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Abstract: Optimisation remains inevitable in any organisation as the need to maximise the 
limited resources persists. It justifies the seemingly endless research in this area. This study 
explores the effectiveness of chaos to mitigate false or premature convergence problem in 
African buffalo optimisation (ABO) algorithm. Chaos employs the ergodic and stochastic 
properties to handle this limitation. Three resourceful chaotic functions in the literature are 
evaluated to find the best strategy for ABO improvement. The same strategy is applied across the 
algorithms under study to provide an unbiased judgment. The study validates the proposed 
system’s performance with a range of nonlinear test functions. The proposed system’s result is 
compared with standard ABO, Particle swarm optimisation (PSO), and chaotic particle swarm 
optimisation (CPSO) algorithms. Although chaotic ABO (CABO) gave 92% performance in 
comparison with standard ABO, chaotic PSO, and standard PSO; it requires further investigation. 
To be more explicit, the reason for no significant difference between chaotic-ABO and standard 
ABO in some functions calls for further research attention. The present study also highlights the 
research future scope. In all, the study gives insight to researchers on the appropriate algorithm 
for a real-world problem. 
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1 Introduction 
Optimisation is an active subject in literature especially in 
operations research, computer science, mathematics, and 
many more. Irrespective of the field, the focus is the same. 
To be more precise, the operation researcher’s focal point is 
seeking a balance between cost and profit. While computer 
scientist and mathematician search for the best out of many 
feasible options. In other words, optimisation is the 
converging point for these three disciplines. It draws 
research attention in exponential progression due to the 
demand for high computation effort to solve industrial 
applications especially as the problem size increases 
(Binitha and Sathya, 2012; Kumar and Kumari, 2018). 

Studies show that bio-inspired optimisation methods 
could effectively mitigate high computation effort 
challenge. It has many real-world applications such as 
digital marketing (Kumar et al., 2017, in press), engineering 
design (Arana-Daniel et al., 2018; Kaur and Arora, 2018), 
networking, energy optimisation, and many more. Ideally, 
the model of natural phenomenon determines its efficiency 
(Fister et al., 2013). The global and local search spaces 
proper exploration would improve the solution quality 
(Fister et al., 2013). However, there is no perfect  
bio-inspired algorithm, especially in standard phase. Several 
variants of even the most robust bio-inspired algorithm exist 
in an attempt to improve performance (Igiri et al., 2019). 
For example, particle swarm optimisation (PSO), firefly 
algorithm (FA), cuckoo search (CS), bat algorithm (BA), 
and many more have multiple modifications. FA, for 
instance, have the discrete, chaotic-based, hybridised 
versions, among other variants (Yang and He, 2013). 
Besides, ABO has been hybridised with levy flight to 
enhance its performance in nonlinear optimisation problem 
(Igiri et al., 2018). The bio-inspired approach is better 
alternatives to traditional methods (Binitha and Sathya, 
2012). 

One might question the need for further research despite 
that much achievement. Strictly speaking, the model 
representation of these natural phenomena determines the 
solution. Altering the characteristics of an organism is 
impossible; however, improving their models could enhance 
their performance. Thus, the enormousness and continuous 
research in modifying bio-inspired techniques (Igiri et al., 
2019). It is, therefore, the motivation for this study. Thus, 
the research question is: what is the effect of chaos on 
ABO? What is its relative performance regarding, standard 
ABO, PSO, and chaotic PSO? What are the possible 
limitations to chaotic ABO? 

Chaos, on the other hand, is an unpredictability induced 
in a simple-deterministic system. Metaphorically, chaos is a 
‘butterfly effect’ (Yang and He, 2013). Chaotic optimisation 
induces a system to improve its performance. There are 
various features such as ergodic, stochastic or 
randomisation, regularity, and sensitivity that control chaos 
(Yang and He, 2013; Feng et al., 2017). The concept of 
chaotic-optimisation is invoking these features to generate 
chaos variable (Hamaizia et al., 2012). However, the 
ergodic and stochastic properties are key factors that enable 

algorithms to skip the problem of local optima entrapment 
(Yang and He, 2013). Algorithms such as PSO, ABO, BA, 
FA, among others suffer this type of limitation. Studies 
prove the effectiveness of chaos in handling such challenges 
especially in PSO, BA, FA, and many more (Binitha and 
Sathya, 2012; Kaur and Arora, 2018; Fister et al., 2013; 
Yang and He, 2013; Zilong et al., 2006). Chaos has many 
advantages including the ability to escape local minimum, 
slow global convergence rate, and insensitivity to an initial 
value. However, it does not yield a satisfactory result in 
large problem size (Hamaizia et al., 2012). 

Chaotic optimisation has demonstrated an unbeaten 
record in many nature-inspired algorithms. For example, 
studies show that chaotically improved PSO yielded a better 
result than standard PSO (Alatas et al., 2009; Meng et al., 
2004; Liu et al., 2005). Chen and Yu (2008) obtained a high 
prediction soft sensor model of real-time ethylene 
measurement using a chaotic hybrid PSO. Chaotic BA 
outperformed standard bat and other none chaotic-based 
algorithms (Gandomi and Yang, 2014; Jordehi, 2015).  
This study structure is as follows: Section 1 is the 
introduction and Section 2 is the theoretical framework.  
The methodology, the function evaluation/results, and 
conclusion are presented in Sections 3, 4 and 5, 
respectively. 

1.1 Research highlight 

• The ABO algorithm is induced by a chaotic map. 

• Standard nonlinear optimisation benchmark functions 
are used to evaluate the performance of the new chaotic 
ABO (CABO) variant. 

• CABO has higher convergence speed than CPSO, 
standard ABO and PSO in the test functions under 
study. 

• The CABO gave 92% performance in comparison with 
the other swarm intelligence under study. 

• The logistic map is the best chaotic strategy for ABO 
algorithm. 

2 Theoritical framework 
2.1 African buffalo optimisation algorithm 
ABO is a metaheuristic algorithm in the class of swarm 
intelligence. It is developed by Odili and Kahar in 2016, and 
inspired by the foraging and defensive behaviour of African 
buffaloes that belong to cow family (Odili and Kahar, 
2016). African buffaloes live in herds with peculiar 
defensive, democratic, and exceptionally intelligent features 
that make them distinctive (Odili and Kahar, 2016). 
Typically ABO is a sound-based algorithm similar to 
echolocation of BA. Two distinct sounds, ‘maaa’ and 
‘waaa’ control the herds (Odili and Kahar, 2016). The 
‘waaa’ alert is the exploration signal while the ‘maaa’ call is 
the exploitation signal (Odili and Kahar, 2016). These two 
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signals constitute the significant components of ABO 
algorithm. The same also form the two equations that 
control the kernel of the algorithm. The exploration 
equation (maaa, maj) also referred to as the democratic 
equation controls the movement of the herds using two 
learning parameters, lb1 and lb2. While the exploitation 
equation is controlled by (waaa, waj). The maj and waj 
represent the diversification and intensification movements 
of jth buffalo (j = 1, 2, …, n) respectively as illustrated in (1) 
and (2). 

As swarm intelligence, the algorithm employs a 
coordination mechanism of the herds to find the best 
solution to an optimisation problem. It involves seven 
iterative steps stated in Algorithm 1. Equations (1) and (2) 
control the iterative steps. While searching for food, the 
herds vote to determine the best grazing location by 
comparing each buffalo’s best position bpmaxj and the global 
best bgmaxj position. The fitness value maj+1 determines the 
next processing step. Two conditions decide the criteria: 
first, no further better solution; second, when the maximum 
iteration value is reached. 

( ) ( )1 1 max 2 maxj j j j jma ma lb bg wa lb bp+ = + − +  (1) 

1 0.5
j j

j
wa ma

wa +
+

=
±

 (2) 

Algorithm 1 Standard ABO  

Step 1: Objective function f(u) = u = (u1, u2, …, un)Ω 
Step 2: Randomly initialise the buffaloes within the search 

space; 
Step 3: Update the fitness values with (1) 
Step 4: Update the buffalo’s location jth = (bgmax and bpmax) 

using (2) 
Step 5: If bpmax is updating, proceed to Step 6, else return to 

Step 2 
Step 6: If stopping criteria is reached, proceed to Step 7, 

otherwise, return to Step 3 
Step 7: Output best result 

Source: Odili and Kahar (2016) 

2.2 ABO weakness 
The ABO algorithm uses few parameters which have 
successfully mitigated the delay problem of many 
algorithms such as PSO, FA and BA. However, ABO 
exhibits other weaknesses including premature convergence 
and efficiency in search space exploration. Consequently, 
ABO gives only feasible results against the expected 
optimum solution. The weak kernel could be the reason for 
poor performance. Thus, enhancing the kernel could 
improve its performance. The kernel of an algorithm is the 
equation(s) or mathematical representation that controls its 
operation. Implicitly, modifying the mathematical model  of 
a biological sequence could enhance its performance. Thus, 
these weaknesses are the motivation for this study. 

2.3 Chaotic functions 
The ergodic and stochastic features of chaos have 
successfully handled premature convergence. Typically, the 
PSO (Chen and Yu, 2008; Alatas et al., 2009; Meng et al., 
2004; Liu et al., 2005), BA (Gandomi and Yang, 2014; 
Jordehi, 2015), among others. This study focuses on three 
chaotic functions, namely, logistic, the iterative chaotic map 
with infinite collapses (ICMIC) and tent map (Afrabandpey 
et al., 2014). These three are chosen because of their 
remarkable performance as referenced in the literature. 
However, the best strategy would be applied to algorithm 
kernels under study. 

2.3.1 The logistic map function 
Logistic map is the simplex polynomial map (Chen and Yu, 
2008). The function is defined by (3) 

( )1 1j j jv v v+ = −β  (3) 

where vj ∈ [0, 1] and v0 ∈ [0, 1], j is the number of 
iterations, β is the control parameter. 

2.3.2 The ICMIC map function 
The ICMIC is a one-dimension chaotic map with infinite 
collapses at the iterative regions in contrast to logistic and 
tent map with finite collapses (Jordehi, 2015). The map 
generates chaotic numbers in ([0, 1]) and characterised by 
(4) 

1 sinj
j

v abs
v+
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β  (4) 

2.3.3 Tent map function 
The tent map exhibits a similarity with the logistic map. It 
can replicate itself to the required population size for better 
exploration (Afrabandpey et al., 2014). It is effective for the 
evolutionary algorithm and BA due to this exploration 
feature. Studies have also proven that 1/0.7 is an effective 
multiplier value (Afrabandpey et al., 2014). The function is 
defined by (5). 

( )1

, 0.7
0.7
1 (1 ), otherwise
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3 Methodology 
The standard ABO uses a simple random number generator 
for computation during the iterative processes. The random 
number generator could be the reason for local optima 
entrapment in standard ABO, especially in a multi-modal 
optimisation. Ideally, the chaos generates a well-distributed 
search within the solution space; thereby enabling the 
algorithm to escape premature convergence. 
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This study attempts to mitigate this problem by using 
chaotic variables. It considers three popular chaotic 
functions for enhancing bio-inspired optimisation in the 
literature. The study validates the three to obtain the best 
variant for ABO. The best is used to intensify the ABO 
democratic and exploitative search capabilities. The linearly 
decreasing function is multiplied by the chaotic variable to 
facilitate the search mechanism. The democratic equation is 
updated at each iteration using (6). Algorithm 2 is the 
proposed chaotic ABO. In comparison with the standard 
ABO (see Algorithm 1), there are eight steps in CABO 
against seven steps in the former. The additional step is the 
chaotic function generator (step 2), the same is the novelty 
of this study highlighted in bold. 

The simulation is carried out in MATLAB. The system 
specification includes Intel(R) Pentium(R), CPU N3510 @ 
1.99 GHz, 4.00 GB RAM, and 64-bit operating system  
X64-based processor. The parameter of any bio-inspired 
algorithm is essential in determining its performance. ABO 
uses only two parameters: lb1 = 0.8 and lb2 = 0.8. 

The performance of the chaotic ABO would be 
evaluated with standard ABO, chaotic PSO, and PSO. 

( ) ( )1 1 max 2 maxj j o j j o jma ma lb b g wa lb b p+ = + ∗ − +v  (6) 

1 0.5
j j

j
wa ma

wa +
+

= +
±

v  (7) 

where v is the suitable map and other variables definition 
remain as in Section 2.1. 

Algorithm 2 Chaotic ABO 

Step 1: Objective function f(u) = u = (u1, u2, …, un)Ω 
Step 2: Generate chaotic map 
Step 3: Randomly initialise the buffaloes within the search 

space; 
Step 4: Update the fitness values with (6) 
Step 5: Update the buffalo’s location jth = (bgmax and bpmax) 

using (7) 
Step 6: If bpmax is updating, proceed to Step 7, else return to 

Step 3 
Step 7: If stopping criteria is reached, proceed to Step 8, 

otherwise, return to Step 4 
Step 8: Output best result 

4 Functions evaluation and results 
1 Sphere 
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3 Beale 
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5 Easom 
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The three chaotic maps (logistics, ICMIC, and tent) are 
evaluated to find the best strategy across the algorithms 
under study. These three are selected as a result of the 
proven performance in literature. Sphere function is used for 
performance validation. Logistic map emerged the best out 
of the three. The same is utilised to generate chaos sequence 
to enhance the algorithms’ kernels. In order to secure a fair 
comparable computation condition; first, the chaotic map is 
applied across the algorithms under consideration. Second, 
all the algorithms have the same starting point. Last, a 
variety of numerical benchmark functions are used to 
evaluate the performance of the algorithms based on 
convergence rate, robustness, and reliability. 

4.1 Convergence rate assessment 
Since the kernels control the bio-inspired algorithms, the 
iteration number is used to evaluate their efficiencies. To 
illustrate, at 100th iteration chaotic ABO outperforms 
standard ABO and Chaotic PSO, and standard PSO on 
sphere and Schaffer functions as shown in Table 1 and 
Table 3. The convergence plot for sphere and Schaffer 
function are illustrated in Figures 1 and 2 for proper 
visualisation. Also, chaotic ABO converged at the global 
minimum at the 38th and 44th iteration on Beale and 
Bochachvesky functions respectively, as shown in Table 2 
and Table 4. It reveals the strength of chaos in chaotic ABO. 
In other words, chaotic ABO outperforms standard ABO 
and chaotic PSO, and standard PSO as shown in the 
convergence plot in Figures 3 and 4, respectively. Although 
chaotic PSO also converged at global minimum on 
Bochachvesky function, but at the 87th iteration. ABO on 
the other hand only gave a feasible solution across all the 
test functions under study. It further reveals the efficacy of 
chaos to enhance bio-inspired-based optimisation 
algorithms. 

Contrarily, CABO has no significant impact on Easom 
function unlike the standard ABO. However, the CPSO 
converged at global minimum in Easom function as shown 
in Table 5 and Figure 5. The result variation could be 
justified with no-free-lunch (NFL) theorem which states that 
‘there is no perfect algorithm’ (Wolpert and Macready, 
1997). 
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Table 1 Comparison of chaotic variants on sphere function (F1) 

Chaotic map 
Best solution at 100 iterations 

Global minimum value 
ABO CABO CPSO PSO 

Logistic 2.8428e-13 1.0873e-54 1.1433e-23 0.0045441 0.0000 
ICMIC 2.8428e-13 3.1221e-56 1.2894e-06 0.0045441 0.0000 
Tent 2.8428e-13 9.9091e-55 2.0767e-22 0.0045441 0.0000 

Table 2 Schaffer function (F2) table 

Evaluation ABO CABO CPSO PSO Global min. value 

Best solution 5.2398e-12 0.000 1.5085e-09 0.03348 0.000 
Number of iterations 100 43 100 100 - 

Table 3 Beale function (F3) table 

Evaluation ABO CABO CPSO PSO Global min. value 

Best solution 8.7258e-13 0.0000 0.0000 0.021354 0.000 
Number of iterations 100 38 80 100 - 

Table 4 Bochachvesky function (F4) table 

Evaluation ABO CABO CPSO PSO Global min. value 

Best solution 1.9661e-08 0.000 0.0000 0.052831 0.000 
Number of iterations 100 44 87 100 - 

Table 5 Easom function (F5) table 

Evaluation ABO CABO CPSO PSO Global min. value 

Best solution –1.4383e-05 –0.99795 –1.0000 –0.061084 –1.0000 
Number of Iterations 100 100 55 100 - 

 
Figure 1 Sphere function (F1) convergence plot (see online 

version for colours) 

 

 

 

 

Figure 2 Schaffer function (F2) convergence plot (see online 
version for colours) 
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Figure 3 Beale function (F3) convergence plot (see online 
version for colours) 

 

Figure 4 Bochachvesky 3 function (F4) convergence plot  
(see online version for colours) 

 

Figure 5 Easom function (F5) convergence plot (see online 
version for colours) 

 

4.2 Robustness and reliability assessment 
The test for robustness and reliability of an algorithm is 
validated on its efficiency over a wide range of problems 
(Beiranvand et al., 2017). In reference to the numerical 
benchmark functions under this study, chaotic ABO shows 
92% performance better than CPSO, standard ABO and 
PSO. The success rate is validated based upon best solution 
(objective function values) and the number of iteration of 
the algorithms to achieve the results herein. Aside, standard 
ABO is used to comparative study to reveal the impact of 
chaos on the proposed system. Chaotic PSO is used to 
justify the result in a fair algorithm environment, while the 
standard ABO and PSO is used to portray the effectiveness 
of chaotic-based optimisation. 

5 Conclusions and future scope 
This study investigates the best chaotic variant to improve 
the bio-inspired algorithms under study. Logistic map 
function emerged the best and the same is utilised to 
enhance the search efficiency of chaotic ABO and chaotic 
PSO. The overall performance of improved algorithm in 
terms of convergence rate, robustness and reliability is 
validated over a variation of standard benchmark test 
functions in the literature. The result gave 92% performance 
in comparison with CPSO, ABO, and PSO as shown in 
Table 6. The convergence of chaotic ABO at global 
minimum as discussed in Section 4.1 suggests the efficiency 
of chaos in skipping local optima. It accounts for the 
outperformance of the improved proposed method over 
standard ABO, PSO and chaotic PSO. 

Table 6 Performance ranking table 

Algorithm/ 
function F1 F2 F3 F4 F5 Sum/n*10 

(%) Ranking 

CABO 10 10 10 10 6 92 1 
CPSO 8 6 8 8 10 80 2 
ABO 6 8 6 6 8 68 3 
PSO 4 4 4 4 4 40 4 

However, despite the success rate of the computational 
effort record of chaotic ABO, there is need for further 
improvement as revealed on its poor performance on Easom 
function. Also, the theoretical insight for the lack of chaos 
impact on Easom function is beyond the scope of this study 
and stands to be investigated in the future study. Also ABO 
could be further be hybridised with Bottle-nose Dolphin 
algorithm (Pazhaniraja et al., 2017) in the future work. 
Besides the improved CABO could be applied to real-world 
optimisation problems such as networking, supply chain, 
and engineering design in further studies. 
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