LINEAR

 ALGEBRAIICOURSE CODE: MTH202 LECTURER: M. O. OKONE

Course Contents

Systems of Linear Equation Change of Basis \qquad

Equivalence and Similarities \qquad

Eigenvalues and Eigenvectors

Minimum and Characteristics Polynomials of a Linear Transformation...

Caley-Hamilton Theorem.

Bilinear and Quadratic form \qquad

Orthogonal Diagonalisation \qquad

Canonical Forms \qquad

Similar Matrices

Chapter 1

Systems of Linear Equation Change of Basis

1.1. Matrix Representation of a Linear Operator

The matrix representation of a linear operator (transformation) T is written in the form

$$
M_{s}[T]=[T]_{s}=\left[\left[T(u)_{1}\right]_{s},\left[T(u)_{2}\right]_{s}, \cdots,\left[T(u)_{n}\right]_{s}\right]
$$

That is the column of $M(T)$ are the coordinate vectors of $T(u)_{1}, T(u)_{2}, \cdots, T(u)_{n}$ respectively Where

$$
\begin{aligned}
& {\left[T(u)_{1}\right]=a_{11} u_{1}+a_{12} u_{2}+\cdots+a_{1 n} u_{n}} \\
& {\left[T(u)_{2}\right]=a_{21} u_{1}+a_{22} u_{2}+\cdots+a_{2 n} u_{n}} \\
& \vdots \\
& {\left[T(u)_{n}\right]=a_{n 1} u_{1}+a_{n 2} u_{2}+\cdots+a_{n n} u_{n}}
\end{aligned}
$$

Example 1
Let $F=R^{2} \rightarrow R^{2}$ be the linear operator defined by $F(x, y)=(2 x+3 y, 4 x-5 y)$
i. find the matrix representation of F relative to the basis $S=\left\{u_{1}, u_{2}\right\}=\{(1,2),(2,5)\}$
ii. find the matrix representation of F relative to the (usual) basis

$$
S=\left\{e_{1}, e_{2}\right\}=\{(1,0),(0,1)\}
$$

Example 2
Let V be the vector space of functions with basis $S=\left\{\sin t, \cos t, e^{3 t}\right\}$ and let $\boldsymbol{D}: V \rightarrow V$ be the differential operator defined by $\boldsymbol{D}(f(t))={ }^{d(f, t)} / d t$. Find the matrix representing \boldsymbol{D} in the basis S.

1.2. Matrix Mapping and their Matrix Representation.

Example 3

Consider the following matrix A which may be viewed as a linear operator on R^{2}, and basis S of R^{2}
$A=\left[\begin{array}{ll}3 & -2 \\ 4 & -5\end{array}\right]$ and $S=\left\{u_{1}, u_{2}\right\}=\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 5\end{array}\right]\right\}$. Find the matrix representation of S relative to the basis S

Exercise 1

Find the matrix representation of A relative to the usual basis $S=\left\{e_{1}, e_{2}\right\}=\{(1,0),(0,1)\}$
Note:
$[A]_{E}$ is the original matrix A. This result is true in general.

The matrix representation of any $n \mathrm{X} n$ square matrix A over a field K relative to the usual basis E of K^{n} is the matrix A itself, that is $[A]_{E}=A$

1.3. Properties of Matrix Representation

Theorem 1.1

Let $T: V \rightarrow V$ be a linear operator and let S be a (finite) basis of V. Then, for any vector v in V,

$$
[T]_{s}[v]_{s}=\left[[T(v)]_{s}\right]
$$

Example 4
Consider the linear operator F on R^{2} and the basis S given as $F(x, y)=(2 x+3 y, 4 x-5 y)$ and $S=\left\{u_{1}, u_{2}\right\}=\{(1,-2),(2,-5)\}$

Let

$$
v=(5,-7)
$$

Show that the action of an individual linear operator F on a vector v is preserved by its matrix representation.

Example 5

Let G be a linear operator on R^{3} defined by $G(x, y, z)=(2 y+z, x-4 y, 3 x)$
(a) Find the matrix representation of G relative to the basis

$$
S=\left\{w_{1}, w_{2}, w_{3}\right\}=\{(1,1,1),(1,1,0),(1,0,0)\}
$$

(b) Verify that $[G][v]=[G(v)]$ for any vector v in R^{3}.

Theorem 1.2

Let V be an n-dimensional vector space over K, let S be a basis of V, and let M be the algebra of $n \mathrm{X} n$ matrices over K. Then the mapping:
$m: A(V) \rightarrow M$ defined by $m(T)=[T]_{S}$
Is a vector space isomorphism.
That is, for any $F, G \in A(V)$ and any $k \in K$,
I. $\quad m(F+G)=m(F)+m(G)$ or $[F+G]=[F]+[G]$
II. $\quad m(k F)=k m(F)$ or $[k F]=k[F]$
III. m is bijective (one-to-one and onto)

Theorem 1.3

For any linear operators $F, G \in A(V)$

$$
m(G \circ F)=m(G) m(F) \text { or }[G \circ F]=[G][F]
$$

1.4. CHANGE OF BASIS

In this section, we shall answer the question "how do our representation change if we select another basis"

Definition: Let $S=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be a basis of vector space V, and let $S^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be another basis. (for reference, we will call S the "old" basis and S^{\prime} the "new" basis.) since S is a basis, each vector in the new basis S^{\prime} can be written uniquely as a linear combination of the vectors in S; say,

$$
\begin{aligned}
& v_{1}=a_{11} u_{1}+a_{12} u_{2}+\cdots+a_{1 n} u_{n} \\
& v_{2}=a_{21} u_{1}+a_{22} u_{2}+\cdots+a_{2 n} u_{n}
\end{aligned}
$$

```
\vdots
\[
v_{n}=a_{n 1} u_{1}+a_{n 2} u_{2}+\cdots+a_{n n} u_{n}
\]
```

Let P be the transpose of the above matrix of coefficients; that is, let $P=\left[p_{i j}\right]$, where $p_{i j}=a_{j i}$ Then P is called the change-of-basis matrix (or transition matrix) from the "old" basis S to the "new" basis S^{\prime}.

The following remarks are in order.
Remark 1: \quad The above change-of-basis matrix P may also be viewed as the matrix whose columns are, respectively, the coordinate column vectors of the "new" basis vectors v_{i} relative to the "old" basis S ; namely,

$$
P=\left[\left[v_{1}\right]_{s},\left[v_{2}\right]_{s}, \ldots,\left[v_{n}\right]_{s}\right]
$$

Remark 2: Analogously, there is a change-of-basis matrix Q from the "new" basis S ' to the "old" basis S. Similarly, Q may be viewed as the matrix whose columns are, respectively, the coordinate column vectors of the "old" basis vectors u_{i} relative to the "new" basis S' ; namely,

$$
Q=\left[\left[u_{1}\right]_{s^{\prime},},\left[u_{2}\right]_{s^{\prime}}, \ldots,\left[u_{n}\right]_{s^{\prime}}\right]
$$

Remark 3: Since the vectors $v_{1}, v_{2}, \ldots, v_{n}$ in the new basis S ' are linearly independent, the matrix P is invertible. Similarly, Q is invertible. In fact, we have the following proposition.

Proposition 1: Let P and Q be the above change-of-basis matrices. Then $Q=P^{-1}$.

Example 6

Consider the following two bases of R^{2}
$S=\left\{u_{1}, u_{2}\right\}=\{(1,2),(3,5)\}$ and $S^{\prime}=\left\{v_{1}, v_{2}\right\}=\{(1,-1),(1,-2)\}$
a) Find the change of basis matrix P from S to the new basis S^{\prime}
b) Find the change of basis matrix Q from the new basis S^{\prime} to the old basis S

Example 7

Consider the following bases of R^{3}
$E=\left\{e_{1}, e_{2}, e_{3}\right\}=\{(1,0,0),(0,1,0),(0,0,1)\}, S=\left\{u_{1}, u_{2}, u_{3}\right\}=\{(1,0,1),(2,1,2),(1,2,2)\}$.
a) Find the change of basis matrix P from the basis E to the basis S
b) Find the change of basis matrix Q from the basis S to the basis E

1.5.

