Contents

1 Quick Recap on Group 2
1.1 Starting Simple with Algebraic Structure 2
1.2 Modular Arithmetic 2
1.3 Abstracting Modular Arithmetic 2
2 Sets and Functions Revised 3
2.1 Naive Set Theory 3
2.2 Functions 3
2.3 Composition of Functions 4
2.4 Some Basic Facts on Functions and Sets 4
2.5 Equivalence Relations on Sets 5

1 Quick Recap on Group

1.1 Starting Simple with Algebraic Structure

i What are the algebraic properties of natural number $\mathbb{N}=\{1,2,3, \cdots\}$
ii What are the algebraic properties of whole numbers i.e $\mathbb{N} \cup\{0\}=$ $\{0,1,2, \cdots\}$
iii What are the algebraic properties of integers $\mathbb{Z}=\{-3,-2,-1,0,1,2,3, \cdots\}$
iv What are the algebraic properties of rational numbers $\mathbb{Q}=\left\{\frac{a}{b} \in \mathbb{Z}, b \neq\right.$ $0\}$
v What are the algebraic properties of real numbers \mathbb{R}
vi What are the algebraic properties of complex numbers

$$
\mathbb{C}=\left\{a+b i \mid a, b \in \mathbb{R}, i^{2}=-1\right\}
$$

1.2 Modular Arithmetic

This is a new kind of group for the purpose of this class, (a.k.a clock arithmetic) for example, if the time is $9: 00 \mathrm{am}$, what time will it be in 5 hours time.

1.3 Abstracting Modular Arithmetic

Let

$$
\mathbb{Z}_{n}=\{0,1,2,3, \cdots, n-1\}
$$

And let

$$
\mathbb{Z}_{n} \times \mathbb{Z}_{n}=\left\{(x, y) \mid x, y \in \mathbb{Z}_{n}\right\}
$$

Define the binary operation

$$
+: \mathbb{Z}_{n} \times \mathbb{Z}_{n} \longrightarrow \mathbb{Z}_{n}
$$

By
$+(x, y)=x+y \bmod n$
That is, find the remainder when $x+y$ is divided by n.

Example

$$
\mathbb{Z}_{4}=\{0,1,2,3\}
$$

$2+2=0 \bmod 4$
$3+2=1 \bmod 4$
Doing Modular Arithmetic in Mathematica

2 Sets and Functions Revised

2.1 Naive Set Theory

i Any collection of object is called a set
ii Including the set with no object "the empty set" denoted by $\emptyset=\{ \}$
iii we say A is a subset of B if every element (or "member") of A is also an element of B.
Symbolically,

$$
A \subseteq B \Leftrightarrow(x \in A \Rightarrow x \in B)
$$

iv two sets are equal if they are both subset of each other symbolically,

$$
A=B \Leftrightarrow(A \subseteq B a n d B \subseteq A)
$$

Note: For any set $A, \emptyset \subseteq A$
v Operations on a set can be union, intersection, complement, e.t.c.

2.2 Functions

i Informally, given two non-empty sets A and B, we say that a "rule of assignment" f that takes inputs from A (the "domain") and "maps" each one to a unique element of B (the "co-domain") is called a function from A to B.
Written as

$$
f: A \rightarrow B
$$

ii The set of all possible output is called the image (or range) of f, and is denoted by $f(A)$
iii The function f is one-to-one ("injective") if

$$
\left(f\left(a_{1}\right)=f\left(a_{2}\right) \Rightarrow a_{1}=a_{2}\right) \Leftrightarrow\left(a_{1} \neq a_{2} \Rightarrow f\left(a_{1}\right) \neq f\left(a_{2}\right)\right.
$$

iv The function f is onto ("surjective") if

$$
B=f(A) \Leftrightarrow(\forall b \in B \exists a \in A: f(a)=b)
$$

v If f is both one-to-one and onto, it is called a bijection. It is also invertible.

2.3 Composition of Functions

Given nonempty sets A, B, and C, and functions

$$
\phi: A \rightarrow B a n d \psi: B \rightarrow C
$$

The composition of both function ψ and ϕ is written by $\psi \circ \phi$ (or just $\psi \phi$) is defined by the formular

$$
\psi \phi(a)=(\phi(a))
$$

2.4 Some Basic Facts on Functions and Sets

i Let $\phi: A \rightarrow B$ and $\psi: B \rightarrow C$
If $A_{1} \subseteq A$ and $A_{2} \subseteq A$, then
$\phi\left(A_{1} \cup A_{2}\right)=\phi\left(A_{1}\right) \cup \phi\left(A_{2}\right)$ and $\phi\left(A_{1} \cap A_{2}\right)=\phi\left(A_{1}\right) \cap \phi\left(A_{2}\right)$
(Prove of the second part to be done in class)
ii if ϕ and ψ are onto, then $\psi \phi$ is onto
iii if ϕ and ψ are one-to-one, then $\psi \phi$ is one-to-one
iv if ϕ and ψ are bijections, then $\psi \phi$ is a bijection

$$
\mathrm{v}(\psi \phi)^{-1}=\phi^{-1} \psi^{-1}
$$

Note these facts can be proved.

2.5 Equivalence Relations on Sets

Given a nonempty sets
Informally-speaking, an equivalence relation on S is a correspondence \sim satisfying the following:
Reflexive Property:

$$
(a \in S \Rightarrow a \sim b) \Leftrightarrow(b \sim a)
$$

Symmetric Property: $(a, b \in S$ and $a \sim b) \Leftrightarrow b \sim a$
Transitive Property:
$(a, b, c \in S$ and $a \sim b$ and $b \sim a) \Rightarrow a \sim c$
A basic example is the equals on a set of numbers
A key fact: Equivalence relations induces partitions and vice versa.
Definition: Given a nonempty set S and an equivalence relation \sim defined on S, the set S can be "partitioned" into a collection of disjoint sets whose union is S by defining a set A to be in iff all the members of A are equivalent to each other and only each other :

$$
a, b \in A \Leftrightarrow a \sim b
$$

Conversely, given a partition of S, we can define an equivalence relation \sim on S by

$$
a \sim b \Leftrightarrow a, b \in A \text { for some } A \in
$$

