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Abstract. In this paper, function projective synchronizations (FPS) of identical and non-identical
modified finance systems (MFS) and Shimizu–Morioka system (S-MS) are studied via active con-
trol technique. The technique is applied to construct a response system which synchronizes with
a given drive system for a desired function relation between identical MFS, identical S-MS and
between MFS and S-MS. The results are validated via numerical simulations.
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1. Introduction

Chaos synchronization is an important subject both theoretically and practically, for
applications requiring oscillation out of chaos, machine and building structure analysis,
chaos generator design and so on. Chaos synchronization first described by Fujisaka
and Yamada [1] in 1983, did not receive much attention until 1990 [2]. From then on,
chaos synchronization has developed extensively due to its various applications [3–5].
During the last decades, many techniques of handling chaos synchronization, such as
Pecora and Carroll method [2], OGY method [6], feedback approach [7], adaptive method
[8], time-delay feedback approach [9], backsteping design technique [10], sliding mode
control [11], active control technique [12], etc. have been developed. Many of the
methods mentioned above have been found effective for synchronizing two identical
chaotic systems. But, it is well known that the components of most practical systems are
non-identical. For instance, systems such as laser array, biological systems as well as cog-
nitive processes consist of essentially non-identical components. Thus, it would be very
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instructive and significant to treat function projective synchronization of chaos in non-
identical systems. This has been an open challenge that has recieved inadequate attention
partly because non-identical systems have different dynamical structures as well as
parameter mismatches.

Bai and Lonngren [13] proposed the method of identical chaos synchronization using
active control. The technique was later generalized to non-identical systems by Ho and
Hung [14], thus breaking the limit of its applicability beyond identical chaotic systems.
Recently, the generalized active control (GAC) scheme [14] was employed by Chen and
Lee to synchronize non-identical systems consisting of Lorenz, Chen and Lü systems with
new chaotic systems attributed to Chen and Lee [15]. Chaos synchronization using active
control has continued to receive wide application in a variety of dynamical systems such
as geophysical model [16], spatiotemporal dynamical systems [17] etc.

The study of chaos synchronization has led to the discovery of various types of syn-
chronization. These include complete synchronization [18], phase synchronization [19],
lag synchronization [20], anticipating synchronization [20], projective synchronization
[21], modified projective synchronization [22], function projective synchronization (FPS)
[23], etc. In projective synchronization, the drive and the response systems synchronize
up to a scaling factor whereas in modified projective synchronization, the response of the
synchronized dynamical state variables synchronizes up to a constant matrix. Recently,
a more general form of projective synchronization called function projective synchro-
nization [24, 25] in which drive and response systems are synchronized up to a desired
scaling function has attracted much attention of scientists and engineers as it provides
more security in its applications to secure communication. Motivated by the above
discussions, in this paper, we carried out FPS of identical and non-identical MFS and
S-MS. The non-identical case is more interesting because the systems consist of differ-
ent complex dynamical structures as well as parameter mismatches which can further
enhance the security in secure communication. To our understanding, function projective
synchronization of MFS and S-MS has not been explored.

The organization of the rest of this paper is as follows. Section 2 deals with system
description. Section 3 deals with FPS between two identical MFS, between two identical
S-MS evolving from different initial conditions, and between MFS and S-MS. In §4, we
present numerical simulations to validate our results in §3, while the paper is concluded
in §5.

2. System description

2.1 Description of modified financial system

The modified financial system is described as follows [21]:

ẋ = z + (y − a)x + kx,

ẏ = 1 − by − x2,

ż = −x − cz, (1)

where x , y and z are state variables and a, b, c and k are parameters. When a = 0.6,
b = 0.2, c = 0.9 and k = 0.5, system (1) exhibits chaotic behaviour (figure 1).
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Figure 1. Phase space of the chaotic attractor portrait of the modified financial system
for the parameter values a = 0.6, b = 0.2, c = 0.9 and k = 0.5.

2.2 Description of Shimizu–Morioka system

The modified Shimizu–Morioka system is described as follows [26]:

ẋ = y,

ẏ = x − λy − xz,

ż = −βz + x2, (2)

where x , y and z are state variables and λ and β are parameters. When λ = 0.605 and
α = 0.549, system (2) exhibits chaotic behaviour (figure 2).
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Figure 2. Phase space of the chaotic attractor portrait of the Shimizu–Morioka system
for the parameter values α = 0.549 and λ = 0.605.
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3. Design of the synchronization scheme

3.1 FPS between identical chaotic finance systems

In this section, we present the FPS scheme for identical modified chaotic finance systems
via active control scheme. The drive system is given as

ẋ1 = x3 + x1(x2 − a) + kx1,

ẋ2 = 1 − bx2 − x2
1 ,

ẋ3 = −x1 − cx3, (3)

and the response system is given as

ẏ1 = y3 + y1(y2 − a) + ky1 + u1(t),

ẏ2 = 1 − by2 − y2
1 + u2(t),

ẏ3 = −y1 − cy3 + u3(t), (4)

where ui (t), i = 1, 2, 3 are the control functions to be determined. Our goal is to syn-
chronize both drive and response systems to a scaling function α such that for the error
states ei = yi − αxi , ‖ei‖ = 0 as t → ∞, where α is a time-dependent function. We
obtain the error dynamics as follows:

ė1 = e3 + ke1 − α̇x1 + (y1(y2 − a) − αx1(x2 − a)) + u1(t)

ė2 = (1 − α) − be2 − α̇x2 − (y2
1 − αx2

1) + u2(t)

ė3 = −e1 − ce3 − α̇x3 + u3(t). (5)

The control functions ui ’s are re-defined to supress terms that are not linear in e1, e2 and
e3 as follows:

u1(t) = α̇x1 − (y1(y2 − a) − αx1(x2 − a)) + v1(t)

u2(t) = −(1 − α) + α̇x2 + (y2
1 − αx2

1) + v2(2)

u3(t) = α̇x3 + v3(t) (6)

which gives the following matrix equation⎛
⎝

ė1

ė2

ė3

⎞
⎠ =

⎛
⎝

k 0 1
0 −b 0

−1 0 −c

⎞
⎠

⎛
⎝

e1

e2

e3

⎞
⎠ +

⎛
⎝

v1(t)
v2(t)
v3(t)

⎞
⎠ (7)

where
⎛
⎝

v1(t)
v2(t)
v3(t)

⎞
⎠ = A

⎛
⎜⎝

e1

e2

e3

⎞
⎟⎠ . (8)

A is a 3 × 3 matrix defined as

A =
⎛
⎝

λ1 − k 0 −1
0 λ2 + b 0
1 0 λ3 + c

⎞
⎠ , λi (i = 1, 2, 3) < 0. (9)
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3.2 FPS between identical Shimizu–Morioka systems

The drive of the Shimizu–Morioka system is written as

ẋ1 = x2

ẋ2 = x1 − λx2 − x1x3

ẋ3 = −βx3 + x2
1 (10)

and the response system is given as

ẏ1 = y2 + u1(t)

ẏ2 = y1 − λy2 − y1 y3 + u2(t)

ẏ3 = −βy3 + y2
1 + u3(t). (11)

As in §3.1, the control functions ui ’s added to the response system ensure the synchro-
nization of both the drive and the response systems with the error functions defined as
ei = xi − αyi (i = 1, 2, 3)

ė1 = e2 − αu1(t) − α̇y1

ė2 = e1 − λe2 − x1x3 + αy1 y3 − αu2(t) − α̇y2

ė3 = −βe3 + x2
1 − αy2

1 − αu3(t) − α̇y3. (12)

We redefine the control functions to eliminate functions that are not linear in terms of
e1, e2 and e3

u1(t) = 1/α(−α̇y1 + v1(t))

u2(t) = 1/α(−x1x3 + αy1 y3 − α̇y2 + v2(t))

u3(t) = 1/α(−x2
1 − αy2

1 − α̇y3 + v3(t)). (13)

We now obtained the error dynamics as
⎛
⎝

ė1

ė2

ė3

⎞
⎠ =

⎛
⎝

0 1 0
1 −λ 0
0 0 −β

⎞
⎠

⎛
⎝

e1

e2

e3

⎞
⎠ +

⎛
⎝

v1(t)
v2(t)
v3(t)

⎞
⎠ , (14)

where
⎛
⎝

v1(t)
v2(t)
v3(t)

⎞
⎠ = M

⎛
⎝

e1

e2

e3

⎞
⎠ . (15)

M is a 3 × 3 matrix defined as

M =
⎛
⎝

−λ1 1 0
1 −λ − λ2 0
0 0 −λ3 − β

⎞
⎠ , λi (i = 1, 2, 3) < 0. (16)
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3.3 FPS between non-identical chaotic finance system and Shimizu–Morioka system

This subsection deals with FPS synchronization between MFS and S-MS. Let the drive
system be the MFS (3) and the response system be the S-MS (11). We define the error
states as ei = yi − αxi and the error dynamics system is given as

ė1 = y1 − α̇x1 − α(x3 + x1(x2 − a) + kx1) + u1(t)

ė2 = y1 − λy2 − y1 y3 − α̇x2 − α(1 − bx2 − x2
1) + u2(t)

ė3 = −βy2 + y2
1 − α̇x3 − α(−x1 − cx3) + u3(t). (17)

Again, the control functions are defined to eliminate non-linear terms in e1, e2 and e3

as follows:

u1(t) = −y2 + α̇x1 + α(x3 + x1(x2 − a) + kx1) + v1(t))

u2(t) = −y1 + λy2 + y1 y3 + α̇x2 + α(1 − bx2 − x2
1) + v2(t))

u3(t) = −βy3 − y2
1 + α̇x3 + α(−x1 − cx3) + v3(t)). (18)

The error dynamics system is then redefined as

⎛
⎝

ė1

ė2

ė3

⎞
⎠ = P

⎛
⎝

e1

e2

e3

⎞
⎠ +

⎛
⎝

v1(t)
v2(t)
v3(t)

⎞
⎠ , (19)
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Figure 3. Error dynamics between two modified financial systems with the controllers
deactivated for 0 < t < 40 and activated for t ≥ 40 where the scaling function
f (t) = 2 + 0.3 cos 2t .
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where P is a 3 × 3 null matrix and
⎛
⎝

v1(t)
v2(t)
v3(t)

⎞
⎠ = N

⎛
⎝

e1

e2

e3

⎞
⎠ , (20)

where

N =
⎛
⎝

−λ1 0 0
0 λ2 0
0 0 λ3

⎞
⎠ , λi (i = 1, 2, 3) < 0. (21)

4. Numerical simulations

To further show the correctness of our procedures in §3, we employed numerical
integration using the fourth-order Runge–Kutta method to solve each synchronization for-
mulation. Figure 3 shows that the synchronization problem in §3.1 has been effectively
solved. Here we plotted the time series of the errors e1, e2 and e3, as well as the average
error e given by 〈e〉 = (

∑
ei )

1/2, where i = {1, 2, 3}. The states’ discrepancies between
systems (3) and (4) vanished as the time-dependent controllers (6) were activated at time
t ≥ 40 units. For this, the scalling function is α = 2+0.3 cos 2t . Figure 4 shows the effec-
tiveness of the synchronization scheme in §3.2. Again, by activating the time-dependent
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Figure 4. Error dynamics between two Shimizu–Morioka systems with the con-
trollers deactivated for 0 < t < 40 and activated for t ≥ 40 where the scaling function
f (t) = 20 + sin 0.02t .
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Figure 5. Error dynamics between modified financial system and the Shimizu–
Morioka systems with the controllers deactivated for 0 < t < 40 and activated for
t ≥ 40 where the scaling function f (t) = 2 + 0.1 sin(0.1π t/40).

controllers (13) at time t ≥ 40 units, the error dynamics between the Shimizu–Morioka
systems (10) and (11) for α = 20 + sin 0.02t tends to zero. Figure 5 shows the effec-
tiveness of the synchronization scheme in §3.3 wherein the time-dependent controllers
(18) were activated at t ≥ 40 units with α = 2 + 0.1 sin(0.1π/40)t . As shown in the
figure, the error states converged to zero as soon as the controllers were activated, thereby
guaranteeing FPS between the MFS and S-MS.

5. Conclusion

This paper describes chaos synchronization in identical and non-identical modified
finance and Shimizu–Morioka systems using the FPS via active control method. With
the help of numerical simulations, it has been shown that the FPS method can guarantee
stable synchrony between these systems.
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