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Abstract

This paper investigates the control and synchronization of chaotic dynamics in RCL-shunted Josephson junctions based on backstep-
ping nonlinear control theory. The method consists of a recursive approach that interlaces the choice of a Lyapunov function with the
control. The method was employed to eliminate the chaotic behavior exhibited by the RCL-shunted Josephson junctions as well as to
achieve global asymptotic synchronization between a drive-response RCLSJ system with different system parameters. Numerical simu-
lations have been employed to verify the effectiveness of the control scheme; while the closed loop systems with the control are perfectly
modeled using SIMULINK block.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The dynamical behavior of Josephson junctions (JJ)
have for long attracted considerable research attention
since Belykh, Pedersen and Soerensen published their work
on chaos in Josephson junctions [1,2]. Thereafter, in 1980,
Huberman et al. [3] presented numerical studies on chaos in
JJ. Different models have been introduced to represent the
JJ [4]. Amongst them are the Shunted linear resistive–
capacitive junction (RCSJ) [4], the Shunted nonlinear resis-
tive–capacitive junction (SNRCJ) [5], Shunted nonlinear
resistive–capacitive–inductive junction (RCLSJ) [5–8] and
the periodically modulated Josephson junction (PMJJ)
[9,10]. The first two models of the Josephson junction con-
tain two state variables and exhibit chaotic behavior with
external sinusoidal signal, while the RCLSJ model which
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has been found to be very useful for high-frequency appli-
cations generate chaotic oscillations with external dc bias
only. Wu and Li [10] recently carried out analytic and
numerical investigations of the dynamics of periodically
modulated Josephson junction (PMJJ) and showed that
the PMJJ exhibits chaotic motion through the period-dou-
bling cascade, when the amplitude of the modulation term
is increased.

Beside the dynamics of a single Josephson junction, the
dynamics of coupled Josephson junctions have also
attracted research interest in the recent times [11–14]. For
instance, intermittent synchronization has been reported
in a resistively coupled chaotic JJ by Blackburn et al.
[11]; while Dana et al. [13], recently investigated the syn-
chronization behavior of uni-directionally coupled RCLSJ
by means of a negative pulse forcing and observed intermit-
tent synchronization. The robustness of the synchroniza-
tion scheme to white noise was also established. A more
recent study by Wang et al. [12], revealed a transition from
synchronized state to quenching state in a mutually cou-
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pled JJ, with the two states co-existing for some coupling
strength [12]. Indeed synchronization of chaotic systems
can be interpreted in terms of the observer problem in con-
trol theory; and recent synchronization techniques address
the problem of chaos synchronization based on control
theory point of view; thus unifying the study of chaos con-
trol and chaos synchronization. In this direction, Ucar
et al. [14] in a very recent paper extended the study of
the dynamics of coupled Josephson junction by setting up
the synchronization scheme for two-coupled RCLSJ in a
master–slave configuration through suitably designed
active controls.

The control and synchronization of chaotic systems have
received increased research attention [15,16], since the clas-
sical work on chaos control was first presented by Ott et al.
[17] in 1990, followed by the Pyragas time-delayed auto-syn-
chronization control scheme [18]; and the pioneering work
on the synchronization of identical chaotic systems evolving
from different initial conditions was first introduced by Pec-
ora and Carroll [19], the same year. The enormous research
activities arising from the possible applications of chaos
control and synchronization have motivated researchers
to seek for various effective methods to achieve these goals.
During the last one decade, the active control, which was
originally proposed by Bai and Lonngren [20] has been
extensively explored (For some recent applications, see for
example Refs. [14,21–24]). In another development, back-
stepping design has been employed for controlling, tracking
and synchronizing chaotic systems (see for example Refs.
[25–29]); this is because backstepping design can guarantee
global stability, tracking and transient performance for a
broad class of strict-feedback nonlinear systems [30]. The
technique is a systematic design approach and consists in
a recursive procedure that skillfully interlaces the choice
of a Lyapunov function and the control.

In a recent paper [31], we employed the backstepping
approach to control intermittent chaotic transport in inertia
ratchet that model the motion of a particle in an asymmetric
periodic potential. In addition, we explored the property of
backstepping scheme and proposed a simple active-back-
stepping approach for synchronizing different trajectories
arising from different initial conditions in the ratchet
model. In the present paper, we extend our investigation
on backstepping control to RCLSJ model and present an
active-backstepping scheme for the synchronization of
two-coupled RCLSJ model, each subsystem evolving from
different initial conditions and with different system param-
eters. The rest of the paper is organized as follows: In the
next section, we describe briefly the RCLSJ model and
present the backstepping designs in Section 3, together with
numerical simulations. Section 4 concludes the paper.
Fig. 1. SIMULINK block of the system (1) and (2).
2. The RCLSJ model

The RCLSJ model of JJ is described by the following set
of first order differential equations:
_x ¼ y;

_y ¼ 1

bC
½i� gðyÞy � sinðxÞ � z�;

_z ¼ 1

bL
ðy � zÞ;

ð1Þ

where the nonlinear damping function g(y) is approxi-
mated by a current–voltage relation between the two junc-
tions and is defined by
gðyÞ ¼
0:366 if jyj > 2:9;

0:061 if jyj 6 2:9

(
ð2Þ

x, y, and z represent the phase difference, the voltage at the
junction, and the inductive current, respectively. bC and bL

are constants that represent capacitive and inductive val-
ues, respectively. i is the dc external current. This dissipa-
tive model has been shown to have an attractor in a
bounded region. For instance, when the parameters are
set as follows: bC ¼ 2:6 and bL ¼ 0:707 for the initial con-
ditions: (x(0),y(0), z(0)) = (0, 0,0), the RCLSJ model exhib-
its chaotic dynamics for the dc external current in the
region 1 < i < 1:3 [5,7–9,13]. For the numerical results
the system (1) and (2) is modeled using Matlab/SIMU-
LINK block, Fig. 1. In Fig. 2a, we show a chaotic attractor
for i = 1.15, while in Fig. 2b, we display a periodic attractor
for i = 1.5. Our objective here is to design control law
based on recursive backstepping approach that will elimi-
nate the chaotic behavior and drive the system to a stable
equilibrium point. Secondly, we would extend our previous
investigation of synchronization behaviors of this system
by means of a new active-backstepping approach, which
we proposed recently [31].



Fig. 2a. Phase portrait of y and z of the system (1) and (2) for i = 1.15.

Fig. 2b. Phase portrait of y and z of the response system (9) for i = 1.5.
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3. Backstepping design

3.1. Chaos control in RCLSJ model via backstepping design

Let us add a time dependent control input function u(t)
to system (1) to obtain

_x ¼ y;

_y ¼ 1

bC
½i� gðyÞy � sinðxÞ � z� þ uðtÞ;

_z ¼ 1

bL
ðy � zÞ:

ð3Þ

The goal is to design a u(t) based on the recursive back-
stepping procedure that will drive the system (3) to a regu-
lar state. To achieve this goal, we define the differences
between the current chaotic states x, y, z and anticipated
regular states xd, yd, zd, as the error functions, i.e.
ex ¼ x� xd ;

ey ¼ y � yd ;

ez ¼ z� zd :

ð4Þ

Let xd ¼ 0; while yd ¼ c1ex and zd ¼ c2ex þ c3ey , are
recursively introduced and ci ði ¼ 1; 2; 3Þ are arbitrary con-
trol parameters to be determined. Using the above defini-
tions, we obtain the following error dynamic systems as
follows:

_ex ¼ c1ex þ ey ;

_ey ¼
1

bc
½i� gðyÞðc1ex þ eyÞ � sinðexÞ � c2ex � c3ey � ez�

� c1ðc1ex � eyÞ þ uðtÞ;

_ez ¼
1

bL
½c1ex þ ey � c2ex � c3ey � ez� � c2ðc1ex þ eyÞ; ð5Þ

� c2

1

bc
½i� gðyÞðc1ex þ eyÞ � sinðexÞ

�
� c2ex � c3ey � ez��c1ðc1ex � eyÞ

�
:

The control problem is to stabilize the error dynamics (5) at
the equilibrium (0, 0,0). Let us consider the following
Lyapunov function for the error dynamics (5):

V ¼ 1

2
ðk1e2

x þ k2e2
y þ k3e2

z Þ: ð6Þ

Since the controller must be as simple as possible, we let
the ci’s vanish, so that the system is stabilized at the origin.
Using Eq. (5) in Eq. (6) we obtain the Lyapunov first
derivative

_V ¼ k1exey þ
k2ey

bC
½ði� gðyÞey � sinðexÞ � ezÞ þ uðtÞ�

þ k3ex

bL
ðey � ezÞ ð7Þ

If we choose

uðtÞ ¼ �½ey þ
1

bc
ði� gðyÞey � sinðexÞ � ezÞ� ð8Þ

and k1 ¼ k3 ¼ 0; and k2 ¼ 1, then _V ¼ �e2
y is negative def-

inite and according to LaSalle–Yoshizawa’s theorem, the
equilibrium (0, 0,0) is globally asymptotically stable and
the control problem is solved.

The closed loop system with the control (8) is modeled
in Matlab/SIMULINK and shown in Fig. 3.

We numerically simulated the closed loop system (1)
for 0 6 t 6 600 with the control signal defined in Eq.
(8) activated for t P 300. The parameters of the system
are set as before. However, the dc external current is fixed
at i ¼ 1:15 to ensure chaotic behavior as in Fig. 2a. Figs.
4 show the time response of the system variable when
the control, u, also plotted in Fig. 4b is activated at
t = 300. Clearly, the impact of the control is to drive
the system to the desired equilibrium point (0,0,0). In



Fig. 3. SIMULINK block of the system (1) and (2) with the controller determined in Eq. (8).

Fig. 4a. The time response of the system states x and y, where the control signal activated at t = 300 s.

Fig. 4b. The time response of the system states z and control signal u, where the control signal activated at t = 300 s.
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addition, the convergence of the error dynamics is illus-
trated in Fig. 5. Obviously, the simulation results presented
in Figs. 4 and 5 confirm that the chaotic attractor has been
controlled.
3.2. Synchronization of two-coupled RCLSJ models via

active-backstepping

Very recently, we proposed an active-backstepping con-
trol based synchronization scheme for controlling two dif-
ferent trajectories arising from different initial conditions in
an inertia ratchet [31]. Here, we extend the application of
this technique to the RCLSJ model evolving from different
initial conditions and with different system parameters as in
[14]. Let us assume that system (1) with the state initial con-
ditions (x(0),y(0),z(0)) = (0,0,0) is the drive RCLSJ and
considering another system evolving from different initial
conditions ðx2ð0Þ; y2ð0Þ; z2ð0ÞÞ ¼ ð1;�1; 1Þ and with a dif-
ferent system parameter, ~i which we assume to be the
response system given by
Fig. 5. The time response of the error dynamics defined in (4); ex, ey and
_x2 ¼ y2 þ u1ðtÞ;

_y2 ¼
1

bC
½~i� gðy2Þy2 � sinðx2Þ � z2� þ u2ðtÞ; ð9Þ

_z2 ¼
1

bL
ðy2 � z2Þ þ u3ðtÞ;

where u1(t), u2(t), and u3(t) are the control inputs.
Defining the error states between the drive-response sys-

tems as

ex ¼ x2–x;
ey ¼ y2–y;
ez ¼ z2 � z

ð10Þ

we obtain the following error dynamics system:

_ex ¼ ey þ u1ðtÞ;

_ey ¼
1

bc
ð~i� iÞ � 1

bc
½gðy2Þy2 � gðyÞy þ sinðx2Þ � sinðxÞ�

� 1

bc
ez þ u2ðtÞ;

_ez ¼
1

bL
ðey � exÞ þ u3ðtÞ: ð11Þ
ez where the control signal u defined in (8) is activated at t = 300 s.



U.E. Vincent et al. / Physica C 468 (2008) 374–382 379
Substituting Eq. (11) into the time derivative of the
Lyapunov function (6), we have

_V ¼ k1ex½ey þ u1ðtÞ�

þ k2ey
1

bC
ð~i� iÞ � 1

bC
½gðy2Þy2 � gðyÞy þ sinðx2Þ

�

� sinðxÞ� � 1

bC

ez þ u2ðtÞ
�
þ k3e3

1

bL

ðey � ezÞ þ u3ðtÞ
� �

:

ð12Þ

If we choose the control functions as follows:

u1ðtÞ ¼ �ðex þ eyÞ;

u2ðtÞ ¼ �ey �
1

bC
fð~i� iÞ � ½gðy2Þy2 � gðyÞy þ sinðx2Þ

� sinðxÞ� � ezÞg;

u3ðtÞ ¼ �ez �
1

bL
ðey � ezÞ ð13Þ

and the ki’s (i = 1,2,3) = 1, then
Fig. 6. SIMULINK block of the closed loop systems
_V ¼ �e2
x � e2

y � e2
z ð14Þ
is negative definite and according to LaSalle–Yoshizawa
theorem, the error dynamics (10) will converge to zero
and remains globally asymptotically stable. Thus, the syn-
chronization problem between the drive-response RCLSJ is
solved.

In Fig. 6, we display the SIMULINK block implemen-
tation of the closed loop systems (1) and (9) with the con-
trol signals defined in (13).

In the numerical results that follow, we set bC ¼ 2:6 and
bL ¼ 0:707; while the dc external currents for the drive sys-
tem is i ¼ 1:15 and for the response system is ~i ¼ 1:5. Note
that with these system parameters the drive RCLSJ exhibits
the chaotic trajectory depicted in Fig. 2a and the response
system exhibits the periodic trajectory shown in Fig. 2b.
Fig. 7 shows the time evolution of the drive (x,y,z)
and response ðx2; y2; z2Þ system states where the control
signal defined in (13) has been activated at t = 150 s. The
corresponding error dynamics defined in Eq. (10) is also
(1) and (9) with the control signal defined in (13).
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Fig. 7a. The time response of the drive system state x and response system state x2 and the error ex ¼ x2 � x where the control signals define in (13)
activated at t = 150 s.
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Fig. 7b. The time response of the drive system state y and response system state y2 and the error ey ¼ y2 � y where the control signals define in (13)
activated at t = 150 s.
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Fig. 7c. The time response of the drive system state z and response system state z2 and the error ez ¼ z2 � z where the control signals define in (13)
activated at t = 150 s.
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displayed. It is very clear that the error dynamics
ðex; ey ; ezÞ ! 0 as t!1 as soon as the control is activated.
4. Concluding remarks

In this paper, we have investigated the control and
synchronization of chaos in the RCLSJ model of the
Josephson junction. The control of chaotic behavior in
the Josephson junction is of significant importance
because most researchers in Josephson junction often tend
to avoid the region of chaotic behavior during application
as a high-frequency oscillator [5–7]. Here, we have pre-
sented a technique of driving the JJ to stable regular state.
Thus, in practice, the chaotic region need not be avoided,
but could be exploited, for instance in secure communica-
tion through the mechanism of drive-response synchroni-
zation which we have also shown using the backstepping
design. The backstepping design that we employed pro-
vides an efficient recursive approach, which is interlaced
with the choice of appropriate control and guarantee
global stability and transient performance as have been
illustrated with several numerical simulations. Besides,
the Matlab/SIMULINK models of the RCLSJ system
have been demonstrated, suggesting that the approach
can be well implemented.
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