VECTORS, GEOMETRY AND DYNAMICS

COURSE CODE: MTH104

LECTURER: M. O. OKONE

Course Contents

Straight Line

Coordinate Geometry of the circle \qquad

Conic Sections

Vectors.

Dynamics of a Particle.

References

1. A Godman \& others, Additional Mathematics for West Africa, Longman
2. J. C. Amazigo and others, Introductory University Mathematics 3, AfricanaFep Pulishers Limited, Nigeria
3. Tutttuh Adegun, and others, Further Mathematics Project $1 \& 2$, fifth revised edition, Bounty Press Limited, Nigeria.
4. B. D. Bunday and M. Mulholland, Applied Mathematics for Advanced

Level, Butterwortjs Publications

Chapter 1

Straight Line

1.1. Distance Between two points

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Example 1

Find the distance between the following point
i. $(3,-2)$ and $(4,6)$
ii. $(-3,2)$ and $(4,5)$

Example 2
The distance between the points $(4, P)$ and $(1,1)$ is 5 find the possible value of p.
Example 3
Show that the points $(2,1),(4,0)$ and $(5,7)$ form vertices of a right angled triangle

1.2. Polar and Cartesian Coordinate

The polar form of the coordinate (x, y) is (r, θ)
where

$$
\begin{gathered}
r^{2}=x^{2}+y^{2} \\
\theta=\tan ^{-1}(y / x) \\
y=r \sin \theta \\
x=r \cos \theta
\end{gathered}
$$

Example 3

What is the Cartesian coordinate of the points whose polar coordiantes are ($7, \frac{\pi}{2}$)
Example 4

Find the polar coordinate of the point whose Cartesian coordinate is $(-5,5)$

1.3. Division of a Line Segment Internally

The point of division of a line segment internally in the ratio $a: b$ is given as

$$
x=\frac{b x_{1}+a x_{2}}{a+b}, \quad y=\frac{b y_{1}+a y_{2}}{a+b}
$$

Thus,

$$
(x, y)=\left(\frac{b x_{1}+a x_{2}}{a+b}, \quad \frac{b y_{1}+a y_{2}}{a+b}\right)
$$

1.4. Mid-Point

In the case of mid-point, the ratio $a: b$ is $1: 1$

Thus,

$$
x=\frac{x_{1}+x_{2}}{2}, \quad y=\frac{y_{1}+y_{2}}{2}
$$

Hence,
The mid-point of the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
\left(\frac{x_{1}+x_{2}}{2}, \quad \frac{y_{1}+y_{2}}{2}\right)
$$

Example 5
Find the coordinates of the point which divides the line joining the points $(-3,6)$ and $(7,10)$ internally in the ratio $5: 1$

Example 6
Find the mid-point of the line segment joining the points $(6,4)$ and $(8,5)$
Example 7
Point A is $(11,1)$ and point B is $(2,6)$. Point P lies on the line $A B$ and $2 A P=P B$. Find the coordinates of p

1.5. Division of a Line Segment Externally

The coordinates of the point which divides the line segment externally in the ratio $a: b$ is given as

$$
(x, y)=\left(\frac{b x_{1}-a x_{2}}{b-a}, \quad \frac{b y_{1}-a y_{2}}{b-a}\right)
$$

Example 8
Find the coordinates of the point which divides the line passing the points $(-2,4),(0,3)$ in the ratio 1:2

1.6. Gradient of a Line Segment

Suppose $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ are two points on a plane, let the line joining P and Q be $P Q$. Then the gradient or slope of the straight line $P Q$ is given as

$$
m=\frac{\text { change in } y}{\text { change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

From trigonometry $\triangle P Q R$ is the right angled triangle

$$
\tan \theta=\frac{\text { opposite }}{\text { adjacent }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Hence, the gradient of a line is the tangent of the angle the line makes with the positive x-axis

1.6.1 Relationship between Gradients of Parallel and Perpendicular Lines

Parallel line has equal gradient.
While for two lines that are perpendicular, the product of their gradient is -1

Example 9
Given the following coordinates, check whether the two lines are parallel or perpendicular $[M(12,14) N(22,6)]$ and $[O(-4,10), P(4,20)]$.

Example 10

Find the gradient of the line joining the point $P(4,10)$ and $Q(8,18)$.
Example 11
What are the gradients of the lines joining the origin to the points of intersection of

$$
y=x^{2} \text { and } 2 y=x+1
$$

1.7. Straight Line Equations

Another name for straight line equation is linear equation.

1.7.1 Equation of a Straight line through a given point

$$
y-m x=c \text { or } y=m x+c
$$

The above equation is referred to as the "slope-intercept" form. The intercept c is on the y -axis Example 12

Find the equation of the straight line that has gradient $m=4$ and passes through the point $(-2,-10)$.

1.8.

