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1. Introduction and Preliminaries

The theory of fixed point plays an important role in nonlinear functional
analysis and is known to be very useful in establishing the existence and
uniqueness theorems for nonlinear differential and integral equations. Ba-
nach [5] in 1922 proved the well celebrated Banach contraction principle
in the frame work of metric spaces. The importance of the Banach con-
traction principle cannot be over emphasized in the study of fixed point
theory and its applications. Due to its importance and fruitful applica-
tions, many authors have generalized this result by considering classes of
nonlinear mappings which are more general than contraction mappings and

in other classical and important spaces (see [1, 19, 20, 24] and the refer-
ences therein). Also, over the years, several iterative schemes have been
developed for solving fixed point problems for nonlinear operators in differ-

ent spaces, (see [2, 9, 10, 11, 12, 13, 14, 18, 27, 28, 29] and the references
therein).

Samet et al. [25] introduced the notion of α-admissible mapping and obtain
some fixed point results for this class of mappings.

Definition 1.1. [25] Let α : X × X → [0,∞) be a function. We say that
a self mapping T : X → X is α-admissible if for all x, y ∈ X,

α(x, y) ≥ 1⇒ α(Tx, Ty) ≥ 1.

Definition 1.2. [25] Let T : X → X and α : X×X → [0,∞) be mappings.
We say that T is a triangular α-admissible if

1. T is α-admissible and

2. α(x, y) ≥ 1 and α(y, z) ≥ 1⇒ α(x, z) ≥ 1 for all x, y, z ∈ X.

Theorem 1.3. [25] Let (X, d) be a complete metric space and T : X → X
be an α-admissible mapping. Suppose that the following conditions hold:

1. for all x, y ∈ X, we have α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)), where ψ :
[0,∞)→ [0,∞) is a nondecreasing function such that P∞

n=1 ψ
n(t) <

∞ for all t > 0;

2. there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

3. either T is continuous or for any sequence {xn} inX with α(xn, xn+1) ≥
1 for all n ≥ 0 and xn → x as n→∞, then α(xn, x) ≥ 1.
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Then T has a fixed point.

In [7] Chandok extend and improve the concept of α-admissible by intro-
ducing the notion of (α, β)-admissible mapping and obtained some fixed
point theorems.

Definition 1.4. [7] Let X be a nonempty set and α, β : X ×X → [0,∞)
be functions. We say that a self mapping T : X → X is (α, β)-admissible
if for all x, y ∈ X, α(x, y) ≥ 1 and β(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1 and
β(Tx, Ty) ≥ 1.
In 2014, Ansari [4] introduced the notion of C-class function, he proved
some fixed point results using the concept of C-class function and also
established that the C-class function is a generalization of a whole lot of
contractive conditions.

Definition 1.5. [4] A mapping F : [0,∞)2 → R is called a C-class func-
tion if it is continuous and the following axioms hold:

1. F (s, t) ≤ s for all s, t ∈ [0,∞);

2. F (s, t) = s implies either s = 0 or t = 0.

Example 1.6. The following functions F : [0,∞)2 → R defined for all
s, t ∈ [0,∞) by
1. F (s, t) = s− t, F (s, t) = s implies t = 0;

2. F (s, t) = ms, 0 < m < 1, F (s, t) = s implies s = 0;

3. F (s, t) = sβ(s), β : [0,∞)→ [0, 1) is a continuous function,
F (s, t) = s implies s = 0.

For details about C-class function see [4].

In 2015, Khojasteh et al. [15] introduced the notion of Z-contraction which
generalizes the well-known Banach contraction and a host of other contrac-
tive conditions. They gave the following definition for Z as follows.

Definition 1.7. Let ζ : [0,∞)× [0,∞)→ R be a mapping, then ζ is called
a simulation function if it satisfies the following conditions:
ζ(i) ζ(0, 0) = 0;
ζ(ii) ζ(t, s) < s− t, for all t, s > 0;
ζ(iii) If {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = lim

n→∞
sn > 0, then lim

n→∞
ζ(tn, sn) < 0.
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The set of all simulation functions is denoted by Z.

Example 1.8. Suppose ζi : [0,∞)2 → [0,∞), i = 1, 2, 3, 4 is defined as

1. ζ1(t, s) = s − φ(s) − t for all t, s ∈ [0,∞), where φ : [0,∞) → [0,∞)
is a continuous function such that φ(t) = 0 if and only if t = 0.

2. ζ2(t, s) = η(s) − t for all t, s ∈ [0,∞), where η : [0,∞) → [0,∞) is
an upper semicontinuous mapping such that η(t) < t for all t > 0
η(t) = 0 if and only if t = 0.

3. ζ3(t, s) = λs− t for all t, s ∈ [0,∞), where 0 < λ < 1.

4. ζ4(t, s) =
s

s+1 − t for all t, s ∈ [0,∞).

Definition 1.9. Let (X, d) be a metric space, T : X → X a mapping and
ζ ∈ Z. Then T is called a Z-contraction with respect to ζ, if the following
condition is satisfied

ζ(d(Tx, Ty), d(x, y)) > 0,

for all distinct x, y ∈ X.

Theorem 1.10. Let (X, d) be a complete metric space and T : X → X
be a Z-contraction with respect to a simulation function ζ ∈ Z. Then T
has a unique fixed point x∗ ∈ X and for every x0 ∈ X, the Picard sequence
{xn}, where xn = Txn−1 for all n ∈N converges to the fixed point of T.

Antonio-Francisco et al. [23] slightly modify the notion of simulation func-
tion in the sense of Khojasteh et al. [15], which further generalize

the concept of simulation function introduced by Khojasteh et al. in [15].
Definition 1.11. Let ζ : [0,∞) × [0,∞) → R be a mapping, then ζ is
called a simulation function if it satisfies the following conditions:
ζ(i) ζ(0, 0) = 0;
ζ(ii) ζ(t, s) < s− t, for all t, s > 0;
ζ(iii) if {tn}, {sn} are sequences in (0,∞) such that lim

n→∞
tn = lim

n→∞
sn > 0

and tn < sn for all n ∈N, then lim
n→∞

ζ(tn, sn) < 0.

They also presented the following example to establish that every simula-
tion function in the sense of Khojasteh is also a simulation function in their
sense, but the conserve is not true.
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Example 1.12. [23] Let k ∈ R be such that k < 1 and let ζ : [0,∞)
× [0,∞)→ R be the function defined by

ζ(t, s) =

(
2(s− t) if s < t
ks− t if otherwise.

With the aim of generalizing the notion of simulation functions as intro-

duced by Khojasteh et al., in 2018, Liu et al. [17] generalized the
concept of simulation function using the notion of C-class function. They
gave the following definition.

Definition 1.13. A mapping F : [0,∞)2 → R has the property CF , if
there exists a CF ≥ 0 such that
η(i) F (s, t) > CF ⇒ s > t;
η(ii) F (t, t) ≤ CF for all t ∈ [0,∞).

Definition 1.14. A CF simulation function is a mapping ζ : [0,∞) ×
[0,∞)→ R satisfying the following conditions:
φ(i) ζ(t, s) < F (s, t), for all t, s > 0, where F is a C-class function;
φ(ii) if {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = lim

n→∞
sn >

0 and tn < sn for all n ∈ N, then lim
n→∞

ζ(tn, sn) < CF .

Some examples of a C-class functions that have property CF are as follows:

1. F (s, t) = s− t, CF = r, r ∈ [0,∞);

2. F (s, t) = s
1+kt , k ≥ 1, CF =

r
1+k , r ≥ 2.

Remark 1.15. It is worth mentioning that every simulation function in
the sense of Khojasteh is also a CF simulation function, but the converse is
not true. This claim is easy to see using Example 1.12 with F (s, t) = s− t.

One of the interesting generalization of metric spaces is the concept of
b-metric spaces introduced by Czerwik in [8]. He established the Banach
contraction principle in this frame work with the fact that b need not be con-
tinuous. Thereafter, several results has been extended from metric spaces
to b-metric spaces, more so, a lot of results on the fixed point theory of
various classes of mappings in the frame work of b-metric spaces has been
established by different researchers in this area (see [6, 8] and the refer-

ences therein). For example in [26], Sintunavarat introduced the concept
of α-admissible mapping type S as a generalization of α-admissible

mapping [25].
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Definition 1.16. [26] Let X be a nonempty set and s ≥ 1 be a given real
number. Let α : X × X → [0,∞) and T : X → X be mappings. The
mapping T is said to be an α-admissible mapping type S if for all x, y ∈ X

α(x, y) ≥ s⇒ α(Tx, Ty) ≥ s.

Remark 1.17. Clearly, if s = 1, we obtain Definition 1.1.

Remark 1.18. We remark that using the idea of Sintunavarat [25],
we can also generalize the notion (α, β)-admissible mapping as
introduced by Chandok in [7].

Mustafa and Sims [21], introduced the concept of generalized metric
space (G−metric) to generalize the concept of D-metric spaces and
correct some slips up in the notion of D-metric spaces. They
established some fixed point theorems in the frame work of complete
G-metric spaces.

Definition 1.19. Let X be a nonempty set and G : X ×X ×X → R+ be
a function satisfying the following properties

1. G(x, y, z) = 0 if and only if x = y = z,

2. 0 < G(x, x, y) for all x, y ∈ X with x = y,

3. G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z = y,

4. G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · ,
(symmetry in all the three variables),

5. G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X.

Then, the function G is called a G-metric on X and the pair (X,G) is called
a G-metric space.

Motivated by the concept of b-metric and G-metric spaces [8, 21],Aghajani   et al.  in [3], introduced the notion of generalized
b-metric space (Gb − metric spaces), presented some properties of
Gb-metric spaces and prove some coupled coincidence fixed point
theorems for (ψ, ϕ)-weakly con- tractive  mappings in the frame work of
partially ordered Gb-metric spaces. Thereafter, several results and
applications  has  been  extended from  metric  spaces,  b-metric   spaces
and  G-metric  spaces  to  Gb-metric  spaces,  more  so,  a  lot  of   results  
on    the    fixed   point    theory  of    various    classes   of   mappings in
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the frame work of Gb-metric spaces has been established by different re-

searchers in this area (see [16] and the references therein). The notion of
Gb-metric spaces generalize, improves and unifies results in metric spaces,
b-metric and G-metric.

Definition 1.20. [3] Let X be a nonempty set, s ≥ 1 a given real number
and Gb : X ×X ×X → R+ a function satisfying the following properties:

1. Gb(x, y, z) = 0 if and only if x = y = z,

2. 0 < Gb(x, x, y) for all x, y ∈ X with x = y,

3. Gb(x, x, y) ≤ Gb(x, y, z) for all x, y, z ∈ X with z = y,

4. Gb(x, y, z) = Gb(p{x, z, y}), where p is a permutation of x, y, z
(symmetry),

5. Gb(x, y, z) ≤ bGb(x, a, a) + bGb(a, y, z) for all x, y, z, a ∈ X.

Then, the function Gb is called a generalized b-metric and the pair
(X,Gb) is called a generalized b-metric space (Gb −metric space).

Example 1.21. Let X = R and d(x, y) = |x − y|2. It is well known that
(X,d) is a b-metric space with b = 2. Let Gb(x, y, z) = d(x, y) + d(y, z) +
d(z, x), it is easy to see that (X,Gb) is not Gb-metric space. However,
if we define Gb(x, y, z) = max{d(x, y), d(y, z), d(z, x)}, then (X,Gb) is a
Gb-metric space.

Definition 1.22. [3] AGb-metric space is said to be symmetric ifGb(x, y, y) =
Gb(y, x, x) for all x, y ∈ X.

Proposition 1.23. [3] LetX be aGb-metric space. Then for each x, y, z, a ∈
X, it follows that

1. Gb(x, y, z) = 0⇒ x = y = z,

2. Gb(x, y, z) ≤ bGb(x, x, y) + bGb(x, x, z),

3. Gb(x, y, y) ≤ 2bGb(y, x, x),

4. Gb(x, y, z) ≤ bGb(x, a, z) + bGb(a, y, z).

Definition 1.24. [3] Let X be a Gb-metric space. A sequence {xn} in X
is said to be;
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1. Gb-Cauchy if for each � > 0 there exists a positive integer n0 such
that for all m,n, l ≥ n0, Gb(xn, xm, xl) < �;

2. Gb-convergent to a point x ∈ X, if for � > 0 there exists a positive
integer n0 such that for all m,n ≥ n0, Gb(xn, xm, x) < �. That is
limn,m→∞Gb(xn, xm, x) = 0.We call x the limit of the sequence {xn}
and write xn → x or limn→∞ xn = x.

Definition 1.25. [3] A Gb-metric space is called Gb-complete, if every Gb-
Cauchy sequence is Gb-convergent in X.

Proposition 1.26. [3] Let (X,Gb) be a Gb-metric space. The following
statements are equivalent

1. {xn} is Gb-convergent to x;

2. Gb(xn, xn, x)→ 0 as n→∞;

3. Gb(xn, x, x)→ 0 as n→∞;

4. Gb(xn, xm, x)→ 0 as m,n→∞.

Proposition 1.27. [3] Let (X,Gb) be a Gb-metric space. The following
statements are equivalent:

1. {xn} is Gb-Cauchy sequence.

2. Gb(xm, xn, xn)→ 0 as n,m→∞.

Very recently, Kumar et al. [16] introduced the concept of Z-contraction
with respect to ζ in the frame work of G-metric spaces. They establish
some fixed point results and gave an example to support their main result.

Definition 1.28. Let (X,G) be a G-metric space, T : X → X a mapping
and ζ ∈ Z. Then T is called a Z-contraction with respect to ζ, if the
following condition is satisfied

ζ(G(Tx, Ty, Tz), G(x, y, z)) > 0,

for all distinct x, y ∈ X.

Theorem 1.29. Let (X,G) be a complete G-metric space and T : X → X
be a Z-contraction with respect to a simulation function ζ ∈ Z. Then T
has a unique fixed point x∗ ∈ X and for every x0 ∈ X, the Picard sequence
{xn}, where xn = Txn−1 for all n ∈N converges to the fixed point of T.
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Motivated by the works of Liu et al. [17], Kumar et al. [16], 
Khojasteh et al. [15], Antonio-Francisco [23] and the current research
interest in this direction, we introduce the notions of b-CF simulation
function, (α, β)- admissible type B mapping and (α, β)-ZF -contraction
mapping with re- spect to ζ in the frame work Gb-metric spaces.
Furthermore, we establish some fixed point results for (α, β)-ZF

-contraction mapping in the frame work of complete Gb-metric spaces
and apply our results to establish the existence of solution of an integral
equation.

2. Main Results

In this section, we introduce the notion of b-CF simulation function, (α, β)-
admissible type B mapping, triangular (α, β)-admissible type B mapping
and (α, β)-ZF -contraction mapping with respect to ζ in the frame work
Gb-metric spaces and established the existence and uniqueness results of
the fixed point for this class of mappings in the frame work of a complete
Gb-metric spaces.

Definition 2.1. A b-CF simulation function is a mapping ζ : [0,∞) ×
[0,∞)→ R satisfying the following conditions:
ζ∗(i) ζ(t, s) < F (s, t), for all t, s > 0, where F is a C-class function;
ζ∗(ii) if {tn}, {sn} are sequences in (0,∞) such that 0 < limn→∞ tn ≤
lim infn→∞ sn ≤ lim supn→∞ sn ≤ b limn→∞tn < ∞ and tn < sn for all
n ∈N, then

lim
n→∞

ζ(btn, sn) < CF .

Remark 2.2. It is easy to see that if b = 1, we obtain Definition 1.14.

Remark 2.3. We remark that Definitions 1.7, 1.11, 1.13, 1.14 and Def-
inition 2.1 are important in the study of fixed point and its applications
because they are used to obtain new contractive definitions and for extend-
ing, generalizing and unifying existing fixed point results in the literature
and hence generalizing the Banach Contraction Principle in different ab-
stract spaces.

Definition 2.4. Let X be a nonempty set with b ≥ 1 a given real number,
T : X → X and α, β : X ×X ×X → [0,∞) be mappings. Then T is called
(α, β)-admissible type B mapping if for all x, y, z ∈ X with α(x, y, z) ≥ b
and β(x, y, z) ≥ b implies α(Tx, Ty, Tz) ≥ b and β(Tx, Ty, Tz) ≥ b.
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Remark 2.5. We remark that if b = 1, we obtain Definition 1.4 in the
frame work of G-metric spaces.

Definition 2.6. Let X be a nonempty set with b ≥ 1 a given real number,
T : X → X and α, β : X ×X ×X → [0,∞) be mappings. Then T is called
triangular (α, β)-admissible type B mapping if

1. T is (α, β)-admissible type B mapping,

2. α(x, a, a) ≥ b, α(a, y, z) ≥ b and β(x, a, a) ≥ b, β(a, y, z) ≥ b implies
α(x, y, z) ≥ b and β(x, y, z) ≥ b,

for all x, y, z, a ∈ X.

Lemma 2.7. Let X be a nonempty set with b ≥ 1 a given real number
and T be a triangular (α, β)-admissible type B mapping and there exists
x0 ∈ X such that α(x0, Tx0, Tx0) ≥ b and β(x0, Tx0, Tx0) ≥ b. Suppose
that the sequence {xn} is defined by xn+1 = Txn, then α(xm, xn, xn) ≥ b
and β(xm, xn, xn) ≥ b for all n,m ∈N ∪ {0}, with m < n.

Proof. Suppose that T is triangular (α, β)-admissible type B mapping
and there exists x0 ∈ X such that α(x0, Tx0, Tx0) ≥ b and β(x0, Tx0, Tx0) ≥
b, we then have that α(x0, Tx0, Tx0) = α(x0, x1, x1) ≥ b and β(x0, Tx0, Tx0) =
β(x0, x1, x1) ≥ b, which implies that α(Tx0, Tx1, Tx1) = α(x1, x2, x2) ≥ b
and β(Tx0, Tx1, Tx1) = β(x1, x2, x2) ≥ b. Continuing the process, we ob-
tain that α(xn, xn+1, xn+1) ≥ b and β(xn, xn+1, xn+1) ≥ b. For all n,m ∈
N ∪ {0} with m < n, observe that since
α(xm, xm+1, xm+1) ≥ b, β(xm, xm+1, xm+1) ≥ b and α(xm+1, xm+2, xm+2) ≥
b, β(xm+1, xm+2, xm+2) ≥ b, we obtain
α(xm, xm+2, xm+2) ≥ b, β(xm, xm+2, xm+2) ≥ b.Also, since α(xm, xm+2, xm+2) ≥
b, β(xm, xm+2, xm+2) ≥ b and α(xm+2, xm+3, xm+3) ≥ b, β(xm+2, xm+3, xm+3) ≥
b, we obtain α(xm, xm+3, xm+3) ≥ b, β(xm, xm+3, xm+3) ≥ b. Continuing
the process, we have that

α(xm, xn, xn) ≥ b and β(xm, xn, xn) ≥ b.

2

Definition 2.8. Let (X,Gb) be a Gb-metric space with b ≥ 1 a given real
number, α, β ×X ×X → [0,∞) be functions and T be a self map on X.
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The mapping T is said to be (α, β)-ZF -contraction mapping with respect
to ζ, if

α(x, y, z)β(x, y, z) ≥ b2 ⇒ ζ(bGb(Tx, Ty, Tz), Gb(x, y, z)) ≥ CF(2.1)

for all distinct x, y, z ∈ X.

Remark 2.9. If we suppose that b = 1 and CF = 0, we obtain a new type
of generalized Z-contraction with respect to ζ,

α(x, y, z)β(x, y, z) ≥ 1⇒ ζ(G(Tx, Ty, Tz), G(x, y, z)) ≥ 0,(2.2)

for all distinct x, y, z ∈ X. It is easy to see that gme is a generalization of
Definition 1.28.

Theorem 2.10. Let (X,Gb) be a Gb-complete metric space and T : X →
X be an (α, β)-ZF -contraction mapping with respect to ζ. Suppose the
following conditions hold:

1. T is triangular (α, β)-admissible type B mapping,

2. there exists x0 ∈ X such that α(x0, Tx0, Tx0) ≥ b and β(x0, Tx0, Tx0) ≥
b,

3. if for any sequence {xn} inX with α(xn, xn+1, xn+1) ≥ b, β(xn, xn+1, xn+1) ≥
b for all n ≥ 0 and xn → x as n → ∞, then α(xn, x, x) ≥ b and
β(xn, x, x) ≥ b.

Then T has a fixed point.

Proof. To establish the existence of fixed point of T, we divide the proof
into four (4) steps.

Step 1: We show that lim
n→∞

Gb(xn, xn+1, xn+1) = 0.

Let x0 ∈ X be such that α(x0, Tx0, Tx0) ≥ b and β(x0, Tx0, Tx0) ≥ b. We
define the sequence {xn} by xn+1 = Txn for all n ∈ N∪ {0}. If we suppose
that xn+1 = xn, for some n ∈ N ∪ {0}, we obtain the desired result. Now,
suppose that xn+1 = xn for all n ∈ N∪ {0}. From Lemma 2.7, it is easy to
see that

α(xn, xn+1, xn+1)β(xn, xn+1, xn+1) ≥ b2

for all n ∈ N ∪ {0}. Using ζ∗(i), η(i) and from (2.1), we have that
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CF ≤ ζ (bGb(Txn, Txn+1, Txn+1), Gb(xn, xn+1, xn+1))

= ζ(bGb(xn+1, xn+2, xn+2), Gb(xn, xn+1, xn+1))
< F (Gb(xn, xn+1, xn+1), bGb(xn+1, xn+2, xn+2)).

(2.3)

From (2.3), we obtain

F (Gb(xn, xn+1, xn+1), bGb(xn+1, xn+2, xn+2)) > CF ,

which implies that

Gb(xn, xn+1, xn+1) > bGb(xn+1, xn+2, xn+2).

That is
bGb(xn+1, xn+2, xn+2) < Gb(xn, xn+1, xn+1).(2.4)

It is easy to see from (2.4) that the sequence {Gb(xn, xn+1, xn+1)} is mono-
tonically decreasing and nonnegative. More so, inductively, we have that
{Gb(xn, xn+1, xn+1)} is bounded. Therefore, there exists c ≥ 0 such that

lim
n→∞

Gb(xn, xn+1, xn+1) = c.

Suppose that c > 0, clearly lim
n→∞

Gb(xn+1, xn+2, xn+2) = c. Since T is an

(α, β)-ZF -contraction mapping with respect to ζ ∈ Z and using ζ∗(ii), we
have

CF ≤ lim supn→∞ ζ(bGb(xn+1, xn+2, xn+2), Gb(xn, xn+1, xn+1)) < CF .
This is a contradiction, thus c = 0 and so we have that

lim
n→∞

Gb(xn, xn+1, xn+1) = 0.(2.5)

Step 2: We show that {xn} is bounded.
Suppose that {xn} is not a bounded sequence, then there exists a subse-
quence {xnk} of {xn} such that for n1 = 1 and for each k ∈ N, nk+1 is the
minimum integer such that

G(xnk+1 , xnk , xnk) > 1 and G(xm, xnk , xnk) ≤ 1(2.6)

for nk ≤ m ≤ nk+1 − 1. Using (2.6) and Proposition 1.23, we have
1 < G(xnk+1 , xnk , xnk) ≤ bG(xnk+1 , xnk+1−1, xnk+1−1) + bG(xnk+1−1, xnk , xnk)

≤ 2b2G(xnk+1−1, xnk+1 , xnk+1) + b.
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Letting k →∞ and using lim1, we obtain

1 ≤ lim inf
k→∞

G(xnk+1 , xnk , xnk) ≤lim sup
k→∞

G(xnk+1 , xnk , xnk) ≤ b.(2.7)

From (2.4), we deduce that

bG(xnk+1 , xnk , xnk) ≤ G(xnk+1−1, xnk−1, xnk−1)
≤ bG(xnk+1−1, xnk , xnk) + bG(xnk , xnk−1, xnk−1)
≤ b+ 2b2G(xnk−1, xnk , xnk).

(2.8)

Letting k →∞, using lim1 and koo, we obtain that

lim
n→∞

G(xnk+1 , xnk , xnk) = 1 and lim
n→∞

G(xnk+1−1, xnk−1, xnk−1) = b.

From Lemma 2.7, it is easy to see that
α(xnk+1−1, xnk−1, xnk−1)β(xnk+1−1, xnk−1, xnk−1) ≥ b2 and by definition of
(α, β)-ZF -contraction with respect to ζ, and by ζ∗(ii), we obtain

CF ≤lim sup
k→∞

ζ(bG(Txnk+1−1, Txnk−1, Txnk−1), G(xnk+1−1, xnk−1, xnk−1))

=lim sup
k→∞

ζ(bG(xnk+1 , xnk , xnk), G(xnk+1−1, xnk−1, xnk−1)) < CF .

This is a contradiction. Thus {xn} is bounded.

Step 3: We show that {xn} is Cauchy.
Suppose that Cn = sup{Gb(xi, xj , xj) : i, j ≥ n}, n ∈ N. Since {xn} is
bounded, we have that Cn < ∞ for all n ∈ N, as such {Cn} is a positive
monotonically decreasing sequence which converges. That is limn→∞Cn =
C ≥ 0. Suppose that C > 0, then by definition of Cn, for every k ∈ N, we
can find nk,mk such that mk > nk > k and

Cn −
1

K
< Gb(xmk

, xnk , xnk) ≤ Ck,

letting k →∞, we obtain

lim
k→∞

Gb(xmk
, xnk , xnk) = C.(2.9)
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From (2.4) and using the definition of Cn, we deduce that

bGb(xmk
, xnk , xnk) ≤ Gb(xmk−1, xnk−1, xnk−1) ≤ Ck−1.

Letting k →∞ and using c1, we obtain

bC ≤ lim inf
k→∞

Gb(xmk−1, xnk−1, xnk−1) ≤lim sup
k→∞

Gb(xmk−1, xnk−1, xnk−1) ≤ C.

(2.10)

It is easy to see from Lemma 2.7 that α(xmk−1 , xnk−1 , xnk−1)β(xmk−1 , xnk−1 , xnk−1) ≥
b2, so by definition of (α, β)-ZF -contraction with respect to ζ and using
ζ∗(ii), we have that

CF ≤ lim
n→∞

ζ(bGb(Txmk−1, Txnk−1, Txnk−1),Gb(xmk−1 , xnk−1 , xnk−1))

= lim
n→∞

ζ(bGb(xmk
, xnk , xnk), Gb(xmk−1 , xnk−1 , xnk−1)) < CF .

This is a contradiction, thus C = 0. Hence, {xn} is a Cauchy sequence.

Step 4: Finally, we show the existence of fixed point of T.
Since {xn} is a Cauchy sequence and X is a complete Gb-metric space,
there exists x ∈ X such that lim

n→∞
xn = x. Using condition (3), since

α(xn, x, x) ≥ b, β(xn, x, x) ≥ b, we have that α(xn, x, x)β(xn, x, x) ≥ b2,
and since T is (α, β)-ZF -contraction with respect to ζ and using η(i), we
obtain

CF ≤ ζ(bGb(Txn, Tx, Tx), Gb(xn, x, x))
< F (Gb(xn, x, x), bGb(Txn, Tx, Tx)).

It follows that F (Gb(xn, x, x), bGb(Txn, Tx, Tx)) > CF , which implies
that

bGb(Txn, Tx, Tx)) = bGb(xn+1, Tx, Tx)) < Gb(xn, x, x)

and consequently, we have

Gb(x, Tx, Tx) ≤ bGb(x, xn+1, xn+1) + bGb(xn+1, Tx, Tx) < bGb(x, xn+1, xn+1) +Gb(xn, x, x).

Letting n→∞, we obtain that Gb(x, Tx, Tx) = 0⇒ x = Tx. 2

Theorem 2.11. Suppose that the hypothesis of Theorem 2.10 holds and
in addition suppose α(x, y, y) ≥ b and β(x, y, y) ≥ b for all x, y ∈ F (T ),
where F (T ) is the set of fixed point of T. Then T has a unique fixed point.

Proof. Let x, y ∈ F (T ), that is Tx = x and Ty = y such that x = y.
Using our hypothesis, we have α(x, y, y)β(x, y, y) ≥ b2. we obtain from (2.1)
that
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CF ≤ ζ(bGb(Tx, Ty, Ty),Gb(x, y, y))

< F (Gb(x, y, y), bGb(Tx, Ty, Ty))
= F (Gb(x, y, y), bGb(x, y, y)).

It follows that F (Gb(x, y, y), bGb(x, y, y)) > CF , which implies that

bGb(x, y, y) < Gb(x, y, y)

which is a contradiction, as such, we must have that Gb(x, y, y) = 0⇒ x =
y. Hence T has a unique fixed point. 2

3. Consequences of Main Result

In this section, we present some consequences of our main result.

Corollary 3.1. Let (X,Gb) be a completeGb-metric space and T : X → X
be a mapping satisfying

α(x, y, z)β(x, y, z) ≥ b2 ⇒ ζ(bGb(Tx, Ty, Tz), Gb(x, y, z)) ≥ 0,
for all distinct x, y, z ∈ X. Suppose the following conditions hold:

1. T is triangular (α, β)-admissible type B mapping,

2. there exists x0 ∈ X such that α(x0, Tx0, Tx0) ≥ b and β(x0, Tx0, Tx0) ≥
b,

3. if for any sequence {xn} inX with α(xn, xn+1, xn+1) ≥ b, β(xn, xn+1, xn+1) ≥
b for all n ≥ 0 and xn → x as n → ∞, then α(xn, x, x) ≥ b and
β(xn, x, x) ≥ b.

Then T has a fixed point.

Proof. The result follows from Theorem 2.10. Since by taking CF = 0,
and defining ζ(t, s) = s− t, for all s, t ≥ 0, we obtain

α(x, y, z)β(x, y, z) ≥ b2 ⇒ bGb(Tx, Ty, Tz) ≤ Gb(x, y, z).

2

Corollary 3.2. Let (X,Gb) be a completeGb-metric space and T : X → X
be a mapping satisfying

(x, y, z)β(x, y, z) ≥ b2 ⇒ ζ(bGb(Tx, Ty, Tz), λGb(x, y, z)) ≥ 0,
where λ ∈ (0, 1). Suppose the following conditions hold:
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1. T is triangular (α, β)-admissible type B mapping,

2. there exists x0 ∈ X such that α(x0, Tx0, Tx0) ≥ b and β(x0, Tx0, Tx0) ≥
b,

3. if for any sequence {xn} inX with α(xn, xn+1, xn+1) ≥ b, β(xn, xn+1, xn+1) ≥
b for all n ≥ 0 and xn → x as n → ∞, then α(xn, x, x) ≥ b and
β(xn, x, x) ≥ b.

Then T has a fixed point.

Proof. The result follows from Theorem 2.10. Since by taking CF = 0,
and defining ζ(t, s) = s− t, for all s, t ≥ 0, we obtain

α(x, y, z)β(x, y, z) ≥ b2 ⇒ bGb(Tx, Ty, Tz) ≤ λGb(x, y, z).

2

Remark 3.3. Corollary 3.2 can be seen as a generalization of the well-
known Banach contraction priniciple [5] in the frame work of complete
Gb-metric spaces.

Corollary 3.4. Let (X,Gb) be a completeGb-metric space and T : X → X

be a mapping satisfying
α(x, y, z)β(x, y, z) ≥ b2

⇒ ζ(bGb(Tx, Ty, Tz), Gb(x, y, z)− ψ(Gb(x, y, z))) ≥ 0,
where ψ : R → R is a lower semicontinuous function with ψ−1(0) = (0).
Suppose the following conditions hold:

1. T is triangular (α, β)-admissible type B mapping,

2. there exists x0 ∈ X such that α(x0, Tx0, Tx0) ≥ b and β(x0, Tx0, Tx0) ≥
b,

3. if for any sequence {xn} inX with α(xn, xn+1, xn+1) ≥ b, β(xn, xn+1, xn+1) ≥
b for all n ≥ 0 and xn → x as n → ∞, then α(xn, x, x) ≥ b and
β(xn, x, x) ≥ b.

Then T has a fixed point.
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Proof. The result follows from Theorem 2.10. Since by taking CF = 0,
and defining ζ(t, s) = λs− ψ(s)− t, for all s, t ≥ 0, we obtain

α(x, y, z)β(x, y, z) ≥ b2 ⇒ bG(Tx, Ty, Tz) ≤ Gb(x, y, z)− ψ(Gb(x, y, z)).

2

Remark 3.5. Corollary 3.4 can be seen as a generalization of Rhoades fixed

point result [22] in the frame work of complete Gb-metric spaces.

Corollary 3.6. Let (X,Gb) be a completeGb-metric space and T : X → X
be a mapping satisfying α(x, y, z)β(x, y, z) ≥ 1⇒ ζ(bGb(Tx, Ty, Tz),Gb(x, y, z)) ≥ 0,
for all distinct x, y, z ∈ X. Suppose the following conditions hold:

1. T is triangular (α, β)-admissible mapping,

2. there exists x0 ∈ X such that α(x0, Tx0, Tx0) ≥ 1 and β(x0, Tx0, Tx0) ≥
1,

3. if for any sequence {xn} inX with α(xn, xn+1, xn+1) ≥ 1, β(xn, xn+1, xn+1) ≥
1 for all n ≥ 0 and xn → x as n → ∞, then α(xn, x, x) ≥ 1 and
β(xn, x, x) ≥ 1.

Then T has a fixed point.

Proof. The result follows from Theorem 2.10, by taking CF = 0. Since
by defining ζ(t, s) = s− t, for all s, t ≥ 0, we obtain

α(x, y, z)β(x, y, z) ≥ 1⇒ bGb(Tx, Ty, Tz) ≤ Gb(x, y, z).

2

4. Application

In this section, we present an application of Corollary 3.1 to guarantee the
existence of solution to an integral equation of the form:

x(t)=g(t)+
R 1
0 K(t, s, u(s))ds, t ∈ [0, 1]. Let X = C([0, 1]) be the

space of real continuous functions defined on [0, 1]. It is well-known that
C([0, 1]) endowed with the Gb-metric

Gb(x, y, z) =

Ã
sup
t∈[0,1]

|x(t)− y(t)|+ sup
t∈[0,1]

|y(t)− z(t)|+ sup
t∈[0,1]

|z(t)− x(t)|
!2
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is a complete Gb-metric space with b = 2. Define T : X → X by

Tx(t) = g(t) +

Z 1

0
K(t, s, u(s))ds, t ∈ [0, 1].

Theorem 4.1. Suppose that the following hypothesis hold:

1. K : [0, 1]× [0, 1]×R→ R and g : [0, 1]→ R are continuous,

2. there exists H : [0, 1]× [0, 1]→ [0,∞) such that
|K(t, s, u)−K(t, s, v)| ≤ H(t, s)|u− v|

for all distinct x, y ∈ X, t, s ∈ [0, 1] and u, v ∈ R,

3. supt∈[0,1]
R 1
0 H(t, s)ds <

1
2 .

Then the integral equation int has a solution x ∈ X.

Proof. We define α and β as follows:
α, β : X ×X ×X → [0,∞) are defined by

α(x, y, z) =

(
3 if α(x0, Tx0, Tx0) ≥ b
0 otherwise,

β(x, y, z) =

(
2 if α(x0, Tx0, Tx0) ≥ b
0 otherwsie.

It is easy to see that for all x, y ∈ [0, 1], we have α(x, y, z)β(x, y, z) =
6 > 4 = 22 = b2, as such, we obtain

2Gb(Tx, Ty, Ty) = 2

Ã
2 supt∈[0,1] |Tx(t)− Ty(t)|

!2
= 2

Ã
2 supt∈[0,1]

¯̄̄̄
¯ R 10 K(t, s, x(s))−K(t, s, y(s))ds

¯̄̄̄
¯
!2

≤ 2
Ã
2 supt∈[0,1]

R 1
0 |K(t, s, x(s))−K(t, s, y(s))|ds

!2
≤ 2

Ã
2 supt∈[0,1]

R 1
0 H(t, s)|x(s)− y(s)|

!2
ds

≤ 8 supt∈[0,1] |x(t)− y(t)|2
Ã
supt∈[0,1]

R 1
0 H(t, s)ds

!2
= Gb(x, y, y).

Thus Corollary 3.1 is applicable to T which guarantees the existence of
the fixed point x ∈ X. Thus, x is the solution of the integral equation int.
2
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Conclusion

In this paper, we introduce the notion of b-CF simulation function, (α, β)-
admissible type B mapping and (α, β)-ZF -contraction mapping with re-
spect to ζ in the frame work Gb-metric spaces. Furthermore, we establish
some fixed point results for (α, β)-ZF -contraction mapping in the frame
work complete Gb-metric spaces. Finally, we apply our result to the ex-
istence of a solution of an Integral equation. The obtained results in this
paper generalize, unify and improve the fixed point results of Liu et al.,

[17], Antonio-Francisco et al. [23], Khojasteh et al. [15], Kumar et al.
[16] and other results in this direction in the literature.
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