ADVANCED SOFTWARE ENGINEERING

CSE 805

MSC

BY

Dr. Chinwe Peace Igiri

S/N	Topic	Description
1	Introduction	Software engineering and its place as an engineering discipline.
2	Life cycle of software system	Requirements analysis, development, operation and maintenance.
3	Software metrics	Portability, Re-usability, Correctness, Reliability, Efficiency, Usability, Integrity, Maintainability and Flexibility.
4	Software quality and testing.	Software quality and testing.
5	Software architecture	Architecture description languages, pattern-oriented software architecture, component-based development, distributed software architecture using middleware, enterprise application integration, architecture for mobile and pervasive systems and model driven architecture.
6	Advanced modeling	UML extension mechanisms, object constraint language and model checking.
7	Software project management	Study of interpersonal process decision making styles, problem solving concepts and procedure, creative effort, conflict resolution, leadership and assessment. Concepts of motivation, team work and group dynamics.
8	Software engineering and law	Intellectual property law, professional ethics and code of conduct. Patents, trademarks, copyright, trade secrets, privacy and confidentiality, contracts and licensing, government regulations, global legal issues including Internet law and cyber crime.
9	Overview of Open Source Software.	

Course Content

INTRODUCTION: SOFTWARE ENGINEERING AS AN ENGINEERING DISCIPLINE

Software?

Collection of instruction and data that tells the computer what to do

Engineering?

Application of scientific principles to design and build a product

Application of theories, methods and tools to design and build a cost-effective, efficient and quality software product

Software Engineer's responsibilities

Users

Lack knowledge of their expectation from the software Only interested in simplicity of operation and response time

Technical people

Interested in functionalities and data base

Management

Interested in profit and return on investment

SDLC

SDLC: REQUIREMENT ANALYSIS AND PLANNING

- Problem identification
- Idea generation Elevatr, mílanote, Squadhelp, Stache
- Planning and feasibility study
- Market research and analysis gather information form client and their
 preferences AYTM, Proved, google trends, CrunchBase, Statista
- Naming Club, Squadhelp,, NameChk, Namínum, Name Robot
- Mockup & Wireframe Lucidchat, mockingbird, mockup, Balsamiq, etc.

SDLC: DEVELOPMENT AND TESTING

- Designing Agile methodology for instance use tools like:
 - JIRA Agile
 - Agile manager
 - Active Collab
 - Agile Bench
- Writing the source code and documentation
- Testing testing is a process to find and fixed bugs.
 - Selenium
 - Testing Whiz
 - Test Complete

SDLC: LAUNCHING AND OPERATION

- Launching is bring the software to the market
 - Publicize
 - PRX
 - Buzz\$umo
 - JustReachOut
 - PressFarm
 - Hey Press

Operation – using the product

SDLC: MAINTENANCE AND MARKETING

The process of changing, modifying, and updating software to keep up with customer needs. It is usually done after the product has launched for some reasons:

- improving the software overall,
- correcting issues or bugs,
- to boost performance,
- Remain competitive and relevant.

SDLC: TYPES of MAINTENANCE

- Corrective Software Maintenance
- Preventative Software Maintenance
- Perfective Software Maintenance
- Adaptive Software Maintenance

SDLC: CORRECTIVE MAINTENANCE

Corrective software maintenance is the typical, classic form of maintenance (for software and anything else for that matter). Corrective software maintenance is necessary when something goes wrong in a piece of software including faults and errors. These can have a widespread impact on the functionality of the software in general and therefore must be addressed as quickly as possible.

SDLC: PREVENTIVE MAINTENANCE

Preventative software maintenance is looking into the future so that your software can keep working as desired for as long as possible. This includes making necessary changes, upgrades, adaptations and more.

Preventative software maintenance may address small issues which at the given time may lack significance but may turn into larger problems in the future. These are called latent faults which need to be detected and corrected to make sure that they won't turn into effective faults.

SDLC: PERFECTIVE MAINTENANCE

As with any product on the market, once the software is released to the public, new issues and ideas come to the surface. Users may see the need for new features or requirements that they would like to see in the software to make it the best tool available for their needs. This is when perfective software maintenance comes into play.

Perfective software maintenance aims to adjust software by adding new features as necessary and removing features that are irrelevant or not effective in the given software. This process keeps software relevant as the market, and user needs changes.

SDLC: ADAPTIVE MAINTENANCE

Adaptive software maintenance has to do with the changing technologies as well as policies and rules regarding your software.

These include operating system changes, cloud storage, hardware, etc. When these changes are performed, your software must adapt in order to properly meet new requirements and continue to run well.

SDLC: MAINTENANCE TOOLS

- 1. Bugzilla: it is defect tracking system
- 2. HP Quality Center: Web based
- 3. IBM Rational Quality Manager: Web based
- 4. Micro Focus SilkPerformer