vs the
control parameter, kc .

With systems (7) and (8), we can indeed find different
kinds of dynamical transitions. To illustrate the main fea-
tures, we computed and examined a great number of bifur-
cation structures, with the corresponding Lyapunov
exponent as functions of kc in a broad range of kc; from
which we observed interesting chaotic domains, coexisting
attractors, sandwiched by periodic windows made up of
different periodicity (up-to period-9 orbit, where found),
period-doubling (pd), symmetry-breaking (sb), saddle
node (SN) and Hopf bifurcations. We present here, for brev-
ity, in Fig. 4 a typical bifurcation diagram of the error
dynamics (x2 � x1). We have zoomed in two distinct
regimes, namely 4:8 6 kc 6 7:2 (Fig. 4 enclosing a bubble)
and 5:6 6 kc 6 5:8 (Fig. 6 with large period-8 window),
respectively. At the left branch of Fig. 4, a period-1 attrac-
tor undergoes a Hopf bifurcation at kc � 5:12 to a quasipe-
riodic orbit (Shown in Fig. 5(b)) that looses its stability at
kc � 5:57 via sudden creation of new chaotic attractors in
the sub-systems at kc ¼ 5:58 (Fig. 5(b)). At kc � 5:66 a SN
bifurcation takes place, giving birth to a period-8 orbit that
undergoes sb and pd to chaos as shown in Fig. 6, where we
further zoomed the bifurcation structure where period-8
orbit is predominant. An interesting feature is the
reversed sequence: creation of a period-3 attractor - chaos
– quasiperiodicity – Hopf bifurcation terminated by a
steady state periodic orbit; all of which are qualitatively
characterized by the Lyapunov exponents. We emphasize
that beside quasi-synchronization, the occurrence of Hopf
bifurcation is one dominant effect of interaction on the
dynamics of the systems. In fact, higher order Hopf bifurca-
tion could show up for other values of the external forcing
frequency. In particular, for x ¼ 2:0, Hopf bifurcation
arises when a period-3 orbit bifurcates as shown in Fig. 7.

5. Resonance oscillation state

In the study of dynamical systems, resonance is of fun-
damental importance. Interestingly, recent studies have
shown that the phenomenon of resonance described by
Galileo is in tandem with the synchronization observed
by Huygens [7,50] three and halve decades later. In
dynamical systems, resonance is said to occur when the
frequency of an applied external forcing equals the natural
frequency of the system, in which case the maximum
energy output of the system is achieved and the amplitude
of oscillation is large [51–53]. Here, we investigate the res-
onant behavior of coupled plasma oscillations. For this pur-
pose, we employ the method of multiple times scales to
analytically obtain the steady state of the coupled system.
From Eqs. (7) and (8), the system is bidirectionally coupled
and maybe rewritten as follows;

€x1 þ l1 1þ x2
1

� �
_x1 þx2

1x1 þ j1x2
1 þ d1x3

1 ¼ kcuþ F cos Xs;
€x2 þ l2 1þ x2

2

� �
_x2 þx2

2x2 þ j2x2
2 þ d2x3

2 ¼ �kcu; ð27Þ

where u ¼ x2 � x1ð Þ. We set the time scales characterizing
the modulation in amplitude and phase as sn ¼ �ns(which
gives s0 ¼ s, and s1 ¼ �s corresponding to slow and fast
time scales respectively). The following gives the equiva-
lents of the corresponding differential coefficients.

d
dt
¼ ds0

dt
� @

@s0
þ ds1

dt
� @

@s1
þ � � �

¼ dt
dt
� @

@s0
þ �dt

dt
� @

@s1
þ � � � ;¼ D0 þ �D1 þ � � � ð28Þ

which leads to

d2

dt2 ¼ D0 þ �D1 þ � � �ð Þ2 ¼ D2
0 þ 2�D0D1 þ �2D2

1 þ � � � ;

¼ D2
0 þ 2�D0D1 þ � � � ð29Þ

We seek an approximate solution of the form:

x1ðtÞ ¼ x10 s0; s1ð Þ þ �x11 s0; s1ð Þ þ � � � ;
x2ðtÞ ¼ x20 s0; s1ð Þ þ �x21 s0; s1ð Þ þ � � � ð30Þ

Substituting Eqs. (28)–(30) into Eq. (27) and comparing the
coefficients of the same order of �, the following differen-
tial equations are obtained.

D2
0x10 þx2

1x10 ¼ 0; D2
0x20 þx2

2x20 ¼ 0; ð31Þ

D2
0x11 þx2

1x11 ¼ �2D0D1x10 � l1D0x10 � l1x2
10D0x10 � kx2

10

� dx3
10 þ kcðx20 � x10Þ þ F cos Xs;

D2
0x21 þx2

2x21 ¼ �2D0D1x20 � l2D0x20 � l2x2
20D0x20

� kx2
20 � dx3

20 þ kcðx10 � x20Þ: ð32Þ
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Here, we consider all the parameters to be of the order of
the small parameter �, that is j ¼ �j; d ¼ �d; F ¼ �F. In
addition to this, x1 ’ X and x1 ’ x2; implying that
X ¼ x1 þ �r, where r is the detuning parameter. There-
fore, the general solution of Eq. (32) expressed in polar
form is

x10 ¼ A1ðs1Þeiw1s0 þ c:c; x20 ¼ A2ðs1Þeiw2s0 þ c:c:; ð33Þ

where c:c. represents complex conjugate. By substituting
Eq. (33) into Eq. (32) one obtains the first order approxima-
tion solution as

2x1A01 þ l1x1A1 þ l1x1A1jA1j2

� 3idA1jA1j2 þ ikc A2 � A1ð Þ þ i
2

Feirs1 ¼ 0:

2x2A02 þ l2x2A2 1þ jA2j2
� �

� 3idA2jA2j2þikc A1 � A2ð Þ ¼ 0:

ð34Þ
We can again express A1 and A2 as follows:

A1 ¼
1
2

a1ðs1Þeih1ðs1Þ; A2 ¼
1
2

a2ðs1Þeih2ðs1Þ: ð35Þ

Substituting Eq. (35) into Eq. (34) and separating real and
imaginary parts, one obtains the following coupled first
order differential equations:

x1a01 ¼ �
1
2
l1x1a1 �

1
8
l1x1a3

1 þ
1
2

kca2 sin c2 þ
F
2

sin c1;

x1a1c01 ¼ x1a1r�
3
8

da3
1 �

1
2

kca1 þ
1
2

kca2 cos c2 þ
F
2

cos c1;

x2a02 ¼ �
1
2
l2x2a2 1þ a2

2

4

� �
� 1

2
kca1 sin c2; ð36Þ

x2a2c02 ¼
3
8

da3
2 �

1
2

kca1 cos c2 þ
1
2

kca2 �x2a2 r� c01
� �

;
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where c1 ¼ rs1 � h1 and c2 ¼ h2 � h1. In the absence of
coupling stiffness, that is kc ¼ 0, and x1 ¼ l2 ¼ 1, with
a2 ¼ l2 ¼ 0, Eq. (36) reduces to Eq. (37) obtained in [30],
and corresponding to single plasma oscillator model.

a0 ¼ �1
2

a� 3
8

a3 þ F
2

sin c;

ac0 ¼ ra� 3
8

da3 þ F
2

cos c: ð37Þ

We then determine the steady state motion by noting that
a01 ¼ a02 and c01 ¼ c02 ¼ 0. Eliminating c1 and c2 and setting

sin c2 ¼ �
l2x2a2

kca1
1þ a2

2
4

� �
and cos c2 ¼ 1

kca1

3
4 da2

2 þ kca2�
�

x2a2rÞ from Eq. (14), one obtains the following set of
equations:

F2

4
¼ 1

2
l1x1a1 þ

1
8
l1x1a3

1 þ
1
2
l2x2

a2
2

a1 1þ a2
2

4

� �� �2

� x1a1r�
3
8

da3
1 �

kca1

2
þ kca2

2

2
�x2a2

2rþ
3
8

da4
2

� �2

;

ð38Þ

1
4

k2
c a2

1 ¼
1
4
x2

2a2
2 1þ a2

2

4

� �2

þ 3
8

da3
2 þ

1
2

kca2 �x2a2r
� �2

:

ð39Þ

In order to examine the frequency response of the coupled
plasma oscillators, the steady state equations, Eqs. (38) and
(39) , are numerically integrated using the fourth-order
Runge–Kutta integration algorithm. The result is presented
in Fig. 8 for different values of the coupling strength, kc and
fixed parameters l1 ¼ l2 ¼ 0:4;j1 ¼ j2 ¼ 1:0; d1 ¼ d2 ¼
0:3; x1 ¼ x2 ¼ 1:0, and moderate forcing amplitude,
F ¼ 0:05. Here, we observe the existence of bi-resonance
with respect to the coupling strength. Besides the depen-
dence of the resonance peaks on the forcing frequency
ðXÞ, two regimes of resonance emerged within the
observed forcing frequency range. First, the coupling
strength ðkcÞ was set to zero. The resonance in this case
shows the highest amplitude and corresponds to that of a
single periodically forced plasma system [30]. As the
1.5 2 2.5 3
equency, Ω

kc=0.0

kc=0.1

kc=0.5

kc=1.0

kc=2.0

kc=5.0

s for different values of the coupling strength, kc .
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coupling is slightly tuned such that the oscillators are
weakly coupled (at kc ¼ 0:1), the vibration is comparable
to the uncoupled case ðkc ¼ 0Þ; however, the interaction
between the two systems depresses the resonance peak
lower, so that a slightly increased resonance frequency is
obtained.

With increasing coupling strength, the interaction
between the two systems drives them to multi-resonance
regime. Depending on parameter set, one or more reso-
nance frequencies may appear beside the primary reso-
nance. Notably, the resonance frequencies at which the
primary resonances occurred for kc > 0:1 are approxi-
mately the same. However, stronger interaction between
the two systems depresses the resonance peak even much
lower, so that the oscillators vibrate with lower amplitude.
For kc P 0:5, each curve shows two distinct resonance
frequencies. The positions of the secondary resonances
suggest that their resonance frequencies, as well as the
amplitude of oscillations of the plasma system depend
strongly on the strength of interaction between the cou-
pled systems. When the two coupled plasma oscillators
reach synchronization state as depicted in Fig. 2 for
kc P 20, the primary resonance frequencies and peaks
coincides for all kc in the synchronization regime.
However, the secondary resonance frequencies differ for
different coupling strengths with slight difference in the
resonance peaks as shown in Fig. 9.

6. Conclusions

In this paper, synchronization and resonances of two
coupled and periodically driven plasma oscillators have
been investigated. Quasi-synchronization has been found
to exist between the two coupled plasmas in the presence
of an asymmetric potential, when a certain threshold is
reached. In this regard, the oscillators could closely be
related to practical models, in which external noise,
parameter mismatch and so on [11] cause the systems to
suffer from achieving full synchronization but settle for a
rather realistic form of collective behavior - quasi-synchro-
nization (imperfect complete synchronization). To ascer-
tain the sufficient condition for stable synchronized state,
linear matrix inequality (LMI) method has been employed;
and it has proven to provide information regarding the
threshold for the existence of a synchronized dynamics.
This has been validated by numerical simulations. Notably,
we have also observed that when both oscillators are
independently driven, the oscillators achieves complete
synchronization at much smaller synchronization
threshold. Furthermore, based on the method of multiple
time-scale, steady state equations for the vibration of the
coupled oscillators have been obtained, and bi-resonance
oscillations induced by coupling have been reported at dis-
tinct frequencies. In the synchronization regime, the pri-
mary resonance frequency and peak are the same for all
kc , whereas in other regimes the resonance peaks experi-
ence depression. Multiple resonance phenomenon is well
applicable in communications. For instance, the different
peaks corresponding to different resonance frequencies
could be harnessed to transmit data at distinct frequencies.
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