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ABSTRACT 

This project investigates entropy generation in a magnetohydrodynamic (MHD) fluid flow 

through a vertical deformable porous medium. The model equations for the solid displacement, 

velocity, temperature and entropy generation number governing the fluid flow in the porous 

medium in their dimensional form were converted to non-dimensional form. The Adomian 

Decomposition Method (ADM) was applied to obtain the recursive scheme for each of the non-

dimensional equations. The recursive scheme obtained solves the non-dimensional differential 

equations.  The package MATHEMATICA was used to implement the scheme. The solutions 

obtained were also represented graphically to further explain the behaviour of the MHD fluid 

with varying conditions. The results obtained showed that entropy generation increases with 

increase in the viscous dissipation parameter. 
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CHAPTER ONE 

INTRODUCTION 

1.0 Background to the study 

The concept of viscous flow of a fluid through porous media in fluid mechanics has been 

heavily investigated and researched for decades and has subsequently led to various 

applications in some fields such as that of geology as well as medicine, with (Terzaghi, 1925) 

being the first among others to initiate the study of fluid flow through deformable porous media. 

Afterwards, (Biot, 1962) posited a mathematical model for the acoustic propagation and the 

deformation mechanics of fluid flow in porous media. Thereafter, a series of closely-related 

researches followed such as the theory of immiscible and structured mixtures conducted by a 

few researchers such as (Atkin and Craine, 1976), (Bown, 1980) and (Bedford and Drumheller, 

1983). (Jayaraman, 1983) then studied the transport of water through the arterial wall and then 

(Jain and Jayaraman, 1987) analysed a theoretical model for water flux through an arterial wall, 

after which more research followed and then (Sreenadh et al., 2018) published a paper where 

the analysis for entropy generation for a magnetohydrodynamic(MHD) fluid flowing through 

a deformable porous layer was investigated. 

MHD is a key aspect of fluid mechanics and can be defined as the analysis of the behaviour of 

the dynamics and the magnetic properties of fluids that are electrically conducting 

(Sheikholeslami and Ganji, 2016), and is the basis for which the research for this project work 

was conducted. 

1.1 Statement of the Problem 

The behaviour of the viscous flow of MHD fluid in porous media can at times be unpredictable 

and due to the effect of the fluid’s internal friction on the flow of the fluid and with the presence 

of the magnetic field that could be imposed on the fluid flow.  
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1.2 Aim and objectives of the study 

The aim of the project is to study the effects of the flow related to physical parameters on the 

entropy generation in an MHD fluid flowing through a deformable porous media with certain 

boundary conditions.   

The specific objectives of this project are to; 

i. Convert the model equation to non-dimensional form. 

ii. Apply the boundary conditions to the equations and hence find the solution of the 

equations using Adomian Decomposition Method(ADM). 

iii. Implement the solutions obtained from the ADM using MATHEMATICA, a 

mathematical software that has various applications, to determine the behaviour of 

the fluid subject to different conditions. 

iv. Use Mathemathica to generate graphs for the solid displacement, fluid velocity, 

fluid temperature and the entropy temperature. 

1.3 Significance of the Study 

This project will further investigate behavioural changes of physical variables of an MHD fluid 

under certain conditions and the effect it has on the fluid flow. The results can be applied in 

the industry to make engineering decisions in the production of fluid related devices. 

1.4 Project Outline 

The first chapter introduces the project, the aims and objectives of the project, the significance 

of the project work and its relevance to the world at large. The second chapter however contains 

the literature relevant to the project, where the concept of fluid mechanics and the related 

equations were reviewed. Chapter three contains the methodology used in the project, and the 

results and discussions were presented in chapter four. Chapter five contains the conclusion 

and recommendations from the project. 
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CHAPTER TWO 

 LITERATURE REVIEW 

2.0 Introduction 

Fluid mechanics, an interesting field of study in the world of science with its diverse 

applications is a phenomenon that has come to stay and can only expand with more and more 

research done with each research bringing in one discovery or the other. To have a better 

understanding of the magnetohydrodynamics(MHD) and aid in the research of this project, we 

will delve into fluids in general, types of fluids, properties of fluids, viscosity of fluids, the 

various laws of thermodynamics, and the different kinds of fluid flow in this chapter. 

2.1 Fluid  

Primarily, there are five different states of matter that categorizes one of the distinguishable 

forms that matter can exist namely, solids, liquids, gases, plasma and Bose-Einstein condensate. 

Fluids are substances (liquids or gases) having no definite shape that flow or conform to the 

existing boundaries of the empty container in which they occupy. The field of fluid mechanics 

has diverse applications in various fields including mechanical engineering, civil engineering, 

biology, geophysics, chemical engineering, oceanography, biomedical engineering, amongst 

several others. It can be further subdivided into fluid statics and fluid dynamics. 

2.1.1 Fluid Statics 

This is the branch of fluid mechanics that studies fluids at rest and it can also be known as 

hydrostatics. It is only concerned with the study of the circumstances in which fluids are at rest 

and are in a stable equilibrium. Hydrostatics provides physical justifications for a variety of 

daily phenomena, including why air pressure varies with height, why oil and wood float, and 

why water's surface remains consistently level regardless of the shape of its container. Its 

application is relevant to many subjects, including meteorology, medicine (with regards to 
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blood pressure), and some parts of geophysics and astronomy (such as, in understanding 

anomalies and plate tectonics in the gravitational field of planet Earth). 

2.1.2 Fluid Dynamics 

It is a branch of fluid mechanics that deals solely with fluid flow. Usually, problem-solving in 

fluid dynamics involves the calculation of various physical properties of the fluid, such as the 

temperature, velocity, pressure, and density. It has two sub-disciplines, such as hydrodynamics, 

the study of liquids that are said to be in motion and aerodynamics, the study of the way 

different objects move in air and other types of gases that are said to be in motion. Fluid 

dynamics also has diverse applications, such as the calculation of movements and forces on 

aircrafts, the determination of the mass flow rate of the movement of petroleum through 

pipelines and the prediction of changes in weather pattern (Wikipedia). 

2.2 Properties of Fluids 

Fluids have a number of variables that aid in defining and understanding the properties of the 

fluid whether it be the kinematic property, thermodynamic property or physical property. The 

kinematic property aids in understanding the motion of the fluid and is defined by the velocity 

and the acceleration of the fluid. The thermodynamic property aids in understanding the 

thermodynamic state of the fluid. Thermodynamic properties of fluids include temperature, 

density and pressure.  

2.2.1 Density 

Mass Density: The density of a material or substance can be defined as the mass per unit 

volume of that material (Jones, 2020). It has the unit of 𝑘𝑔 𝑚; and is represented by the Greek 

letter, 𝜌 (rho). Mass Density, 

𝜌 = =
>

 ,            2.1 

 where; m is the mass of the substance and v is the volume of the substance. 
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Relative Density: It can be defined as the ratio of the density of a material to the density of a 

given material or substance of reference.  

Relative density, 𝑆𝐺 = @A
@BA

.          2.2 

Where 𝜌= is the density of the material and  𝜌)= is the density of the reference material. It has 

a unit of 𝑁 𝑚;. 

2.2.2 Pressure 

It can be defined as the force per unit area applied perpendicularly to the surface of an object. 

It is usually represented as 

 𝑝 = D
E
 ,             2.3 

where F is the force and A is the area. It has an S.I. unit of Pa(pascal). 

2.2.3 Temperature 

It can be described as the physical quantity that measures the hotness/coldness or matter of 

radiation of a system using any number of arbitrary scales and showing the direction of the 

spontaneous flow of the heat energy(Britannica). Temperature normally indicates what 

direction in which heat energy will flow (i.e. from a substance with a higher temperature to a 

substance of lower temperature(Britannica) and it has an SI unit of K (kelvin). 

2.2.4 The Laws of Thermodynamics 

The history of thermodynamics has its roots in ancient conceptions of heat and is inextricably 

entwined with the histories of physics and chemistry. The development in this area during the 

late nineteenth and early twentieth century led to the development of the laws of 

thermodynamics. (Carnot, 1824) wrote a book titled Réflexions sur la puissance motrice du feu 

et sur les machines propres à développer cette puissance (which translates to “Reflections on 

the Motive Power of Fire” in english), which contained the first accepted thermodynamic 

concept, which later developed into the second law of thermodynamics. Walther Nernst later 

developed the third law of thermodynamics, often known as Nernst’s theorem (or Nernst’s 
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postulate), between 1906 and 1912. Although the numbering of the laws is now universal, 

different textbooks during the 20th century assigned different numbers to the laws. In some 

domains, the second law was thought to exclusively apply to the effectiveness of heat engines, 

whilst the third law was thought to apply to increases in entropy. This eventually resolved itself 

and later, the zeroth law was added to allow for a definition of temperature that is self-

consistent. Although more laws have been proposed, none of them have attained the same level 

of generality as the four recognised laws, and thus are typically not covered in required 

textbooks.  

2.2.4.1 The Zeroth Law of Thermodynamics 

The zeroth law of thermodynamics establishes the transitive link between the temperatures of 

various entities in thermal equilibrium and lays the groundwork for temperature as a pragmatic 

specification in thermodynamic systems. It states that if two systems are in thermal equilibrium 

with a third system, then they are said to all be in thermal equilibrium with one another 

(Buchdahl, 1966). 

2.2.4.2 The First Law of Thermodynamics 

The first law of thermodynamics is a thermodynamic adaptation of the law of conservation of 

energy. According to the law of conservation, energy cannot be created, nor can it be destroyed 

but it can be transformed from one form to another, keeping the total energy of an isolated 

system constant. 

It states that in a closed system, the difference between the heat that’s supplied into the system 

and the work done by the system determines the change in the internal energy of the system. 

𝑈'G'HI= = 𝑄 −𝑊           2.4 

Where 𝑈'G'HI= is the change in the internal energy of the system, 𝑄 is the heat that’s supplied 

into the system and 𝑊 is the work done by the system. 
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2.2.4.3 The Second Law of Thermodynamics 

The second law of thermodynamics highlights the irreversibility of natural processes and, 

frequently, the tendency for natural processes to result in spatial homogeneity of matter and 

energy, particularly temperature. It can be put forth in a number of intriguing and significant 

ways. The Clausius assertion that heat does not naturally transfer from a colder to a hotter 

body is one of the most basic. 

When two systems, that were initially isolated and were each in their states of thermodynamic 

equilibrium, are separated but are in a close region of space and are allowed to interact with 

one another they will reach a thermodynamic equilibrium that’s said to be mutual. It is said to 

be mutual because the entropy of the combination of the two systems will be greater than or 

equal to the sum of the entropies of the isolated systems that were initially isolated. Basically, 

the law explains that the entropy of an isolated system will never decrease over time. 

2.2.4.4 The Third Law of Thermodynamics 

It states that when the temperature of a system approaches absolute zero (-273K), the entropy 

of the system would approach a constant value.  

2.2.5 Viscosity 

It can be described as the measure of the resistance to a fluid flow due to the internal friction 

of the fluid. Generally, a fluid’s viscosity depends on the number of properties/states of the 

fluid such as the rate of deformation of the fluid, the temperature and the pressure of the fluid.  

There are two different types of viscosity: dynamic and kinematic viscosity. Kinematic 

viscosity can be described as the measure of the resistive fluid flow under the influence of 

gravity, whiles dynamic viscosity can be described as the measure of the resistance to shearing 

flows of a fluid, in which adjacent layers move parallel to one another at different speeds. 

Consider two plates that are y distances apart, separated by a homogeneous substance, to obtain 

the relationship between the shear stress and velocity gradient. Assuming that the plates have 
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a big area A and are very large, it is possible to ignore edge effects. Also, assuming that the 

lower plate is fixed, a force, F, will be applied to the top plate. The substance between the plates 

is said to behave as a fluid if this force induces shear flow with a velocity gradient, u, instead 

of only elastic shearing until the applied force is balanced by the shear stress in the substance. 

The applied force is inversely proportional to the distance between the two plates and directly 

proportional to the area and velocity gradient in the fluid. The above expression forms the 

formula below: 

𝐹 = 𝜇𝐴 N
G
            2.5 

Where F is the Force, 𝜇 is the viscosity of the fluid, 𝐴 is the area of each plate and N
G
  is the rate 

of shear deformation.  

The viscosity of a material is what connects its viscous stresses to its rate of deformation change 

(the strain rate). Although it applies to all flows, a straightforward shearing flow, such a planar 

Couette flow, makes it simple to picture and define. 

A fluid is caught in the Couette flow between two infinitely large plates, one of which is 

immobile and the other is moving parallel to it at a constant speed (See Figure 2.1).  

 

Figure 2.1 Illustration of a planar Couette flow. 

The fluid particles flow parallel to the top plate in steady state if the top plate's speed is low 

enough to prevent turbulence (Mewis and Wagner, 2012). The layer of each fluid moves faster 

than the layer immediately below it, and friction between them creates a force that opposes 
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their relative motion. In particular, a force is exerted on the top plate by the fluid and is opposite 

to the direction of motion, as well as a force that is equal to but opposite on the bottom plate. 

2.3 Classification of Flow of Fluids 

In fluid mechanics, there are five different types of fluids, namely; Ideal Fluids, Real Fluids, 

Newtonian Fluids, Non-Newtonian Fluids and Ideal Plastic Fluids (Dey, 2019). Due to the 

diversifications in the types of fluids as a result of differences in viscosity, density, velocity et 

el, no two fluids of different classifications would flow in the same way due to variations in 

some parameters of the fluids.   

2.3.1 Steady and Unsteady Flow. 

A fluid flow is said to be steady when its characteristics at a point do not change with time. It 

can be represented mathematically as; 

𝜕𝑣
𝜕𝑡

= 0,
𝜕𝑝
𝜕𝑡

= 0,
𝜕𝐽
𝜕𝑡

= 0; 

From the expression, v represents the velocity of the fluid, p represents the pressure and J 

represents the density. 

A fluid flow is said to be unsteady when its characteristics, unlike steady flow, changes with 

respect to time. It can be represented mathematically as; 

𝜕𝑣
𝜕𝑡

≠ 0,
𝜕𝑝
𝜕𝑡

≠ 0,
𝜕𝐽
𝜕𝑡

≠ 0; 

where the v represents the velocity, p represents pressure and J represents the density of the 

fluid. 

2.3.2 Laminar and Turbulent Flow 

Laminar flow is the type of fluid flow in which the streamline or layer used for the movement 

of fluid particles is well-defined, straight and parallel. As a result, the fluid particles move in 

layers or laminar motion, easily gliding over one another. Small diameter pipes with high 
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viscosity fluid and slower flow rates exhibit laminar flow. Other names for this type of flow 

include streamline flow and viscous flow. 

Turbulent Flow is the type of fluid flow where the fluid particles travel haphazardly or in a 

zigzag pattern. Eddies arise as a result of the zigzag motion of fluid particles, which results in 

a significant loss of energy. The magnitude and direction of the fluid’s speed at a given point 

changes continuously in turbulent flow. Turbulent flow is more likely to occur in pipes with 

large diameters in which the fluid tends to flow with high velocity. 

2.3.3 Compressible and Incompressible Flow 

Compressible fluid flow is the type of flow in which at any given point, the density of the fluid 

remains constant and Incompressible fluid flow is the type of flow in which the density of the 

fluid does not remain constant across several points in the fluid. 

2.4 Definition of terms 

In fluid dynamics, as there are laws that govern or fluid flow and behaviour, there are also some 

terms associated with the field that are also inevitable and they determine the flow 

characteristics of the fluid. Below is a list of terms associated with fluid mechanics that were 

also used during the course of this research. 

2.4.1 Fluid velocity  

It is a physical quantity that describes a fluid’s motion in a mathematical manner. It is 

represented by the symbol, 𝑣. 

2.4.2 Thermal conductivity 

It is defined as the ability of the fluid to conduct heat. It is represented by the symbol, K.  

2.4.3 Entropy generation number 

Entropy generation number is the physical quantity that measures the amount of dissipated 

energy and the rate of degradation of systems. The rate of dissipation depends on the level of 

irreversibility present in the system. It is represented by the symbol, 𝑁-. 
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2.4.4 Grashof number 

It is a non-dimensional quantity that represents the ratio of the buoyant force (due to the spatial 

variation in the density of the fluid) to a viscous force acting on a fluid in the velocity boundary 

layer. It was named after Franz Grashof and is represented by the symbol, Gr (Hewitt et al, 

1994). 

2.4.5 Brinkman number 

It is a non-dimensional number that’s related to the heat conduction coming from a wall to a 

flowing viscous fluid. It is the ratio of the production of heat as a result of viscous dissipation 

to the movement of heat by molecular conduction. It was named after Dutch mathematician 

and physicist, Henri Brinkman, and is represented by the symbol, Br. 

2.4.6 Magnetic parameter 

It is a non-dimensional number that describes the ratio of viscous dissipation to thermal 

conduction of an MHH fluid. It is represented by the symbol, M. 

2.4.7 Drag coefficient 

It is a non-dimensional quantity that is used to describe the level of resistance or drag of an 

object in a fluid. 

2.4.8 Volume fraction 

It is a non-dimensional quantity that describes the ratio of the volume of a constituent to the 

volume of the whole fluid. It is represented by the symbol,	𝜑. 

2.4.9 Lame constant 

It is second of two constants named after Gabriel Lamé that describes the dynamic viscosity of 

a fluid. It is represented by the symbol, 𝜇. 

2.4.10 Viscous drag 

Viscous drag is the drag force felt by an object moving through a fluid due to the viscosity of 

the fluid (Kaylegian-Starkey, 2022). It is represented by the symbol, 𝛿.  
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CHAPTER THREE 

METHODOLOGY 

3.0 Introduction 

In this chapter, we present the model and the methodology used to derive the solution for the 

magnetohydrodynamic(MHD) fluid flow. Normally, the equations are in dimensional form and 

in order to be able to represent them, we converted them to non-dimensional form after the 

description of the model. Thereafter, the Adomian Decomposition Method (ADM) is applied 

and used to obtain the solutions of the equations. 

 

3.1 The formulation of the mathematical model 

Firstly, we considered a steady flow that had passed transient state, flowing through a vertical 

deformable porous layer bounded by two vertical plates. The 𝑥-axis is taken horizontally as 

one of the plates and the 𝑦-axis is chosen perpendicular to the 𝑥-axis. The plates are 𝑦 = ℎ and 

𝑦 = 0, where ℎ is the width of the channel. The temperature at 𝑦 = 0 will be 𝑇 = 𝑇6  and 𝑇 =

𝑇7 at 𝑦 = ℎ respectively, and is maintained at constant temperatures along the flow of the fluid. 

The pressure of the fluid is 𝑃[\and an outward pressure flow, 𝑃[] is introduced to the fluid, 

where the condition 𝑃[] > 𝑃[\  is necessary for the fluid to flow. Hence, the difference in 

pressure (pressure gradient)  is 𝑃[] − 𝑃[\ =
_`
_[

  which produces an axially directed flow. An 

external magnetic field with strength, 𝐵/, is applied perpendicularly to the plates which induces 

electrical conductivity, 𝜎, in the flowing field.  The direction of the flow is along the positive 

𝑥-axis with fluid velocity, 𝑣. The model equations are the solid displacement equation of the 

fluid, the velocity equation of the fluid, temperature equation of the fluid and the entropy 

generation equation of the fluid. The equations were obtained in dimensional form and 

thereafter converted to non-dimensional form. Fig 3.1 shows the physical model of the flow of 

the fluid: 
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Figure 3.1: The Physical model of the flow system. 

 

3.2 The model equations in dimensional form 

3.2.1 The solid displacement equation  

𝜇 _cN∗

_G∗c
− 1 − 𝜑 _f∗

_[∗
+ 𝐾𝑣∗ = 0         3.1           

3.2.2 The Velocity Equation 

2𝜇1
_ci∗

_G∗c
− 𝜑 _f∗

_[∗
− 𝐾𝑣∗ − 𝜎𝐵/𝑣∗ + 𝑔𝜌𝛽 𝑇 − 𝑇6 = 0      3.2 

3.2.3 The temperature equation 

𝐾/
_ck
_G∗c

+ 𝑄/ = 0          3.3 

3.2.4 The entropy generation equation 

𝐸m =
no
kpc

qk
qG∗

]
+ rs

kp

qi∗

qG∗

]
+ t(oc

kp
𝑣∗]       3.4 
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Where ; 𝜇 is the lame constant, K is the drag coefficient, 𝜑 is the volume fraction of the fluid, 

𝑣∗ is the dimensional form of the velocity of the fluid, 𝜇1 is the apparent viscosity of fluid in 

the porous material, 𝜎 is the electrical conductivity of the fluid, 𝑔 is the acceleration due to 

gravity of the fluid, 𝑇 is the temperature of the fluid, 𝐾/is the thermal conductivity of the fluid, 

𝑄/ is the heat source, 𝜇2 is the coefficient of viscosity, and 𝑥∗ and 𝑦∗ are the dimensional form 

of the Cartesian coordinates. 

3.3 The non-dimensional form of the equations 

The non-dimensional quantities; 

𝑦 = G∗

u
, 𝑥 = [∗

u
, 𝑣 = i∗

v
 , 𝜃 = kwkp

kxwkp
 , 𝑝 = uf∗

rsv
 , 𝑢 = N∗r

rsv
 , 𝜇2 = 2𝜇1, 𝛿 = nuc

rs
 ,  

𝐺𝑟 = {| kxwkp @uc

rsv
 , 𝜂 = rs

]r}
 , 𝛽 = ~ouc

no kwkp
 , 𝑀 = uct(oc

rs@
  

3.3.1 The non-dimensional solid displacement equation 

From equation 3.1, 

𝜇 _cN∗

_G∗c
− 1 − 𝜑 _f∗

_[∗
+ 𝐾𝑣∗ = 0         

From the non-dimensional quantity relation:𝑦 = G∗

u
 ; 

 q
qG∗

= \
u
q
qG

 ; qc

qG∗c
= \

uc
qc

qGc
         3.5 

𝑥 = [∗

u
; 𝑥∗ = 𝑥ℎ,           3.6 

𝑣 = i∗

v
 ; 𝑣∗ = 𝑣𝑈,          3.7 
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𝑢 = N∗r
rsv

; 𝑢∗ = Nrsv
r

          3.8 

Putting equations 3.5, 3.6, 3.7 and 3.8 into equation 3.1; 

𝜇 vrs
ruc

qcN
qGc

− 1 − 𝜑 _f∗

_[u
+ 𝐾𝑣𝑈 = 0        3.9 

Multiplying through equation 3.9 by u
c

vrs
 

qcN
qGc

− 1 − 𝜑 _f∗

_[u
uc

vrs
+ nivuc

vrs
= 0                   3.10 

qcN
qGc

− 1 − 𝜑 q
q[∗

f∗uc

vrs
+ ucni

rs
= 0                  3.11 

𝑥 =
𝑥∗

ℎ
; 𝑥∗ = 𝑥ℎ 

Applying the above expression into equation 3.11 

qcN
qGc

− 1 − 𝜑 q
q[u

f∗uc

vrs
+ ucni

rs
= 0                             3.12 

qcN
qGc

− 1 − 𝜑 q
q[

f∗u
vrs

+ ucni
rs

= 0                  3.13 

Recall 𝑝 = uf∗

vrs
 , 𝛿 = ucn

rs
 , and applying it into equation 3.13 

qcN
qGc

− 1 − 𝜑 qf
q[
+ 𝛿𝑣 = 0                   3.14 

qcN
qGc

− 1 − 𝜑 𝑃 + 𝛿𝑣 = 0.                   3.15 

Equation 3.15 is the expression of the displacement of the MHD fluid in the deformable 

porous material, where 𝑃 = qf
q[
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3.3.2 The non-dimensional velocity equation 

From equation 3.2; 

2𝜇1
_ci∗

_G∗c
− 𝜑 _f∗

_[∗
− 𝐾𝑣∗ − 𝜎𝐵/]𝑣∗ + 𝑔𝜌𝛽 𝑇 − 𝑇6 = 0               

From the non-dimensional quantity relations: _
_Gc

= \
uc

q
qGc

 , 𝑣 = i∗

v
 ; 𝑣∗ = 𝑣𝑈 , 𝜃 = kwkp

kxwkp
 ; 

𝑇 − 𝑇6 = 𝜃 𝑇7 − 𝑇6  and applying it to equation 3.2, we have 

]r}v
uc

qci
qGc

− 𝜑 _f∗

_[∗
− 𝐾𝑣𝑈 − 𝜎𝐵/]𝑣𝑈 + 𝑔𝜌𝛽𝜃 𝑇7 − 𝑇6 = 0               3.16 

Multiplying equation 3.16 through by  uc

]r}v
 

 q
ci

qGc
− 𝜑 uc

]r}v
_f∗

_[∗
− ucniv

]r}v
− uct(ociv

]r}v
+ uc{@|� kxwkp

]r}v
= 0              3.17 

qci
qGc

− 𝜑 uc

rsv
_f∗

_[∗
− ucn

rs
𝑣 − uct(oci

rs
+ uc{@| kxwkp

]r}v
𝜃 = 0                3.18 

From the non-dimensional quantity relations: 𝛿 = ucn
rs
, 𝐺𝑟 = uc{@| kxwkp

]r}v
 

qci
qGc

− 𝜑 uc

rsv
_f∗

_[∗
− 𝛿𝑣 − uct(oci

rs
+ 𝐺𝑟𝜃 = 0                        3.19 

qci
qGc

− 𝜑 _
_[∗

f∗uc

rsv
− 𝛿𝑣 − uct(oci

rs
+ 𝐺𝑟𝜃 = 0                    3.20 

Applying the following non-dimensional relations to equation 3.20: 𝑥∗ = 𝑥ℎ, 𝑝∗ = uf
rsv

 

qci
qGc

− 𝜑 _f
_[
− 𝛿𝑣 − uct(oc

rs
𝑣 + 𝐺𝑟𝜃 = 0                        3.21 

𝑀] = uct(oci
rs

;𝑀 = uct(oc

rs
 , 𝑃 = _f

_[
 

qci
qGc

− 𝜑𝑃 − 𝛿𝑣 −𝑀𝑣 + 𝐺𝑟𝜃 = 0  

qci
qGc

− 𝜑𝑃𝜂 − 𝛿 +𝑀 𝜂𝑣 + 𝐺𝑟𝜂𝜃 = 0                 3.22 
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Equation 3.22 is the non-dimensional expression of the velocity of the MHD fluid in the porous 

material, where 𝜂 = rs
]r}

= 1 and is present in the equation to show the ratio of bulk fluid 

viscosity to apparent fluid viscosity in porous layer. 

 

3.3.3 The non-dimensional temperature equation 

From equation 3.3; 

𝐾/
_ck
_G∗c

+ 𝑄/ = 0  

Dividing equation 3.3 through by 𝐾/; 

_ck
_G∗c

+ ~o
no
= 0                    3.23 

Recall the non-dimensional quantity:  _
_Gc

= \
uc

q
qGc

  

\
uc

qck
qGc

+ ~o
no
= 0                      3.24 

qck
qGc

+ uc~o
no

= 0                      3.25 

From the non-dimensional quantity: 𝜃 = kwkp
kxwkp

 ;  

𝑇 − 𝑇6 = 𝜃 𝑇7 − 𝑇6                      3.26 

𝑇 = 𝜃 𝑇7 − 𝑇6 + 𝑇6                             3.27 

Applying equation 3.27 into equation 3.25 

qc � kxwkp �kp
qGc

+ uc~o
no

= 0                   3.28 

qc

qGc
𝜃 𝑇7 − 𝑇6 + 𝑇6 + uc~o

no
= 0                        3.29 

𝐿𝑒𝑡𝑎 = 𝑇7 − 𝑇6, 𝑏 = 𝑇6 

𝑎𝜃 − 𝑏 = 𝜃 𝑇7 − 𝑇6 + 𝑇6   

Applying the above expression into equation 3.29 
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qc

qGc
𝑎𝜃 − 𝑏 + uc~o

no
= 0                   3.30 

qc

qGc
𝑎𝜃 − qc

qGc
𝑏 + uc~o

no
= 0  

qc

qGc
𝑎𝜃 − qc

qGc
0 + uc~o

no
= 0  

qc

qGc
𝑎𝜃 + uc~o

no
= 0  

1qc�
qGc

+ uc~o
no

= 0  

(kxwkp)qc�
qGc

+ uc~o
no

= 0 , where 𝑎 = 𝑇7 − 𝑇6                        3.31 

Dividing equation 3.31 through by (𝑇7 − 𝑇6) 

qc�
qGc

+ uc~o
no(kxwkp)

= 0                    3.32 

𝐿𝑒𝑡𝛼 =
ℎ]𝑄/

𝐾/(𝑇7 − 𝑇6)
 

qc�
qGc

+ 𝛼 = 0                    3.33 

Equation 3.33 above is the equation for the temperature of the MHD fluid in the deformable 

porous material, where 𝛼  is the heat source and is the non-dimensional expression of 

temperature. 

3.3.4 The non-dimensional entropy equation 

From equation 3.4 above; 

𝐸m =
𝐾/
𝑇6]

𝑑𝑇
𝑑𝑦∗

]

+
𝜇2
𝑇6

𝑑𝑣∗

𝑑𝑦∗
]

+
𝜎𝐵/]

𝑇6
𝑣∗] 

Multiplying equation 3.4 through by 𝑇6] 

𝑇6]𝐸m = 𝐾/
qk
qG∗

]
+ 𝑇6𝜇2

qi∗

qG∗

]
+ 𝜎𝐵/]𝑣∗

]𝑇6                3.34 

Applying the following non-dimensional quantity relations to equation 3.34; 
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q
qG
= \

u
q
qG

 , 𝜃 = kwkp
kxwkp

 ; 𝑇 − 𝑇6 = 𝜃 𝑇7 − 𝑇6 ;𝑇 = 𝜃 𝑇7 − 𝑇6 + 𝑇6 ;𝑇6 = 𝜃 𝑇7 − 𝑇6 + 𝑇 ,  

𝑣 = i∗

v
 ; 𝑣∗ = 𝑣𝑈, 𝑥 = [∗

u
; 𝑦∗ = 𝑦ℎ 

𝑇6]𝐸m = 𝐾/
\
u
q � kxwkp �kp

qG

]
+ 𝑇6𝜇2

\
u
qiv
qG

]
+ 𝜎𝐵/]𝑣]𝑈]𝑇6                          3.35 

𝑇6]𝐸m =
no
uc

𝑇7 − 𝑇6
q�
qG

]

+ kprsvc

uc
qi
qG

]
+ 𝜎𝐵/]𝑣]𝑈]𝑇6   

𝑇6]𝐸m =
no kxwkp c

uc
q�
qG

]
+ kprsvc

uc
qi
qG

]
+ 𝜎𝐵/]𝑣]𝑈]𝑇6                 3.36 

Multiplying equation 3.36 through by uc

no kxwkp c 

kpc��uc

no kxwkp c =
q�
qG

]
+ uckprsvc

ucno kxwkp c
qi
qG

]
+ uct(ocicvckp

no kxwkp c    

Let entropy generation, 𝑁' =
kpc��uc

no kxwkp c; 

𝑁' =
q�
qG

]
+ kprsvc

no kxwkp c
qi
qG

]
+ uct(ocicvckp

no kxwkp c                 3.37 

𝑁' =
q�
qG

]
+ kprsvc

no kxwkp c
qi
qG

]
+ vckprs

no kxwkp c
uct(oc

rs
𝑣]               3.38 

Recall; 𝑀] = uct(oci
rs

;𝑀 = uct(oc

rs
  and applying it into equation 3.38 

𝑁' =
q�
qG

]
+ kprsvc

no kxwkp c
qi
qG

]
+ vckprs

no kxwkp c 𝑀𝑣]                 3.39 

𝑁' =
q�
qG

]
+ vckprs

no kxwkp c
qi
qG

]
+ 𝑀𝑣]   

Let 𝐵𝑟 = vcrs
no kxwkp

 , 𝛺 = kxwkp
kp

; \
*
= kp

kxwkp
 

𝑁' =
q�
qG

]
+ ()

*
qi
qG

]
+ 𝑀𝑣]                    3.40 

Equation 3.40 is the non-dimensionless equation for the entropy generation of the MHD fluid 

flowing in the deformable porous material, where Br is the Brinkman number and 𝛺 is the non-



 20 

dimensional temperature difference. 

3.4 Adomian decomposition method 

In this section, the four non-dimensional equations (equation 3.15, 3.22, 3.33 and 3.40) were 

cast into a recursive scheme using the ADM in order to solve for the solid displacement, 

velocity, temperature and entropy generation number. 

 The following boundary conditions: 

At 𝑦 = 0; 𝑢 = 0, 𝑣 = 0, 𝜃 = 0   

At 𝑦 = 1; 𝑢 = 0, 𝑣 = 0, 𝜃 = 1 

were used to solve the non-dimensional equations using ADM.  

3.4.1 Recursive solution for solid displacement 

From equation 3.15, q
cN

qGc
− 1 − 𝜑 𝑃 + 𝛿𝑣 = 0, and making the term with the highest order of 

differential coefficient the subject of the formula; 

qcN
qGc

= 1 − 𝜑 𝑃 − 𝛿𝑣                    3.41 

Let 𝐿G ≡
qc

qcG
 , where  𝐿G is an operator that’s a function of y. 

∴ the inverse operator would be 𝐿Gw\ = ∗ 𝑑𝑦𝑑𝑦G
6

G
6 , where ∗ = qcN

qcG
 

Equation 3.41 then becomes: 

𝐿G𝑢 = 1 − 𝜑 𝑃 − 𝛿𝑣                     3.42 

Applying the inverse operator to both sides of equation 3.42 
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𝐿Gw\(𝐿G𝑢) = 𝐿Gw\ 1 − 𝜑 𝑃 − 𝛿𝑣                     3.43 

𝐿G𝑢 =? 

Recall : ∗ = qcN
qcG

                    3.44 

Integrating both sides of equation 3.44; 

qcN
qcG

𝑑𝑦G
6 = ∗ 𝑑𝑦G

6           

qN
qG
= qN

qG G�6
+ ∗ 𝑑𝑦G

6                    3.45 

Integrating both sides of equation 3.45; 

𝑢 = 𝑢 G�6 +
𝑑𝑢
𝑑𝑦 G�6

𝑑𝑦
G

6
+ ∗ 𝑑𝑦

G

6
𝑑𝑦

G

6
 

𝑢 = 𝑢 0 + qN 6
qG

G
6 𝑑𝑦 + ∗ 𝑑𝑦G

6 𝑑𝑦G
6                  3.46 

Applying the boundary conditions, 𝑢 = 0	when	𝑦 = 0, to equation 3.46 

𝑢 = qN 6
qG

G
6 𝑑𝑦 + ∗ 𝑑𝑦G

6 𝑑𝑦G
6   

Let qN 6
qG

= 𝑓 

𝑢 = 𝑓G6 𝑑𝑦 + ∗ 𝑑𝑦G
6 𝑑𝑦G

6    

𝑢 = 𝑓𝑦 + 𝐿Gw\𝐿G𝑢                     3.47 

𝐿Gw\𝐿G𝑢 = 𝑢 − 𝑓𝑦                    3.48 

Putting equation 3.48 into equation 3.43 

𝑢 − 𝑓𝑦 = 𝐿Gw\ 1 − 𝜑 𝑃 − 𝛿𝑣    

𝑢 = 𝑓𝑦 + 𝐿Gw\ 1 − 𝜑 𝑃 − 𝐿Gw\𝛿𝑣                   3.49 

𝑢 = 𝑓𝑦 + 1 − 𝜑 𝑃𝑑𝑦𝑑𝑦G
6

G
6 − 𝐿Gw\𝛿𝑣 , where 𝐿Gw\ 1 − 𝜑 𝑃 = 1 − 𝜑 𝑃𝑑𝑦𝑑𝑦G

6
G
6   
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𝑢 = 𝑓𝑦 + 1 − 𝜑 𝑃𝑦𝑑𝑦
G

6
− 𝐿Gw\𝛿𝑣 

𝑢 = 𝑓𝑦 + \
]
1 − 𝜑 𝑃𝑦] − 𝐿Gw\𝛿𝑣  

𝑢 = 𝑓𝑦 + \
]
1 − 𝜑 𝑃𝑦] − 𝛿𝐿Gw\𝑣                  3.50 

Let 𝑢 = 𝑢6 + 𝑢\ + 𝑢] + 𝑢;…  

𝑢6 + 𝑢\ + 𝑢] +…𝑘𝑦 + \
]
1 − 𝜑 𝑃𝑦] − 𝛿𝐿Gw\𝑣                3.51 

𝑢6 = 𝑓𝑦 + \
]
1 − 𝜑 𝑃𝑦] because the values of 𝑢6 are dependent on y. 

Let 𝑢��\ = −𝛿𝐿Gw\𝑣�; 𝑘 ≥ 0 

𝑢\ = −𝛿𝐿Gw\𝑣6  

𝑢] = −𝛿𝐿Gw\𝑣\ 

𝑢; = −𝛿𝐿Gw\𝑣] 

For ADM, 𝑢 = 𝑢��
��6 . 

Hence, the recursive solution for the non-dimensional equation for the solid displacement of 

the fluid would be; 

𝑢 𝑦 = 𝑢6 + 𝑢\ + 𝑢] + 𝑢; …+ 𝑢� 

 

3.4.2 Recursive solution for velocity 

From equation 3.22, q
ci

qGc
− 𝜑𝑃𝜂 − 𝛿 +𝑀 𝜂𝑣 + 𝐺𝑟𝜂𝜃 = 0, and making the term with the 

highest order of differential coefficient the subject of the formula; 

qci
qGc

= 𝜑𝑃𝜂 + 𝛿 +𝑀 𝜂𝑣 − 𝐺𝑟𝜂𝜃                  3.52 

Let 𝐿G ≡
qc

qcG
 , where  𝐿G is an operator that’s a function of y. 
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∴ the inverse operator would be 𝐿Gw\ = ∗ 𝑑𝑦𝑑𝑦G
6

G
6 , where ∗ = qci

qcG
 

Equation 3.52 then becomes: 

𝐿G𝑣 = 𝜑𝑃𝜂 + 𝛿 +𝑀 𝜂𝑣 − 𝐺𝑟𝜂𝜃                    3.53 

Applying the inverse operator to both sides of equation 3.53 

𝐿Gw\(𝐿G𝑢) = 𝐿Gw\ 𝜑𝑃𝜂 + 𝛿 +𝑀 𝜂𝑣 − 𝐺𝑟𝜂𝜃                   3.54 

𝐿G𝑣 =? 

Recall : ∗ = qci
qcG

                    3.55 

Integrating both sides of equation 3.55; 

qci
qcG

𝑑𝑦G
6 = ∗ 𝑑𝑦G

6           

qi
qG
= qi

qG G�6
+ ∗ 𝑑𝑦G

6                    3.56 

Integrating both sides of equation 3.56; 

𝑣 = 𝑣 G�6 +
𝑑𝑣
𝑑𝑦 G�6

𝑑𝑦
G

6
+ ∗ 𝑑𝑦

G

6
𝑑𝑦

G

6
 

𝑣 = 𝑣 0 + qi 6
qG

G
6 𝑑𝑦 + ∗ 𝑑𝑦G

6 𝑑𝑦G
6                  3.57 

Applying the boundary conditions, 𝑣 = 0	when	𝑦 = 0, to equation 3.57 

𝑣 = qi 6
qG

G
6 𝑑𝑦 + ∗ 𝑑𝑦G

6 𝑑𝑦G
6   

Let qi 6
qG

= 𝑗 

𝑣 = 𝑗G6 𝑑𝑦 + ∗ 𝑑𝑦G
6 𝑑𝑦G

6    

𝑣 = 𝑗𝑦 + 𝐿Gw\𝐿G𝑣                      



 24 

𝐿Gw\𝐿G𝑢 = 𝑣 − 𝑗𝑦                    3.58 

Putting equation 3.58 into 3.54; 

𝑣 − 𝑗𝑦 = 𝐿Gw\ 𝜑𝑃𝜂 + 𝛿 +𝑀 𝜂𝑣 − 𝐺𝑟𝜂𝜃    

𝑣 = 𝐿Gw\ 𝜑𝑃𝜂 + 𝛿 +𝑀 𝜂𝑣 − 𝐺𝑟𝜂𝜃 + 𝑗𝑦 

𝑣 = 𝐿Gw\𝜑𝑃𝜂 + 𝛿 +𝑀 𝜂𝐿Gw\𝑣 − 𝐺𝑟𝜂𝐿Gw\𝜃 + 𝑗𝑦 

𝑣 = 𝐿Gw\𝜑𝑃𝜂 + 𝛿 +𝑀 𝜂𝐿Gw\𝑣 − 𝐺𝑟𝜂𝐿Gw\𝜃 + 𝑗𝑦 

𝑣 = 𝜑𝑃𝜂𝑑𝑦𝑑𝑦G
6

G
6 + 𝛿 +𝑀 𝜂𝐿Gw\𝑣 − 𝐺𝑟𝜂𝐿Gw\𝜃 + 𝑗𝑦   

where 𝐿Gw\𝜑𝑃𝜂 = 𝜑𝑃𝜂𝑑𝑦𝑑𝑦G
6

G
6    

𝑣 = 𝜑𝑃𝜂𝑦𝑑𝑦G
6 + 𝛿 +𝑀 𝜂𝐿Gw\𝑣 − 𝐺𝑟𝜂𝐿Gw\𝜃 + 𝑗𝑦   

𝑣 = \
]
𝜑𝑃𝜂𝑦] + 𝛿 +𝑀 𝜂𝐿Gw\𝑣 − 𝐺𝑟𝜂𝐿Gw\𝜃 + 𝑗𝑦                3.59 

Let 𝑣 = 𝑣6 + 𝑣\ + 𝑣] + 𝑣;…  

𝑣6 + 𝑣\ + 𝑣] + 𝑣; … = \
]
𝜑𝑃𝜂𝑦] + 𝛿 +𝑀 𝜂𝐿Gw\𝑣 − 𝐺𝑟𝜂𝐿Gw\𝜃 + 𝑗𝑦             3.60 

𝑣6 =
\
]
𝜑𝑃𝜂𝑦] + 𝑗𝑦 because the values of 𝑣6 are dependent on y. 

 
Let 𝑣��\ = 𝛿 +𝑀 𝜂𝐿Gw\𝑣� − 𝐺𝑟𝜂𝐿Gw\𝜃�; 𝑘 ≥ 0 

𝑣\ = 𝛿 +𝑀 𝜂𝐿Gw\𝑣6 − 𝐺𝑟𝜂𝐿Gw\𝜃6 

𝑣] = 𝛿 +𝑀 𝜂𝐿Gw\𝑣\ − 𝐺𝑟𝜂𝐿Gw\𝜃\ 

𝑣; = 𝛿 +𝑀 𝜂𝐿Gw\𝑣] − 𝐺𝑟𝜂𝐿Gw\𝜃] 

For ADM, 𝑣 = 𝑣��
��6   

Hence, the recursive solution for the non-dimensional equation for the solid displacement of 

the fluid would be; 𝑣 𝑦 = 𝑣6 + 𝑣\ + 𝑣] + 𝑣; …+ 𝑣� 
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3.4.3 Recursive solution for temperature 

From equation 3.33, q
c�

qGc
+ 𝛼 = 0, and making the term with the highest order of differential 

coefficient the subject of the formula; 

qc�
qGc

= −𝛼                     3.61 

Let 𝐿G ≡
qc

qcG
 , where  𝐿G is an operator that’s a function of y. 

∴ the inverse operator would be 𝐿Gw\ = ∗ 𝑑𝑦𝑑𝑦G
6

G
6 , where ∗ = qc�

qcG
 

Equation 3.61 then becomes: 

𝐿G𝜃 = −𝛼                       3.62 

Applying the inverse operator to both sides of equation 3.62 

𝐿Gw\(𝐿G𝜃) = 𝐿Gw\ −𝛼                      3.63 

𝐿G𝜃 =? 

Recall : ∗ = qc�
qcG

                    3.64 

Integrating both sides of equation 3.64; 

qc�
qcG

𝑑𝑦G
6 = ∗ 𝑑𝑦G

6           

q�
qG
= q�

qG G�6
+ ∗ 𝑑𝑦G

6                    3.65 

Integrating both sides of equation 3.65; 

𝜃 = 𝜃 G�6 +
𝑑𝜃
𝑑𝑦 G�6

𝑑𝑦
G

6
+ ∗ 𝑑𝑦

G

6
𝑑𝑦

G

6
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𝜃 = 𝜃 0 + q� 6
qG

G
6 𝑑𝑦 + ∗ 𝑑𝑦G

6 𝑑𝑦G
6                  3.66 

Applying the boundary conditions, 𝜃 = 0	when	𝑦 = 0, to equation 3.66 

𝜃 = q� 6
qG

G
6 𝑑𝑦 + ∗ 𝑑𝑦G

6 𝑑𝑦G
6   

Let q� 6
qG

= 𝑞 

𝜃 = 𝑞G6 𝑑𝑦 + ∗ 𝑑𝑦G
6 𝑑𝑦G

6   

𝜃 = 𝑞𝑦 + 𝐿Gw\𝐿G𝜃   

𝐿Gw\𝐿G𝜃 = 𝜃 − 𝑞𝑦                      3.67 

Putting equation 3.67 into 3.63 

𝜃 − 𝑞𝑦 = 𝐿Gw\ −𝛼                      3.68 

𝜃 = 𝐿Gw\ −𝛼 + 𝑞𝑦 

𝜃 = −𝛼 𝑑𝑦
G

6
𝑑𝑦 + 𝑞𝑦

G

6
 

𝜃 = −𝛼 𝑦𝑑𝑦 + 𝑞𝑦
G

6
 

𝜃 = w\
]
𝛼𝑦] + 𝑞𝑦                    3.69 

Let 𝜃 = 𝜃6 + 𝜃\ + 𝜃] + 𝜃;…  

𝜃6 + 𝜃\ + 𝜃] + 𝜃; =
w\
]
− 𝛼𝑦] + 𝑞𝑦                  3.70 

𝜃6 =
w\
]
𝛼𝑦] + 𝑞𝑦 because the values of 𝜃6 are dependent on y,  

The values for 𝜃\, 𝜃] and 𝜃; would be zero since there are no other variables in the equation 

that’s not dependent on y. 

For ADM, 𝜃 = 𝜃��
��6   

Hence, the recursive solution for the non-dimensional equation for the solid displacement of 

the fluid would be; 𝜃 𝑦 = 𝜃6 + 𝜃\ + 𝜃] + 𝜃; …+ 𝜃� ,which would be; 𝜃 = w\
]
𝛼𝑦] + 𝑞𝑦 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.0 Introduction 

The magnetohydrodynamic(MHD) fluid flowing in the deformable porous material was 

subjected to several instances and were then analysed for a number of control parameters. The 

values of parameters such as the magnetic parameter (M), heat source (𝛼), ratio of bulk fluid 

viscosity to apparent fluid viscosity in porous layer (𝜂), viscous drag(𝛿), Grashof number(Gr), 

volume fraction of the fluid(𝜑), varied and their effects on the velocity, solid displacement, 

temperature and entropy generation number of the fluid were solved and represented 

graphically with the aid of MATHEMATICA, a mathematical computation program used in 

many scientific, engineering, mathematical, and computing fields.  

 

4.1 Analysis of the Effects of the Control Parameters on the Fluid 

Using MATHEMATICA, a number of calculations were made to see how it would affect some 

physical variables of the fluid such as the solid displacement, velocity, temperature and entropy. 

The results of the calculations formed the basis of the argument that an MHD fluid flowing 

steadily in a deformable porous media will differ under different conditions.    

4.1.1 Analysis of the Effects of the Control Parameters on the Solid Displacement 

The following graphs represent effects of the varying values of different parameters: ratio of 

the bulk fluid velocity on the solid displacement (𝜂), heat source (𝛼), magnetic parameter (M), 

volume fraction of the fluid(𝜑 ), viscous drag(𝛿 ), and Grashof number(Gr), on the solid 

displacement of the fluid. 



 28 

 

Figure 4.1 A graph of displacement(u) against width(y) for varying values of ratio of the 

bulk fluid velocity on the solid displacement (𝜂). 

 

Figure 4.2. A graph of displacement(u) against width(y) for varying values of heat source 

(𝛼). 
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Figure 4.3. A graph of displacement(u) against width(y) for varying values of magnetic 

parameter (M). 

 

Figure 4.4. A graph of displacement(u) against width(y) for varying values of volume 

fraction of the fluid(𝜑). 
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Figure 4.5. A graph of displacement(u) against width(y) for varying values of viscous 

drag(𝛿). 

 

Figure 4.6. A graph of displacement(u) against width(y) for varying values of Grashof 

number(Gr). 
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Figures 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 are plots of displacement of the fluid against the width of 

the material with varying values of ratio of the bulk fluid velocity on the solid displacement 

(𝜂), heat source (𝛼), magnetic parameter (M), volume fraction of the fluid(𝜑), viscous drag(𝛿), 

and Grashof number(Gr) of the fluid respectively. For every increase in ratio of the bulk fluid 

velocity on the solid displacement, the displacement of the fluid increases. Also, for every 

increase in the heat source (𝛼), the displacement of the fluid increases. It was also observed 

that an increment in the magnetic parameter(M) and volume fraction(𝜑 ) of the fluid 

displacement of the fluid resulted in the decrement of the displacement of the fluid. Also, the 

displacement of the fluid increased with an increase in the values of the viscous drag(𝛿) of the 

fluid and Grashof number(Gr). 

4.1.2 Analysis of the Effects of the Control Parameters on the Velocity 

The following graphs represent effects of the varying values of different parameters: ratio of 

the bulk fluid velocity on the solid displacement (𝜂), heat source (𝛼), magnetic parameter (M), 

volume fraction of the fluid(𝜑), viscous drag(𝛿), and Grashof number(Gr), on the velocity of 

the fluid. 
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Figure 4.7. A graph of velocity(v) against width(y) for varying values of ratio of the bulk 

fluid velocity on the solid displacement (𝜂). 

 

Figure 4.8. A graph of velocity(v) against width(y) for varying values of heat source (𝛼). 
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Figure 4.9. A graph of velocity(v) against width(y) for varying values of magnetic 

parameter (M). 

 

Figure 4.10. A graph of velocity(v) against width(y) for varying values of volume fraction 

of the fluid(𝜑). 
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Figure 4.11. A graph of velocity(v) against width(y) for varying values of viscous drag(𝛿). 

 

Figure 4.12. A graph of velocity(v) against width(y) for varying values of Grashof 

number(Gr). 



 35 

Figures 4.7, 4.8, 4.9, 4.10, 4.11 and 4.12 are plots of the velocity of the fluid against the width 

of the material with varying values of ratio of the bulk fluid velocity on the solid displacement 

(𝜂), heat source (𝛼), magnetic parameter (M), volume fraction of the fluid(𝜑), viscous drag(𝛿), 

and Grashof number(Gr) of the fluid respectively. It was observed that every increase in the 

values of the ratio of the bulk fluid velocity on the solid displacement, magnetic parameter(M) 

and viscous drag(𝛿) resulted in the decrease of the velocity of the fluid. Also, for every increase 

in the values of the heat source (𝛼), volume fraction(𝜑) and Grashof number(Gr), the velocity 

of the fluid increases.  

4.1.3 Analysis of the Effects of the Control Parameters on the Temperature 

The following graph represents the effect of the varying values of heat source (𝛼) on the 

temperature(𝜃) of the fluid. 

 

Figure 4.13. A graph of temperature(𝜃) against width(y) for varying values of heat source 

(𝛼).  
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Figure 4.13 is a plot of the temperature(𝜃) of the fluid against the width of the material with 

varying values of heat source (𝛼). It was observed that an increase in the heat source produces 

the heat, which enhances the temperature distribution across the MHD fluid. 

4.1.4 Analysis of the Effects of the Control Parameters on the Entropy 

The following graph represents the effect of varying values of the viscous dissipation parameter 

(()
*

) on the entropy generation number(𝑁') of the fluid. 

 

Figure 4.14. A graph of entropy generation number(𝑁') against width(y) for varying 

values of viscous dissipation parameter (()
*

).  
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Figure 4.14 is a plot of the entropy generation number(𝑁') of the fluid against the width of the 

material with varying values of the viscous dissipation parameter (()
*

). It was observed that an 

increase in the viscous dissipation parameter resulted in the increase of the entropy generation 

number of the MHD fluid.  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.0 Conclusion 

This project analysed the effects of the changes of physical variables in the behaviour and the 

flow of the magnetohydrodynamic(MHD) fluid flowing in a vertical deformable porous media. 

The dimensional expression for the solid displacement, velocity, temperature and entropy 

generation number were obtained and then successfully converted to non-dimensional forms. 

Thereafter, the solutions of each non-dimensional form of the equations were solved using 

Adomian Decomposition Method(ADM) after applying the boundary conditions. The solutions 

to the equations obtained from the ADM were implemented into Mathematica which was then 

used to generate graphs for the solid displacement, fluid velocity, fluid temperature and the 

entropy to display the variations in the behaviour of the fluid flow under certain conditions. 

 A number of observations were also made during the course of the project, such as the velocity 

of the fluid flow increases with the viscosity ratio (η), and that the MHD fluid reduces in solid 

displacement as it becomes more magnetic and that an increase in the heat source produces the 

heat, which enhances the temperature distribution across the MHD fluid. It was also observed 

that the displacement of the fluid increases when there is an increase in the heat source (α) of 

the fluid. 

Based on the findings of the study, it can be concluded that the behaviour of an MHD fluid 

flowing in a deformable porous media at any time would be dependent on the various physical 

parameters in the fluid. 

5.1 Recommendation 

This project research would aid in further analysis of fluid flow in porous media, fluid flow of  

MHD and their applications in several industries and fields of study.  
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