

CHM 102 Organic Chemistry

HOMOLOGOUS SERIES AND FUNCTIONAL GROUPS

CHM 102 Organic Chemistry HOMOLOGOUS SERIES AND FUNCTIONAL GROUPS by Dr. (Mrs.) NDUKWE Nelly Acha is licensed under a <u>Creative</u> Commons Attribution NonCommercial 4.0 International License.

HOMOLOGOUS SERIES

A homologous series represent a group of compounds with the same functional group.

Members of the same homologous series are known as homologs and the general characteristics of homologs include:

- They are represented by the same general formula
- Each member differs from the next member by a –CH₂ unit.
- The physical properties change gradually with increasing molar mass.
- They have similar chemical properties.
- And can be prepared by the same method.

Homologous (family) Series

Each series has a general formula.

□All members possess the same **functional group**. It is the functional group that gives the series its **characteristic reactions**.

There is a gradual change in physical properties from one member to the next. The most common example of this is the increasing melting and boiling points as we go up a series. The reason for this is that the molecules get larger and therefore harder to break.

Members of the same homologous series have similar chemical properties.

Characteristics of a homologous series

- All members of the series can be represented by the same general formula
- Each member of the series differs from the members before or after it by a – CH₂- functional group
- All members of the series possess similar chemical properties
- All members of the series show a gradual change in their physical properties as their molecular mass increases. In general, as molar mass increases, melting point, boiling point and density increase

Homologous Series

A homologous series is a series of compounds that have the same functional group, and each member differs from the next member by a – CH_2 – unit in their formulae.

Homologous Series of Hydrocarbons Hydrocarbons are compounds that only have Carbon and Hydrogen... There are several types of homologous series of hydrocarbons that are based on the number of bonds and the arrangement the atoms in that compound. They include: Alkanes, Alkenes, Alkynes, & Benzene

The first four members of straight-chain alkanes

Number of carbon atom(s)	IUPAC name	Molecular formula	Condensed structural formula	Structural formula
1	Methane	CH ₄	CH ₄	$\mathbf{H} - \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} $
2	Ethane	C ₂ H ₆	CH ₃ CH ₃	$\begin{array}{ccc} H & H \\ & \\ H - C - C - H \\ & \\ H & H \end{array}$
3	Propane	C ₃ H ₈	CH ₃ CH ₂ CH ₃	$\begin{array}{cccc} H & H & H \\ I & I & I \\ H - C & -C & -C & -H \\ I & I & I \\ H & H & H \end{array}$
4	Butane	C ₄ H ₁₀	CH ₃ CH ₂ CH ₂ CH ₃	$\begin{array}{cccccc} H & H & H & H \\ H - C & -C & -C & -C & -H \\ H & H & H & H \end{array}$

Homologous Series

- The physical properties change gradually along the homologous series
- e.g. the longer the carbon chain in the molecule (or the greater the molecular mass)
 - \rightarrow the greater the attractive force between molecules
 - the higher the melting point, boiling point and density

Homologous Series

A homologous series is a group of compounds which all possess the same functional group. Members of homologous series all have the same general formula.

Example Alkanes : CnH2n+2

Names of some Alkenes (Homologs)

Number of carbons	Molecular Formula	Name
2	C_2H_4	ethene
3	C ₃ H ₆	propene
4	C_4H_8	butene
5	C ₅ H ₁₀	pentene
6	C ₆ H ₁₂	hexene
7	C ₇ H ₁₄	heptene
8	C ₈ H ₁₆	octene
9	C ₉ H ₁₈	nonene
10	C ₁₀ H ₂₀	decene

What are hydrocarbons?

All organic compounds contain carbon. Those that contain only carbon and hydrogen are called hydrocarbons.

Benzene

The final homologous hydrocarbon that is very stable.They are often called aromatic compounds.They are distinguished by alternating double and single bonds throughout a molecule.A Benzene molecule is illustrated by the following formula:

 $C_n H_{2n-6}$

Benzene

They can be written as.....

Benzene

Methyl Benzene or Toluene

Alkyl halides (A class of Organic Compound)

The alkyl halides are also known as halo alkanes

These are important compounds in organic synthesis reactions. For the purposes of nomenclature the halogens F, CI,Br, I are treated as fluoro (not flouro), chloro, bromo and iodo side groups.

Halogen Substituents

When a halogen is connected to a parent chain of a hydrocarbons it is given the following prefixes:

- Cl = Chloro Br = Bromo
- F = Fluoro
 - I = Iodo

Halogen Substituents (Alkyl Halides)

Cl CH₃--CH₂--C--CH₃ Cl

2,2 dichlorobutane

Halo-Alkanes

- Organic compounds are classified by the presence of characteristic functional groups
- A functional group is defined as an atom or a group of atoms that effectively determines the chemical properties of an organic compound.
- A <u>functional Group</u> is a particular arrangement of a few atoms on a hydrocarbon that results in specific chemical and physical properties for that type or class of organic molecules

- Organic compounds are classified into groups based on the functional group which they contain.
- A functional group contains a particular bond between two carbon atoms, e.g. a double bond, or is a particular atom or a particular group of atoms.
- All members of a group contain the same functional group which determines the properties of that group. The group is known as a homologous series.

Homologous	Functio	Example		
series	Structure	Name		
Alkane	none	-	CH ₃ -CH ₃	
Alkene	- ^l _{c=} ^l -	carbon-carbon double bond	H ₂ C=CH ₂	
Alkyne	-C≡C-	carbon-carbon triple bond	HC≡CH	

Alcohols

- The names of all alcohols end in '-ol'
- The functional group of the alcohols is –OH (hydroxyl group)
- □ Formula of the first member of the homologous seriesCH₃OH

Н

- Alcohols are substituted alkanes (as an -H has been replaced
- □ with an −OH)
- Alcohols are made via hydration of alkenes and fermentation.
- **The structural formula of first member of the alkanols is----** H = C = O H
- Alcohols are useful industrial and pharmaceutical solvents.
- □ First member of homologous series is called ...methanol
- All alcohols follow the general formula;

have similar chemical properties
 they contain the same functional group –OH
 they are classified into the same homologous series — alcohols

The first four members of straight-chain alcohols

Number of carbon atom(s)	IUPAC name	Molecular formula	Condensed structural formula	Structural formula
1	Methanol	CH₃OH	CH ₃ OH	$\mathbf{H} - \mathbf{H} \\ \mathbf{H} - \mathbf{O} \\ \mathbf{H} \\ \mathbf{H} $
2	Ethanol	C ₂ H ₅ OH	CH ₃ CH ₂ OH	$\begin{array}{ccc} H & H \\ -H & -H \\ H & -C & -C \\ -H & -H \\ H & H \end{array}$
3	Propan-1-ol	C ₃ H ₇ OH	CH ₃ CH ₂ CH ₂ OH	$\begin{array}{cccc} H & H & H \\ I & I & I \\ H - C - C - C - C - OH \\ I & I & I \\ H & H & H \end{array}$
4	Butan-1-ol	C₄H ₉ OH	CH ₃ CH ₂ CH ₂ CH ₂ OH	$ \begin{array}{cccccccccc} H & H & H & H \\ & & & \\ H - C - C - C - C - C - OH \\ & & & \\ H & H & H & H \end{array} $

Members in the same series can be represented by a general formula.

e.g. alkanols: C_nH_{2n+1}OH

alkanals: $C_n H_{2n+1} CHO$

alkanoic acids: $C_nH_{2n+1}COOH$

The structural formula of first member of the alkanals is---- $\overset{H}{\downarrow}c = o$

Functional Groups: Carboxylic Acids

The names of all carboxylic acids end in '-oic acid'

The functional group of the carboxylic acids is -COOH
(carboxyl group)

This carboxyl group is <u>always</u> attached to the end carbon.

Carboxylic acids react like other acids

General Formula;

Family	Conoral formula	Eurotional group	Example	
гапшу	General formula	Functional group	Formula	IUPAC name
Ketone	$\mathbf{R} - \mathbf{C} - \mathbf{R}$	R carbonyl group	$\begin{array}{c} O \\ \parallel \\ CH_3 - C - CH_3 \end{array}$	Propanone
Carboxylic acid	$\begin{array}{c} O \\ \parallel \\ R - C - \end{array}$	OH OH Carboxyl group	О СН ₃ — С — ОН	Ethanoic acid
Amine	RNH ₂ R ₂ NH R ₃ N	-N- amino group	CH ₃ NH ₂	Methylamine
Nitrile R =	RC≡N = C _n H _{2n+1} –	— C ≡ N nitrile group	CH ₃ CN	Ethanenitrile

Family	General	General Eurotional group Example		xample
Гаппу	formula	Functional group	Formula	IUPAC name
Haloalkane	RX	— X halo group	CH ₃ CI	Chloromethane
Alcohol	ROH	— OH hydroxyl group	CH₃OH	Methanol
Ether	R—0 — R	— O — oxy group	СН ₃ —О— СН ₃	Methoxymethane
Aldehyde	$\mathbf{R} - \mathbf{C} - \mathbf{H}$	$\begin{array}{c} \mathbf{O} \\ \parallel \\ -\mathbf{C} - \mathbf{H} \end{array}$	О Н — С — Н	Methanal
$R = C_n H_{2n+1} -$		carbonyl group		

Family	General	Functional	Exam	ple
ганну	formula group		Formula	IUPAC name
Ester	О R — С — R		$ \begin{array}{c} 0\\ \parallel\\ CH_3-C-O-CH_3 \end{array} $	Methyl ethanoate
Acyl halide	О R-С-Х	$O \\ \parallel \\ -C - X$ acyl halide group	$\begin{array}{c} O \\ \parallel \\ CH_3 - C - Cl \end{array}$	Ethanoyl chloride
Amide	$R - C - NH_{2}$ $R - C - NH_{2}$ $R - C - NHR$ O $R - C - NHR$	O II C - N I amide group	$\begin{array}{c} 0 \\ \parallel \\ CH_3 - C - NH_2 \end{array}$	Ethanamide C _n H _{2n+1} –

Family	Conoral formula	Eurotional aroun	Example	
Ганну	General formula	Functional group	Formula	IUPAC name
Acid anhydride	$ \begin{array}{ccc} O & O \\ \parallel & \parallel \\ R - C - O - C - R \end{array} $	0 0 0 0 0 0 0 0 - C - - - - - - - - C - - - - - - - - - - - - -	$ \begin{array}{cccc} 0 & 0 \\ \parallel & \parallel \\ CH_3 - C - 0 - C - CH_3 \end{array} $ $ \mathbf{R} = \mathbf{C}_{\mathbf{r}} $	Ethanoic anhydride H _{2n+1} –

Homologous	Function	Example	
series	Structure	Name	
Aromatic/ Arene		Benzene ring	CH ₃
Alcohol	-OH	Hydroxyl	СН₃ <mark>ОН</mark>
Phenol	Он	Hydroxyl	ОН
Haloalkane	-X (F,Cl,Br,I)	Halogen	CH₃ <mark>Cl</mark>

Aromatic Hydrocarbon

Organic Chemistry HOMOLOGOUS SERIES AND FUNCTIONAL GROUPS by Dr. (Mrs.) NDUKWE, Nelly Acha is licensed under a <u>Creative Commons</u> <u>Attribution-NonCommercial 4.0 International License</u>.