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Abstract: In this paper, I have extended the analysis done in the 

previous research [1] which proposed a standard finite element 

method with a four step time discretization. The analysis in that paper 

revealed that almost optimal order of convergence in the 𝐿2(Ω)-norm 

is obtainable when the interface cannot be fitted exactly. I have also 

derived almost optimal error estimate in 𝐻1(Ω)-norm. Numerical 

experiments are presented in this research to support the theoretical 

result.  
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1. Introduction 

Let Ω be a convex polygonal domain in ℝ2 with boundary 𝜕Ω 

and Ω1 ⊂  Ω be an open domain with smooth boundary Γ =

𝜕Ω1. Let Ω2 =  Ω\Ω̅1 be another open domain contained in Ω 

with boundary Γ ∪  𝜕Ω (see Figure 1). The parabolic interface 

problem is considered in this research 

𝑢𝑡 − ∇ ∙ (𝑎(𝑥, 𝑡) ∇𝑢) + 𝑏(𝑥, 𝑡)𝑢 = 𝑓(𝑥, 𝑡) in Ω × (0, 𝑇] (1) 

with initial and boundary conditions 

{
  𝑢(𝑥, 0) = 𝑢0(𝑥)      in      Ω 

 𝑢(𝑥, 𝑡) = 0   on     𝜕Ω × [0, T]
 (2) 

and interface conditions  

𝑢1(𝑥, 𝑡)|Γ − 𝑢2(𝑥, 𝑡)|Γ = 0                     
[𝑎1∇𝑢1(𝑥, 𝑡) − 𝑎2∇𝑢2(𝑥, 𝑡)] ∙ 𝑛 = 𝑔(𝑥, 𝑡)  on Γ

   (3) 

where 0 < 𝑇 <  ∞ and 𝑛 is the unit outward normal to the 

boundary 𝜕Ω1. 𝑢𝑖 ,  𝑎𝑖 , 𝑏𝑖 , and  𝑓𝑖 stand for the restriction of 

𝑢, 𝑎, 𝑏 and 𝑓 respectively to Ω𝑖 , 𝑖 = 1,2. Input functions 

𝑎, 𝑏 and 𝑓 are assumed continuous on each domain but 

discontinuous across the interface for 𝑡 ∈ [0, 𝑇]. 
A typical example of (1) – (3) is the heat (or diffusion) 

equation when the heat transfer (or diffusion) involves more 

than one material medium with different properties such as the 

conductivities, diffusion constraints, etc. This kind of 

problems have higher regularities in each individual material 

region than in the entire physical domain because of the 

discontinuities across the interface [2,3]. Thus, achieving 

higher order accuracy may be difficult. 

 

Figure 1. A polygonal domain Ω = Ω1 ∪ Ω2with interface Γ 

The study of interface problems by finite element method 

(FEM) was first carried out by Babuska [2]. The attention of 

researchers has since been drawn to the implementation and 

analysis of FEMs for interface problems. [4−15] contain 

recent development in the implementation and analysis of 

FEMs for interface problem. Recently [16] presented a 

residual-based a posteriori error analysis for a modified 

Crank-Nicolson time-step in finite element method for a linear 

parabolic interface problem. Convergence rate of almost 

optimal order was proved using a space-time reconstruction 

that is piecewise quadratic in time and Clement-type 

interpolation estimates. 

It is known that spatial and time discretization are the 

sources of errors in FEM, however, research has largely 

focused on the use of FEM for linear parabolic interface 

problems with emphasis on the improvement of the spatial 

discretization. Recently, standard finite element method with 

time discretization based on four-step backward difference 

scheme (BDS) was proposed and analyzed in [1]. It was 

shown that the method is numerically stable and that higher-

order accuracy in time could be obtained. The analysis further 

revealed that almost optimal order of convergence in the 

𝐿2(Ω)-norm is obtainable when the interface cannot be fitted 

exactly. In this paper, we extend this analysis and derive 

almost optimal error estimate in 𝐻1(Ω)-norm. Numerical 

experiments are presented to support the theoretical result.  

In this study, the linear theories of interface and non-

interface problems, Sobolev imbedding inequality are used. 

Other technical tools used in this paper are approximation 

properties for linear interpolation operator and projection 

operator. We use the standard notations for Sobolev spaces 

and norms as contained in [17]. 

We shall need the following space 

𝑋 = 𝐻1(Ω) ∩ 𝐻2(Ω1) ∩ 𝐻
2(Ω2) 

equipped with the norm 
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‖𝑣‖𝑋 = ‖𝑣‖𝐻1(Ω) + ‖𝑣‖𝐻2(Ω1) + ‖𝑣‖𝐻2(Ω2) ∀ 𝑣 ∈ 𝑋  

The paper is organized as follows. In Section 2, we describe 

a finite element discretization of the problem and state 

auxiliary results needed for our analysis. In Section 3, we 

prove a convergence rate of almost optimal order in 𝐻1(Ω) - 
norm for the fully discrete scheme. Numerical examples are 

presented in Section 4 and conclusion is made in Section 5. 

Throughout this paper, 𝐶 is a generic positive value at 

different occurrences. 

2. Finite Element Discretization 

𝑇ℎ denotes a partition of Ω into disjoint 𝐾 (called elements) 

such that no vertex of any triangle lies on the interior or side 

of another triangle. The domain Ω1 is approximated by a 

domain Ω1
ℎ with a polygonal boundary Γℎ whose vertices all 

lie on the interface Γ.  Ω2
ℎ represents the domain with 𝜕Ω and 

Γℎ as its exterior and interior boundaries respectively. 

Let ℎ𝐾 be the diameter of an element 𝐾 ∈ 𝑇ℎ  and ℎ =
max𝐾∈𝑇ℎ . Let 𝑇ℎ

∗ denote the set of all elements that are 

intersected by the interface Γ (see Figure 2); 

 

 

Figure 2. A typical interface element 

𝑇ℎ
∗ = {𝐾 ∈ 𝑇ℎ ∶ 𝐾 ∩ Γ ≠ ∅} 

𝐾 ∈ 𝑇ℎ
∗ is called an interface element and we write Ωℎ

∗ =

 ⋃𝐾∈𝑇ℎ
∗𝐾. 

The triangulation 𝑇ℎ of the domain Ω satisfies the following 

conditions 

(i) Ω̅ =  ⋃
𝐾 ∈ 𝑇ℎ

𝐾 

(ii) 𝐾1, 𝐾2 ∈  𝑇ℎ and 𝐾1 ≠ 𝐾2, then either 𝐾1 ∩ 𝐾2 = ∅  

or 𝐾1 ∩ 𝐾2 is a common vertex or a common edge. 

(iii) Each 𝐾 ∈ 𝑇ℎ is either in Ω1
ℎ  or Ω2

ℎ , and has most two 

vertices lying on Γℎ. 

(iv) For each element 𝐾 ∈ 𝑇ℎ, let 𝑟𝐾  and �̅�𝐾 be the 

diameters of its inscribed and circumscribed circles 

respectively. It is assumed that, for some fixed ℎ0 >
0, there exist two positive constants 𝐶0 and 𝐶1, 
independent of ℎ, such that  

𝐶0𝑟𝐾 ≤ ℎ ≤  𝐶1�̅�𝐾    ∀ ℎ ∈ (0, ℎ0) 

Let 𝑆ℎ ⊂ 𝐻0
1(Ω) denote the space of continuous piecewise 

linear functions on 𝑇ℎ vanishing on 𝜕Ω. The FE solution 

𝑢ℎ(𝑥, 𝑡)  ∈  𝑆ℎ is represented as  

𝑢ℎ(𝑥, 𝑡) = ∑𝛼𝑗(𝑡)𝜙𝑗(𝑥)

𝑁ℎ

𝑗=1

, 

where each basis function 𝜙𝑗, (𝑗 = 1,2, … , 𝑁ℎ) is a pyramid 

function with unit height. For the approximation 𝑔ℎ of 𝑔, let 

{𝑧𝑗}𝑗=1
𝑛ℎ

 be the set of all nodes of the triangulation 𝑇ℎ that lie 

on the interface 𝛤 and {𝜓𝑗}𝑗=1
𝑛ℎ

  be the hat functions 

corresponding to {𝑧𝑗}𝑗=1
𝑛ℎ

 in the space 𝑆ℎ, then 

𝑔ℎ(𝑥, 𝑡) = ∑𝛽𝑗(𝑡)𝜓𝑗(𝑥)

𝑛ℎ

𝑗=1

. 

Let 𝜋ℎ: 𝐶(Ω̅) →  𝑆ℎ be the Lagrange interpolation operator 

corresponding to the space 𝑆ℎ. We have (cf [1]) 

Lemma 2.1. For the linear interpolation operator  𝜋ℎ: 𝐶(Ω̅) →
 𝑆ℎ ,  we have, for 𝑚 = 0,1, and 0 < ℎ < 1   

‖𝑢 − 𝜋ℎ𝑢‖𝐻𝑚(Ω) ≤ 𝐶ℎ2−𝑚 (1 +
1

|ln ℎ|
)
1 2⁄

‖𝑢‖𝑋      ∀ 𝑢 ∈ 𝑋 

For the approximation property of 𝑔ℎ to the interface 

function 𝑔, we have the following (cf [3]) 

Lemma 2.2. Assume that 𝑔 ∈  𝐻2(Γ). Then we have 

|〈𝑔, 𝑣ℎ〉Γ − 〈𝑔ℎ, 𝑣ℎ〉Γℎ|   

≤ 𝐶ℎ3 2⁄ ‖𝑔‖𝐻2(Γ)‖𝑣ℎ‖𝐻1(Ωℎ
∗ )    ∀ 𝑣ℎ ∈  𝑆ℎ  

We recall some results which will be used for our analysis. 

See [4, 18] for proofs. 

Lemma 2.3 Let Ωℎ
∗  be the union of all interface triangles and 

𝑓 ∈ 𝐻2(Ω) for 𝑡 ∈ [0, 𝑇], we have  

‖𝑣‖𝐻1(Ωℎ
∗ ) ≤ 𝐶ℎ1 2⁄ ‖𝑣‖𝑋        ∀ 𝑣 ∈ 𝑋 

|(𝑓, 𝑣) − (𝑓, 𝑣)ℎ| ≤ 𝐶ℎ2‖𝑓‖𝐻2(Ω)‖𝑣‖𝐻1(Ω) 

 

3. Error Estimate 

We discuss a fully discrete scheme based on four-step 

backward difference approximation. The weak form of (1) - 

(3) is given as  

(𝑢𝑡 , 𝑣) + 𝐴(𝑢, 𝑣) = 𝑓(𝑢, 𝑣) + (𝑔, 𝑣)Γ      

∀ 𝑣(𝑡) ∈  𝐻0
1(Ω), a. e. 𝑡 ∈ [0, 𝑇]  (4) 

where 

(𝜙, 𝜓) = ∫ 𝜙𝜓
Ω

 𝑑𝑥,       〈𝜙,𝜓〉Γ = ∫ 𝜙𝜓
Γ

 𝑑Γ, 

𝐴(𝜙, 𝜓) = ∫ [𝑎(𝑥, 𝑡)∇𝜙 ∙ ∇𝜓 + 𝑏(𝑥, 𝑡)𝜙𝜓]
Ω

𝑑𝑥 

The spatially discrete approximation of (4) could be posed 

as: find 𝑢ℎ: [0, 𝑇] → 𝑆ℎ such that 𝑢ℎ(0) =  𝑢ℎ,0 and satisfies 

(𝑢ℎ,𝑡 , 𝑣ℎ)ℎ + 𝐴ℎ(𝑢ℎ, 𝑣ℎ) = (𝑓(𝑥, 𝑡), 𝑣ℎ)ℎ + 〈𝑔ℎ, 𝑣ℎ〉Γℎ  

 ∀𝑣ℎ ∈ 𝑆ℎ , a. e 𝑡 ∈ [0, 𝑇]   (5) 

For the fully discrete approximation, let the interval [0, 𝑇] 
be divided into 𝑀 equally spaced (for simplicity) subintervals: 

0 =  𝑡0 < 𝑡1 < ⋯ < 𝑡𝑀 = 𝑇 

with 𝑡𝑛 = 𝑛𝑘, 𝑘 =  𝑇 𝑀⁄  being the time step. Let  

𝑢𝑛 = 𝑢(𝑥, 𝑡𝑛), −𝑓
𝑛   = 𝑓(𝑥, 𝑡𝑛), and    𝑢𝑛 = 𝑔(𝑥, 𝑡𝑛) 

For a given sequence {𝑤𝑛}𝑛=0
𝑀  ⊂ 𝐿2(Ω), we have the 

backward difference quotients defined by  

𝜕1𝑤𝑛 = 
𝑤𝑛 − 𝑤𝑛−1

𝜏1
                𝑛 = 1,2, … ,𝑀                 

𝜕2𝑤𝑛 = 
3𝑤𝑛 − 4𝑤𝑛−1 + 𝑤𝑛−2

2𝜏2
            𝑛 = 2,3 … ,𝑀 
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𝜕3𝑤𝑛 = 
11𝑤𝑛 − 18𝑤𝑛−1 + 9𝑤𝑛−2 − 2𝑤𝑛−3

6𝜏3
               

𝑛 = 3,4, … ,𝑀 

𝜕4𝑤𝑛 = 
25𝑤𝑛 − 48𝑤𝑛−1 + 36𝑤𝑛−2 − 16𝑤𝑛−3 + 𝑤𝑛−4

12𝑘
  

 𝑛 = 4,5, … ,𝑀 

The FEM-BDS approximation to (4) is defined as follows: 

let 𝑈ℎ
0 = 𝜋ℎ𝑢0, find 𝑈ℎ

𝑛 ∈ 𝑆ℎ , such that  

 

{
 
 

 
 
(𝜕1𝑈ℎ

1, 𝑣ℎ)ℎ + 𝐴ℎ(𝑈ℎ
1, 𝑣ℎ)    =  (𝑓

1, 𝑣ℎ)ℎ + 〈𝑔ℎ
1 , 𝑣ℎ〉Γℎ      ∀ 𝑣ℎ ∈  𝑆ℎ

(𝜕2𝑈ℎ
2, 𝑣ℎ)ℎ + 𝐴ℎ(𝑈ℎ

2, 𝑣ℎ)    =  (𝑓
2, 𝑣ℎ)ℎ + 〈𝑔ℎ

2, 𝑣ℎ〉Γℎ      ∀ 𝑣ℎ ∈  𝑆ℎ 

(𝜕3𝑈ℎ
3, 𝑣ℎ)ℎ + 𝐴ℎ(𝑈ℎ

3, 𝑣ℎ)    =  (𝑓
3, 𝑣ℎ)ℎ + 〈𝑔ℎ

3, 𝑣ℎ〉Γℎ      ∀ 𝑣ℎ ∈  𝑆ℎ

(𝜕4𝑈ℎ
𝑛 , 𝑣ℎ)ℎ + 𝐴ℎ(𝑈ℎ

𝑛 , 𝑣ℎ)    =  (𝑓
𝑛, 𝑣ℎ)ℎ + 〈𝑔ℎ

𝑛 , 𝑣ℎ〉Γℎ      ∀ 𝑣ℎ ∈  𝑆ℎ 𝑛 = 4,5, … . ,𝑀

     (6)  

 

where (𝜙, 𝜓)ℎ: 𝐻
1(Ω) × 𝐻1(Ω)  → ℝ  and 

 〈𝑔(𝑥, 𝑡), 𝑣ℎ〉Γℎ: 𝐻
1 2⁄ (Γ) × 𝐻1(Ω) → ℝ   

are defined as 

(𝜓, 𝜙)ℎ = ∑ ∫ 𝜓𝜙
𝐾𝐾∈𝑇ℎ  

𝑑𝑥,                                           

𝐴ℎ(𝜙, 𝜓) = ∑ ∫ [𝑎(𝑥, 𝑡)∇𝜙 ∙ ∇𝜓 + 𝑏(𝑥, 𝑡)𝜙𝜓]
𝐾𝐾∈𝑇ℎ  

𝑑𝑥 

〈𝑔(𝑥, 𝑡), 𝜙〉Γℎ = ∫ 𝑔(𝑥, 𝑡)𝜙
Γℎ

𝑑𝑠                                          

∀𝜙,𝜓 ∈ 𝐻1 ∈ Ω, 𝑔 ∈ 𝐻1 2⁄ (Γ), 𝑡 ∈ [0, 𝑇] and 𝑠 ∈ Γℎ.  

(𝜓, 𝜙)ℎ: 𝐻
1(Ω) × 𝐻1(Ω)  → ℝ , 𝐴ℎ(𝜙, 𝜓): 𝐻

1(Ω) ×

 𝐻1(Ω)  → ℝ and 〈𝑔(𝑥, 𝑡), 𝑣ℎ〉Γℎ: 𝐻
1 2⁄ (Ω) × 𝐻1(Ω) → ℝ  are 

the discrete versions of (𝜓, 𝜙): 𝐻1(Ω) × 𝐻1(Ω)  → ℝ, 

𝐴(𝜙, 𝜓): 𝐻1(Ω) × 𝐻1(Ω) → ℝ and 

〈𝑔(𝑥, 𝑡), 𝑣ℎ〉Γ: 𝐻
1 2⁄ (Ω) × 𝐻1(Ω) → ℝ  respectively and are 

obtained numerically using quadrature schemes. 

We have the following stability (cf [1]) 

Lemma 3.1. 𝑎𝒊(𝑥, 𝑡), 𝑏𝒊(𝑥, 𝑡)  and  𝑓𝒊(𝑥, 𝑡) be continuous 

on Ω𝑖 × (0, 𝑇], 𝑖 = 1,2. Suppose  𝑔(𝑥, 𝑡) ∈

 𝐿2 (0, 𝑇; 𝐻1 2⁄ (Ω)), there exists a constant  𝐶 independent of 

𝑘 𝑎𝑛𝑑 ℎ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 
 

‖𝑈ℎ
𝑛‖

𝐿2(Ω)
2 + 𝑘‖𝑈ℎ

𝑛‖
𝐻1(Ω)
2    

≤ 𝐶 [‖𝑈ℎ
0‖

𝐿2(Ω)
2 + 𝑘∑(‖𝑓𝑗‖

𝐿2(Ω)

2
+ ‖𝑔ℎ

𝑗
‖
𝐻1 2⁄ (Γℎ)

2
) + 𝑘3

𝑛

𝑗=1

] 

for 𝑛 = 2…. and 0 < 𝑘 ≤  𝑘0 < 1. 
The result below establishes the convergence of the fully 

discrete solution to the exact solution 𝐻1(Ω)-norm.  

Theorem 3.2. Let 𝑢𝑛 𝑎𝑛𝑑 𝑈ℎ
𝑛 be the solutions of (4) and (6) 

respectively. Suppose 𝑎𝒊(𝑥, 𝑡), 𝑏𝒊(𝑥, 𝑡)  and  𝑓𝒊(𝑥, 𝑡)  be 

continuous on Ω𝑖 × (0, 𝑇], 𝑖 = 1,2 and 𝑔(𝑥, 𝑡) ∈

 𝐿2(0, 𝑇; 𝐻2(Ω)). There exists a positive constant 𝐵𝑛 

independent of h and k such that  

‖𝑢𝑛 − 𝑈ℎ
𝑛‖𝐻1(Ω) ≤ [𝑘

4 + ℎ (1 +
1

|ln ℎ|
)
1 2⁄

] 𝐵𝑛 

For the proof of this result, we shall need the following (cf 

[1]) 

Let 𝑃ℎ: 𝑋 ∩ 𝐻
1(Ω) → 𝑆ℎ be the elliptic projection of the 

exact solution 𝑢 in 𝑆ℎ defined by 

𝐴ℎ(𝑃ℎ𝜐, 𝜙) = 𝐴(𝜐, 𝜙)   ∀ 𝜙 ∈ 𝑆ℎ, 𝑡 ∈ [0, T].  (7) 

We therefore have 

Lemma 3.3. Let 𝑎𝒊(𝑥, 𝑡), 𝑏𝒊(𝑥, 𝑡) 𝑏𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑜𝑛 Ω𝑖 ×
(0, 𝑇], 𝑖 = 1,2. Assume that 𝑢 ∈ 𝑋 ∩ 𝐻0

1  and  let  𝑃ℎ𝑢 be 

defined as in (7),  then 

‖𝑃ℎ𝑢 − 𝑢‖𝐻1(Ω) ≤ 𝐶ℎ (1 +
1

|ln ℎ|
)
1 2⁄

‖𝑢‖𝑋 

‖𝑃ℎ𝑢 − 𝑢‖𝐿2(Ω) ≤ 𝐶ℎ
2 (1 +

1

|ln ℎ|
) ‖𝑢‖𝑋 

‖(𝑃ℎ𝑢 − 𝑢)𝑡‖𝐻1(Ω) ≤ 𝐶ℎ (1 +
1

|ln ℎ|
)
1 2⁄

(‖𝑢‖𝑋 + ‖𝑢𝑡‖𝑋) 

‖(𝑃ℎ𝑢 − 𝑢)𝑡‖𝐿2(Ω) ≤ 𝐶ℎ
2 (1 +

1

|ln ℎ|
) (‖𝑢‖𝑋 + ‖𝑢𝑡‖𝑋) 

Theorem 3.5. Let u and 𝑢ℎ be the solutions of  (4) and (5) 

respectively. Suppose 𝑎𝒊(𝑥, 𝑡), 𝑏𝒊(𝑥, 𝑡)  and  𝑓𝒊(𝑥, 𝑡) are 

continuous on Ω𝑖 × (0, 𝑇], 𝑖 = 1,2 and  

𝑔(𝑥, 𝑡) ∈ 𝐿2(0, 𝑇; 𝐻2(Γ)). There exists a positive constant 𝐶 

independent of h such that  

‖𝑢 − 𝑢ℎ‖𝐻1(Ω) ≤ ℎ (1 +
1

|ln ℎ|
)
1 2⁄

𝐶(𝑢, 𝑓, 𝑔) (8) 

Proof. Subtract (5) from (4) 

(𝑢𝑡 − 𝑢ℎ) + (𝑢, 𝑢ℎ) 
= (𝑢ℎ,𝑡 , 𝑢ℎ)ℎ + 𝐴ℎ(𝑢ℎ, 𝑣ℎ) + (𝑓, 𝑣ℎ) − (𝑓, 𝑣ℎ)ℎ

+ 〈(𝑔, 𝑣ℎ)〉Γℎ       ∀ 𝑣ℎ ∈  𝑆ℎ 

Let e(t) = 𝑢 − 𝑢ℎ,  choose 𝑣ℎ = 𝑃ℎ𝑢 − 𝑢ℎ and use (8) 
1

2

𝑑

𝑑𝑡
‖𝑒(𝑡)‖𝐿2(Ω)

2 + 𝐴ℎ(𝑒(𝑡), 𝑒(𝑡)) 

         = (𝑢ℎ,𝑡 − 𝑢𝑡 , 𝑃ℎ𝑢 − 𝑢)ℎ + 𝐴ℎ
(𝑒(𝑡), 𝑢 − 𝑃ℎ𝑢) 

             +𝐴ℎ(𝑢, 𝑃ℎ𝑢 − 𝑢ℎ) − 𝐴ℎ(𝑃ℎ𝑢, 𝑃ℎ𝑢 − 𝑢ℎ) 
             +(𝑓, 𝑃ℎ𝑢−𝑢ℎ) − (𝑓, 𝑃ℎ𝑢−𝑢ℎ)ℎ 

             +〈𝑔, 𝑃ℎ𝑢 − 𝑢ℎ〉Γ − 〈𝑔ℎ, 𝑃ℎ𝑢 − 𝑢ℎ〉Γℎ  

              + (𝑢𝑡 , 𝑃ℎ𝑢 − 𝑢ℎ)ℎ − (𝑢𝑡 , 𝑃ℎ𝑢 − 𝑢ℎ) 
                       ≤ 𝐵1 + 𝐵2 + 𝐵3 + 𝐵4 + 𝐵5  (9) 

where 

𝐵1 = |(𝑢𝑡 − 𝑢ℎ,𝑡 , 𝑃ℎ𝑢 − 𝑢)ℎ|,   𝐵2 = |𝐴ℎ(𝑒(𝑡), 𝑢 − 𝑃ℎ𝑢)| 

𝐵3 = |𝐴ℎ(𝑢, 𝑃ℎ𝑢 − 𝑢ℎ) − 𝐴ℎ(𝑃ℎ𝑢, 𝑃ℎ𝑢 − 𝑢ℎ)| 
𝐵4 = |(𝑓, 𝑃ℎ𝑢−𝑢ℎ) − (𝑓, 𝑃ℎ𝑢−𝑢ℎ)ℎ| 

+|(𝑢𝑡 , 𝑃ℎ𝑢 − 𝑢ℎ)ℎ − (𝑢𝑡 , 𝑃ℎ𝑢 − 𝑢ℎ)| 

𝐵5 = |〈𝑔, 𝑃ℎ𝑢 − 𝑢ℎ〉Γ − 〈𝑔ℎ, 𝑃ℎ𝑢 − 𝑢ℎ〉Γℎ| 

For 𝐵1, we have 

𝐵1 = |
𝑑

𝑑𝑡
(𝑒(𝑡), 𝑃ℎ𝑢 − 𝑢)ℎ − (𝑒(𝑡), (𝑃ℎ𝑢 − 𝑢)𝑡)ℎ | 

              ≤
1

2

𝑑

𝑑𝑡
‖𝑒(𝑡)‖𝐿2(Ω)

2 +
1

2

𝑑

𝑑𝑡
‖𝑃ℎ𝑢 − 𝑢‖𝐿2(Ω)

2

+
1

4𝜀
‖𝑒(𝑡)‖𝐿2(Ω)

2 + 𝜀‖𝑃ℎ𝑢 − 𝑢𝑡‖𝐿2(Ω)
2      

≤
1

2

𝑑

𝑑𝑡
‖𝑒(𝑡)‖𝐿2(Ω)

2 +
1

4𝜀
‖𝑒(𝑡)‖𝐿2(Ω)

2  

+
1

2
‖𝑃ℎ𝑢 − 𝑢‖𝐿2(Ω)

2 + 𝐶(𝜀)‖𝑃ℎ𝑢 − 𝑢𝑡‖𝐿2(Ω)
2   (10) 
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𝐵2   ≤    ‖𝑒(𝑡)‖𝐻1(Ω)‖𝑢 − 𝑃ℎ𝑢‖𝐻1(Ω) 

≤  
1

4𝜀
‖𝑒(𝑡)‖𝐻1(Ω)

2 + 𝜀‖𝑃ℎ𝑢 − 𝑢𝑡‖𝐻1(Ω)
2                 (11) 

 

For 𝐵3, we obtain  

𝐵3 ≤ 𝑐1‖𝑢 − 𝑃ℎ𝑢‖𝐻1(Ω)‖𝑃ℎ𝑢 − 𝑢ℎ‖𝐻1(Ω) 

≤ (𝑐1 + 𝑐1
2𝜀)‖𝑃ℎ𝑢 − 𝑢𝑡‖𝐻1(Ω)

2 +
1

4𝜀
‖𝑒(𝑡)‖𝐻1(Ω)

2      (12) 

𝐵4 ≤  𝐶ℎ2‖𝑓‖𝐻2(Ω)‖𝑃ℎ𝑢 − 𝑢ℎ‖𝐻1(Ω)
+ 𝐶ℎ2‖𝑢𝑡‖𝑋‖𝑃ℎ𝑢 − 𝑢ℎ‖𝐻1(Ω) 

≤ 𝐶(𝜀)ℎ2 (1 +
1

|ln ℎ|
) (‖𝑓‖𝐻2(Ω)

2 + ‖𝑢𝑡‖𝑋
2 + ‖𝑢‖𝑋

2 ) +

1

4𝜀
‖𝑒(𝑡)‖𝐻1(Ω)

2                                    (13)  

 

Using Lemma 2.2, 

𝐵5 ≤ 𝐶ℎ3 2⁄ ‖𝑔‖𝐻2(Γ)‖𝑃ℎ𝑢 − 𝑢ℎ‖𝐻1(Ω)  

≤ 𝐶ℎ3(𝜀 + 1)‖𝑔‖𝐻2(Γ)
2 + 𝐶ℎ2 (1 +

1

|ln ℎ|
) ‖𝑢‖𝑋

2      (14) 

We substitute (10)-(14) into (9) and simplify the resulting 

expression taking 𝜀 =
5

2𝑐1
  we obtain, for ℎ sufficiently small, 

𝑐1
2
‖𝑒(𝑡)‖𝐻1(Ω)

2 ≤ 𝐶ℎ2 (1 +
1

|ln ℎ|
) (‖𝑔‖𝐻2(Γ)

2 + ‖𝑓‖𝐻2(Ω)
2

+ ‖𝑢‖𝑋
2 + ‖𝑢𝑡‖𝑋

2  ) 

(8) follows immediately. 

Proof of Theorem 3.2 Subtract the last equation in (6) from 

(5) 

(𝑢ℎ,𝑡(𝑡𝑛) − 𝜕
4𝑈ℎ

𝑛 , 𝑢ℎ)ℎ + 𝐴ℎ
(𝑢ℎ(𝑡𝑛) − 𝑈ℎ

𝑛 , 𝑢ℎ) = 0 

Let 𝑣ℎ = 𝑢ℎ(𝑡𝑛) − 𝑈ℎ
𝑛, it is easy to see that 

‖𝑢ℎ(𝑡𝑛) − 𝑈ℎ
𝑛‖𝐻1(Ω) ≤ 𝐶‖𝑢ℎ,𝑡(𝑡𝑛) − 𝜕

4𝑈ℎ
𝑛‖

𝐿2(Ω)
 

            ≤ 𝐶𝑘4 ‖
𝜕5𝑢ℎ

𝜕𝑡5
(𝑡𝑛)‖

𝐿2(Ω)
         𝑛 = 4,5, …  

A similar approach to the other equations in (6) gives 

‖𝑢ℎ(𝑡1) − 𝑈ℎ
1‖𝐻1(Ω)  ≤   𝐶τ1 ‖

𝜕2𝑢ℎ
𝜕𝑡2

(𝑡1)‖
𝐿2(Ω)

 

‖𝑢ℎ(𝑡2) − 𝑈ℎ
2‖𝐻1(Ω)  ≤   𝐶τ2

2 ‖
𝜕3𝑢ℎ
𝜕𝑡3

(𝑡2)‖
𝐿2(Ω)

 

‖𝑢ℎ(𝑡3) − 𝑈ℎ
3‖𝐻1(Ω)  ≤   𝐶τ3

3 ‖
𝜕4𝑢ℎ
𝜕𝑡4

(𝑡3)‖
𝐿2(Ω)

 

Taking τ1, τ2, τ3 small enough such that τ1 ≤ 𝑘
4,   τ2 ≤

 𝑘2,   τ3 ≤ 𝑘
4 3⁄ , we have 

‖𝑢ℎ(𝑡𝑛) − 𝑈ℎ
𝑛‖𝐻1(Ω)  ≤ 𝐶(𝑢)𝑘

4  , 𝑛 = 1,2, ….  (15) 

The result follows from (8) and (15). 

 

4. Numerical Results 

For the numerical experiment, globally continuous piecewise 

linear finite element functions based on quasi-uniform 

triangulation described in Section 2 are used. The mesh 

generation and computation are done with FreeFEM ++ [19]. 

 

Example 4.1. We discuss the result of a two-dimensional 

linear parabolic interface problem in the domain Ω =
(−2, 2) × (−2, 2) where Γ is a semicircle centered at (2,0) 

with radius 2. Ω1 = {(𝑥, 𝑦) ∈ ℝ
2: (𝑥 − 2)2 + 𝑦2 < 4}  Ω2 =

 Ω\Ω1. 
Consider the problem (1) – (3) in Ω × (0, 𝑇], 𝑇 < ∞. For 

the exact solution, we choose  

𝑢 =

{
 
 

 
 
1

2
(𝑥3 − 6𝑥2 + 𝑥𝑦2 + 8𝑥 − 2𝑦2) sin 𝑡                           

                                  in  Ω1  × (0, T] 

(4𝑥 − 𝑥2 − 𝑦2) cos(0.25𝜋𝑥) cos(0.25𝜋𝑦)𝑡exp(−𝑡)  
                                 in  Ω1  × (0, T]

 

We choose a and b as 

𝑎 = {
𝑥2   in Ω1
2     in Ω2

        𝑏 = {
1     in Ω1 
2     in Ω2

 

The source function 𝑓, the interface function 𝑔 and the initial 

data 𝑢0 are determined from the choice of u. The 𝐻1-norm 

errors a 𝑇 = 2 for various step size 𝑘 and mesh parameter ℎ 

are presented in Table 1.  

 

Table 1. Numerical results for Example 4.1 

ℎ Error (𝑘 = 0.0001) 

0.4721640 8.32632 × 10−1 

0.2555920 4.00683 × 10−1 

0.1244050 2.00008 × 10−1 

0.0646922 9.91988 × 10−2 

 

𝑘 Error (ℎ = 0.0253896) 

0.200 3.35081 × 10−2 

0.125 3.34680 × 10−2 

0.100 3.34640 × 10−2 

0.080 3.34618 × 10−2 

 

For a fixed h and varying k, the error is almost constant 

which shows the error is mainly due to refinement of the 

domain, however the second graph of figure 3 shows that error 

≅ 𝑐1 + 𝑐2𝑘
3.944 for a fixed h where 𝑐1, 𝑐2 > 0. It can be seen 

from Table 1 that 

Error ≅ 𝑂 (𝑘3.944 + ℎ0.943 (1 +
1

|ln ℎ|
)
1 2⁄

) 

Table 2 shows the case where both k and h vary 

simultaneously. To achieve this, we choose ℎ ≈ 𝑘4. 
 

Table 2. Numerical results for Example 4.1 where both k 

and h vary simultaneously 

k H Error Rate 

1

2
 0.472164 8.34867 × 10−1  

1

16
 0.228813 3.76739 × 10−1 1.0984 

1

65536
 0.124405 2.00008 × 10−1 1.0391 

 

Although the analysis was carried out for the case 𝑢(𝑥, 𝑡) =
0 on 𝜕Ω, the error estimate and the stability result also apply 

to the case 𝑢(𝑥, 𝑡) ≠ 0 on 𝜕Ω. We demonstrate this with the 

next example. 

Example 4.2.  We consider problem (1) – (3) in Ω × (0, T] 
where 𝑇 < ∞ and Ω = (−1, 1)  × (−1, 1). Ω1 = {(𝑥, 𝑦) ∈
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Ω: 𝑥2 + 𝑦2 < 0.25}, Ω2 = Ω\Ω1 and the interface Γ is a 

circle centered ate (0,0) with radius 0.5. For the exact solution, 

we chose  

 

 
Figure 3. The graphs show the convergence behaviour as 

given in Table 1 

𝑢 = {
(0.25 − 𝑥2 − 𝑦2) ln(𝑡 + 1) + 0.75 sin(𝑡) in  Ω1 × (0, T]

(1 − 𝑥2 − 𝑦2) sin 𝑡                                        in  Ω1  × (0, T] 
 (15) 

and 

𝑎 = {
2     in Ω1 
1     in Ω2

        𝑏 = {
3     in Ω1 
0     in Ω2

 

The source function 𝑓, interface function 𝑔, initial data 𝑢0 

and the boundary conditions are determined from the choice 

of 𝑢. The 𝐻1-norm errors at 𝑇 = 3 for various step size k and 

mesh parameter ℎ are presented in the Table 3.  

 

Table 3. Numerical results for Example 4.1 

ℎ Error (𝑘 = 0.0005) 

0.2481840 1.43037 × 10−1 

0.1267240 6.86941 × 10−2 

0.0695941 3.44080 × 10−2 

0.0646922 1.69453 × 10−2 

 

𝑘 Error (ℎ = 0.0140586) 

0.30 6.47582 × 10−3 

0.25 6.47249 × 10−3 

0.20 6.46947 × 10−3 

0.15 6.46923 × 10−3 

 

It can be seen from Table 3 that  

Error ≅ 𝑂 (𝑘3.901 + ℎ0.981 (1 +
1

|ln ℎ|
)
1 2⁄

) 

Table 4 shows the case where both 𝑘 and ℎ vary 

simultaneously. 

 

Table 4. Numerical results for Example 4.2 where both k 

and h vary simultaneously 

k h Error Rate 

1

2
 0.2223820 1.20306 × 10−1  

1

16
 0.1092940 5.97438 × 10−2 0.985 

1

65536
 0.0615149 2.98554 × 10−2 1.207 

 

To give a visual understanding of results for example 4.2, 

Figure 4 illustrates the solution of example 4.2 with ℎ =
0.0311204, 𝑘 = 0.001. 

 

 
Figure 4. Solution of Example 4.2 with ℎ = 0.0311204, 

𝑘 = 0.001 

 

5. Conclusion 

We established that the scheme proposed in [1] converges in 

𝐻1(Ω)-norm. In the analysis, it was assumed that 
𝜕5𝑢

𝜕𝑡5
 exists, 

however if the regularity of the solutions with respect to time 

is very low, the result obtained from the method may not be 

different from other low-order time discretization methods. It 

was also assumed that the mesh cannot perfectly fit the 

interface, however, with the assumption that the interface can 

be fitted exactly using interface elements with curved edges, 

optimal convergence rate is possible (see [20] for example). 
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