Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/799
Title: Modeling groundwater total dissolved solid from derived electromagnetic data using multiple linear regression analysis: a case study of groundwater contamination
Authors: Ameloko, A. A
Ayolabi, E. A
Okezie, U.
Keywords: Linear regression
Issue Date: 14-May-2020
Citation: Ameloko, A. A., Ayolabi, E. A. and Okezie, U. (2020). Modeling groundwater total dissolved solid from derived electromagnetic data using multiple linear regression analysis: a case study of groundwater contamination. Modeling Earth Systems and Environment (2020) 6:
Series/Report no.: 6;
Abstract: The high concentration of total dissolved solids (TDS) and other physicochemical parameters in groundwater around dumpsites have been used to implicate contamination from decomposed waste materials. A simple multiple linear regression (MLR) TDS model that integrates the TDS data derived from boreholes and hand-dug wells to the geophysical parameters obtained from the frequency-domain electromagnetic (EM) data was developed in this research. This is with a view to efciently monitor groundwater resources and exploration around the Olusosun dumpsite and its communities. With the aid of the MLR equation, the observed TDS concentration of water samples collected from boreholes and hand-dug wells, and the corresponding estimated ground conductivity data in the vertical dipole mode (VD 40) and horizontal dipole modes (HD 40 and HD 20), obtained from geophysical surveys were regressed in Microsoft Excel software to generate a MLR TDS model. The integrity of the derived TDS model was appraised to examine the possibility of deploying it to investigate the TDS content of groundwater around the study area. The EM data and the resistivity models obtained around the study area confirmed contamination going on around the dumpsite. The developed TDS model can be put to use with high confidence, for groundwater TDS prediction around the study area where there are only terrain conductivity data but with no boreholes parameters. Also, terrain conductivity data alone can be applied to the model to predict the concentration of TDS in groundwater where there are no boreholes and hand-dug wells, therefore reducing the cost and time of determining and monitoring both parameters independently. With the aid of the ArcGIS software, the TDS model was used to generate TDS estimate map for the area. The knowledge of the TDS variability in such a map could give a clue about the integrity of the underground water around the site.
URI: http://localhost:8080/xmlui/handle/123456789/799
ISSN: 1863–1875
Appears in Collections:Geophysics

Files in This Item:
File Description SizeFormat 
Aduojo2020_Article_ModelingGroundwaterTotalDissol.pdf2.18 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.