
DEVELOPMENT OF A PERSONALISED COURSE TIMETABLE

SCHEDULING SYSTEM

AKHIGBE, BENJAMIN OSAZE

16010301027

BEING A PROJECT SUBMITTED IN THE DEPARTMENT OF COMPUTER SCIENCE

AND MATHEMATICS, COLLEGE OF BASIC AND APPLIED SCIENCES

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR

THE AWARD OF DEGREE OF BACHELOR OF SCIENCE

MOUNTAIN TOP UNIVERSITY, IBAFO

OGUN STATE, NIGERIA

2020

ii

CERTIFICATION

This Project titled, DEVELOPMENT OF A PERSONALISED COURSE

TIMETABLE SCHEDULING SYSTEM, prepared and submitted by AKHIGBE

BENJAMIN OSAZE in partial fulfillment of the requirements for the degree of

BACHELOR OF SCIENCE (Computer Science), is hereby accepted.

 (Signature and Date)

MR. J. A. Balogun

Supervisor

 (Signature and Date)

Dr. I.O. Akinyemi

Head of Department

Accepted as partial fulfillment of the requirements for the degree of BACHELOR

of SCIENCE (Computer Science)

 (Signature and Date)

Professor A.P. Olalusi

Dean, College of Basic and Applied Sciences

iii

DEDICATION

This project is dedicated to God Almighty and all the people that supported me

throughout my academic session.

iv

ACKNOWLEDGEMENTS

I owe my profound gratitude to God Almighty who gave the strength, wisdom and

courage, divine help and provision to me from the beginning to the completion of this

work. I express gratitude to my supervisor, Mr Jeremiah Balogun, for his guidance and

support in ensuring the successful completion of this research. God bless you Sir.

I sincerely appreciate the past Dean, College of Basic and Applied Sciences, Dr. Akinwande

A.I., for his fatherly advice, guidance and teachings. My heart-felt gratitude goes to the

Head of Department, Computer Science and Mathematics – Dr. Akinyemi I.O., and all

other members of staff of the department of Computer Science: Late Dr. Oyetunji M.O.,

Dr. (Mrs.) Kasali F.A., Dr (Mrs.) Oladejo Bola, Dr. Idowu P.A., Dr. Okunoye O.B., Dr.

(Mrs.) Oladeji F.A., Mr. Ebo I.O and others to mention but a few.

I acknowledge the constant support of my mentors who had contributed to my academic

achievement. They include: Mr. Tomison Oyegoke, Mr. Asuelimhen Christain, Miss

Fowobi O. and Mr Jeremiah Balogun, I pray God would continue to increase their

knowledge.

I will forever be grateful to my parents Mr. and Mrs. Akhigbe, who sacrificed wealth, time

and other resources for the sake of my success; and my siblings for their prayers and

support. I also want to appreciate Mr. Jean Cole, Mr. Akinlo Oluwasemiloore, Mr

Onwunali Tochukwu, Mr, Solomon Esenyi and all Mountain Top University colleagues

and friends for their prayers and support, and help in one way or the other. God bless them

all greatly.

v

ABSTRACT

The aim of this study is to design and implement an automated personalized course

scheduling system that will optimize the allocation of courses to their respective venues

based on the size of registered students and venue capacity within the acceptable hours of

meetings. This was achieved by eliciting knowledge on the various user and system

requirements of the faculty staff, formulating the objective function and constraint of the

scheduling algorithm, specifying the system design and implementing a prototype system.

Structured interview with department timetable representative were conducted in order to

obtain user and system requirements. Hard and soft constraint of the genetic algorithm were

formulated based on the limitations and feedbacks of timetable representative. System

design was specified using unified modeling language (UML) diagrams such as use-case,

sequence and class diagrams. The system was implemented using the combination of

Hypertext Mark-Up language (HTML), Cascading Styling Sheets (CSS), Bootstrap, and

React JavaScript (JS) framework for web user interface while for the Mobile interface,

UIKit and Material design framework for IOS and Android platform respectively. For

server side, Node JavaScript framework was used for connecting web and mobile interface

to the database while MongoDB atlas for the database implementation. User interface (UI)

and unit testing for the web, was carried out with Jester framework, mobile testing was

done with XCTest and Junit for IOS and android respectively while the application user

interface testing was carried out using Postman.

The results showed that the primary user was responsible for creating course scheduling

and managing information regarding a department which in return lead slow response time,

the results showed that the secondary users can only access the

vi

system using their school email or Id and passwords provided by the system administrator

of the system. The result also shows that the primary user is can view course schedules

based on their registered courses, set reminder and make create a conversation.

In conclusion, this study has designed and implemented a system to solve the currently

challenge faced in scheduling of courses in academic institutions. The study was able to

identify the respective user and system requirements of the system and appropriate designs

were used to specify these requirements provided by the users using use-case and class

diagrams. The system database was implemented in order to suit the mechanisms and inner

workings of the proposed system.

vii

TABLE OF CONTENTS

Content Page

TITLE PAGE i

CERTIFICATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

CHAPTER ONE: INTRODUCTION

1.1 Background to the Study 1

1.2 Statement of the Problem 2

1.3 Aim and Objectives of the Study 2

1.4 Research Methodology 3

1.5 Scope and Limitation of the Study 4

1.6 Significant of the Study 4

1.7 Justification of the Study 5

1.8 Arrangement of Thesis 5

CHAPTER TWO: LITERATURE REVIEW

2.1.1 Classification of Scheduling 6

2.1.2 Timetable Scheduling 7

2.1.3 Scheduling System Algorithms 8

2.2 Software Development Life Cycle (SDLC) 8

2.3 Genetic Algorithm 12

viii

2.3.1 Genetic Algorithm Operation 12

2.3.2 Reasons for using Genetic Algorithm 15

2.3.4 Uses and Limitation of Genetic Algorithm 17

2.4 Theory of Natural Selection 17

2.5 Fitness Function 18

2.6 Review of Related Works 18

CHAPTER THREE:RESEARCH METHODOLOGY

3.1 Introduction 21

3.1.1 Functional and Non-Functional Requirements of System 22

3.1.2 Hardware Requirements 23

3.1.3 Software Requirements 24

3.2 Constraint 24

3.2.1 Hard Constraint 24

3.2.2 Soft Constraint 26

3.3.3 Method of Software Development 26

3.2 System Analysis and Design 28

3.2.1 Objectives of the Design 29

3.2.2 Factors considered in the Design 29

3.3 System Modeling 29

3.3.1 UML Diagram 29

3.3.2 System Implementation Tools 36

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1 introduction 41

4.2 Implementation of System Database for Course Scheduling System 47

4.3 Result of User Interface Implementation. 56

ix

4.4 Discussion of Result 85

CHAPTER FIVE: CONCLUSION AND RECOMMENDATION

5.1 Summary 81

5.2 Conclusion 81

5.3 Recommendation 82

References

Appendix I – Source Code of Models

Appendix II – Source Code of Views

Appendix III – Source Code for Controllers

x

LIST OF TABLES

Page

Table 2.1 Comparison of Natural Evolution and Genetic Algorithm Terminology 19

Table 3.1 Software Requirements 25

xi

LIST OF FIGURES

Figure Page

Figure 2.1 Software Development Life Cycle 10

Figure 2.2 Genetic Algorithm Operation 16

Figure 2.3 Process of Genetic Algorithm 19

Figure 3.1 Extreme Programming (XP) Methodology 27

Figure 3.2 Context Diagram 31

Figure 3.3 Use Case Diagram 32

Figure 3.4 Sequence Diagram 34

Figure 3.5 Activity Diagram 35

Figure 3.6 State Diagram 37

Figure 4.1 Database coursekit showing its collections 42

Figure 4.2 Collection coursekit.courses showing the list of course and attributes 43

Figure 4.3 Collection coursekit.lecturer showing the list of lecturer and attributes 45

Figure 4.4 Collection coursekit.room showing the list of rooms and attributes 46

Figure 4.5 Collection coursekit.timetable showing the list of timetables and 47

attributes

Figure 4.6 Collection coursekit.user showing the list of students and attributes 48

Figure 4.7 Collection coursekit.Klasses showing the list of course and attributes 49

Figure 4.9 Collection coursekit.discusssion showing the list of discussion and 51

attributes

Figure 4.10 Collection coursekit.comments showing the list of comments and 52

attributes

Figure 4.11 Collection courskit.admin showing the list of admin and attributes 53

Figure 4.12 Screenshot of login page of the Admin Interface 54

xii

Figure 4.13 Screenshot of System Admin dashboard upon login 55

Figure 4.14(a) Screenshot of Admin Interface for creating a new Room 57

Figure 4.14(b) Screenshot of Admin Interface for managing existing Room 57

Figure 4.15(a) Screenshot of Admin Interface for creating a new Course 58

Figure 4.15(b) Screenshot of Admin Interface for managing existing Courses 58

Figure 4.16(a) Screenshot of Admin Interface for creating a new Lecturer 59

Figure 4.15(b) Screenshot of Admin Interface for managing existing Lecturer 60

Figure 4.16(b) Screenshot of Admin Interface for viewing a lecturer information 60

Figure 4.17(a) Screenshot of Admin Interface for creating a new Class 62

Figure 4.17(b) Screenshot of Admin Interface for managing existing Classes 62

Figure 4.18(a) Screenshot of Admin Interface for creating a new Student 63

Figure 4.18(b) Screenshot of Admin Interface for managing existing Student. 64

Figure 4.18(c) Screenshot of Admin Interface for viewing the information of 64

student

Figure 4.19(a) Screenshot of Admin Interface for creating a new Timetable 65

Figure 4.19(b) Screenshot of Admin Interface for managing existing Timetable 65

Figure 4.20 Screenshot of Login page for Student Interface 67

Figure 4.21 (a) and (b) shows a Screenshot of the Respective Student Interface for 68

For Resetting Password and Creating a New Password

Figure 4.22 (a) and (b) shows a Screenshot of the Respective Student Interface for 69

viewing registered courses and details of a course

Figure 4.22 (c) shows a Screenshot of the Respective Student Interface for 71

adding a course

Figure 4.23 shows a Screenshot of the Respective Student Interface for viewing 73

Information about a lecturer handling a course

xiii

Figure 4.24 (a) and (b) shows a Screenshot of the Respective Student Interface 74

for viewing information of a course schedule for a student based on

registered course and day of the week

Figure 4.24 (c) shows a Screenshot of the Student Interface for setting reminder 75

Figure 4.25 (a) and (b) shows a Screenshot of the Respective Student Interface for 76

when no conversation is available and creating a conversation

Figure 4.25 (c) and (d) shows a Screenshot of the Respective Student Interface 77

for viewing and commenting on a conversation

Figure 4.26 (a) and (b) shows a Screenshot of the Respective Student Interface 79

for viewing and editing student profile

1

CHAPTER ONE

INTRODUCTION

1.1 Background to the Study

Scheduling is one of the imperative assignments that are experienced in

everyday lifestyle circumstances. In the real world, a series of choices to be made to

solve the dilemma always arise. Many fields like school, travel, entertainment etc. are

all about planning and scheduling (Rohin, 2016). According to Wren (1996),

Scheduling is the allocation, subject to constraints, of resources to objects being place

space-time, in such a way as to minimize the total cost of some set of the resources

used. In the educational sector, timetable scheduling is an essential component in which

activities are logically structured in a time-wise manner, presented on papers and,

placed on notice boards in order to avoid conflicts of event.

However, the use of paper and notice board-based schedules presents the

challenges of timetable forgetfulness, misinterpretation, wastage of paper, cluster of

schedules to fit into a specific paper size, allocation of large number of student to more

than the capacity of the room, cost of rescheduling and slow time to reach for the

rescheduled timetables (Muhammad, Mustapha, & Yahaya, 2017). However,

automated timetable system that is currently existing is faced with the challenges of

lack of user-friendliness, cluster of schedules, and inability to personalize timetable

based on registered courses.

hence, there is a great need for an automated personalized course scheduling system.

The automated timetable scheduling system comprises of a mobile and web-

based interface were the web interface is implemented for scheduling timetables and

the mobile interface for accessing, registrations of courses and enforcing schedules

(setting reminders) based on user category and preference. In this system, genetic

2

algorithm was employed as the preferred choice of scheduling optimization algorithm

since it offers a favorable compromised between the quality of solution and run time

spent finding it (Rivera et al,. 2019).

1.2 Statement of the Problem

For academic institutes such as universities, creating an error-free timetable is

a complicated task and a lot of constraints arise when doing so. these constraints are

divided into two types, one is hard constraints such as time conflicts, room assignments,

etc. and the other one is soft constraints such as departmental preference. Here, hard

constraints cannot be avoided when creating timetable (Chaya et al., 2016).

Generally, scheduling of courses in many universities is prepared manually

based on the level of the administrator experience. Facilities and resources such as

courses, instructors, rooms and, laboratories etc. are consider by the administrator when

creating a timetable. Therefore, based on all the mentioned constraint, the manual based

approach for creating a timetable is a very exhaustive and time-consuming task which

leads to issues of resources optimization due to inadequate lab and hall space

(Mohammed et al., 2017).

However, automated timetable system that is currently existing is faced with the

lack of user-friendliness, challenges of cluster, and inability to personalize timetable

based on registered courses.

1.3 Aim and Objectives of the Study

The aim of this study is to design and implement an automated personalized

course scheduling system that will optimize the allocation of courses to their respective

3

venues based on the size of registered students and venue capacity within the acceptable

hours of meetings.

The specific objectives of the study are to

i. elicit knowledge on the various user and system requirements of the faculty staff;

ii. formulate the objective function and constraint of the scheduling algorithm based

on (i);

iii. specify the system design; and

iv. implement of a prototype system.

1.4 Research Methodology

In order to meet up with aforementioned objective of this study, the following methods

will be adopted.

a. Structured interview with department timetable representative were conducted in

order to obtain user and system requirements.

b. Hard and soft constraint of the genetic algorithm were formulated based on the

limitations and feedbacks of timetable representative.

c. System design was specified using unified modeling language (UML) diagrams

such as use-case, sequence and class diagrams

d. The system was implemented using the combination of Hypertext Mark-Up

language (HTML), Cascading Styling Sheets (CSS), Bootstrap, and React

JavaScript (JS) framework for web user interface while for the Mobile interface,

UIKit and Material design framework for IOS and Android platform respectively.

e. For server side, Node JavaScript framework was used for connecting web and

mobile interface to the database while Mongodb atlas for the database

implementation.

4

f. User interface (UI) and unit testing for the web, was carried out with Jester

framework, mobile testing was done with XCTest and Junit for IOS and android

respectively while the application user interface testing was carried out using

Postman.

1.5 Scope and Limitation of the Study

This study is limited to the development of automated timetable scheduling for

scheduling of courses for departments in a university. The system is limited to the

departmental timetable representative and student. Faculty based courses was not taken

in consideration in the development of the schedules.

1.6 Significant of the Study

a. For Mountain Top University

The system would drastically minimize the time and resources expended on

schedules, thereby allowing the departmental timetable representative more time to

focus on other pressing matters of the institute which in return will lead to greater

productivity. It help improve flexibility in timetable construction.

b. For educational system and other educational institutes:

Educational institutions can implement the system and benefit from a computed

scheduling approach. It would help to ease the administration of the school and, if

possible, minimize costs by providing an improved timetable schedule.

c. For research

The development of the system would make a significant contribution to the

improvement of computer science by integrating several algorithms. It would also allow

the rising artificial intelligence community to take a step forward. The research will be

5

part of the portfolio that demonstrates the researchers' abilities to solve difficult issues.

(Celiz, 2018).

1.7 Justification of the Study

In an education system, most especially a tertiary institution the problem of

clashing course and well as cluster of courses may arise due to the use of traditional

timetable as it is a generalized format for course scheduling. A personalized automated

course scheduling system will improve the flexibility of a traditional timetable

construction, productivity as well as vast academic practices, thus, the focal point of

this study.

1.8 Arrangement of Thesis

This chapter presents the introductory aspect of the project. Chapter two

contains a literature review on the said topic. Research on already existing works to get

detailed information about features and functionality. Other observations were from

journals and articles on the concept of Automated timetable scheduling system. Chapter

three is the Methodology; this chapter provides product description, its function design

techniques, and various UML diagrams. Chapter four is the implementation and testing.

The chapter describes how the application was developed, the developmental

techniques, and the reason for the choice of techniques. It also describes the testing

techniques and provides results showing that the web application is in conformance

with the requirement specification. Chapter five is the recommendation and conclusion.

It summarizes the project experience and discusses how the project can be developed

further.

6

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

For a number of decades scheduling has been the subject of intense research.

Generally scheduling and timetable are commonly considered to be two distinct tasks

with the assumption that scheduling is used to as generic term to cover specific

categories of problems and timetable for special case of generic scheduling activities

(Sandhu, 2003). However, scheduling refers to the restricted allocation of resources to

objects, to be put in space-time in order to reduce the overall expense of the resources

needed and Timetable construction is the allocation, subject to constraint of given

resources to objects being placed in space-time in such a way as to satisfy or nearly

satisfy a desirable set of possible objective (Sandhu, 2003).

Thus, the term scheduling covers all aspect of the activity of allocating resource

and at the same time, satisfying some predetermined objective. However, due to the

enormity of the problem, it becomes necessary to classify the scheduling problem int

specialized activities such as timetabling. Thus, in practical terms the timetabling

problem can be described as scheduling a sequence of lectures between teacher and

students in prefixed time period, satisfying a set of varying constraints (Sandhu, 2003).

2.1.1 Classification of Scheduling

Scheduling can be generally classified into one of the following types.

a. Semi-active Scheduling

These workable schedules are accomplished as early as possible by sequencing

operations. No procedure may be begun beforehand without modifying the processing

sequences in a semi-active schedule(Rohini, 2016).

7

b. Active Scheduling

This feasible schedules are schedules in which no process will start early

without interruption or breaching a precedence cap. Semi-active timetables are still

active. An optimal strategy is often active in order to restrict search space safely to the

collection of active programs (Rohini, 2016).

c. Non-delay Scheduling

This viable schedules are schedules under which there is no uninterrupted machine

until it will start to function. The schedules for non-delay are necessarily active and

thus semi-active (Rohini, 2016).

Examples of scheduling system includes, Job scheduling system, Parallel

Machine Scheduling, Group Job Scheduling , Resource Constraint Scheduling,

Timetable Scheduling and Dynamic Task Scheduling etc (Rohini, 2016).

2.1.2 Timetable Scheduling

A timetable is an organized list, usually set out in tabular form, providing

information about a series of arranged events in particular, the time at which it is

planned these events will take place (Onuwa, 2015). When Constructing a timetable

many approaches and models have been proposed for dealing with the variety of

timetable problem. The problem ranges from the construction of semester or annual

timetable in school, colleges and universities to exam timetabling at the end of these

periods (Sandhu, 2003).

In academic intuitions for instance, there are two types of timetable that is

recognized which are course and the examination schedules (Herath, 2017). When

creating a timetable schedule, course should be assigned to a specific timeslot for five

working days of the week taking into consideration the specific classroom suitable for

the respective courses and the registered number of students. Thus, a feasible timetable

8

in academic institution is a description of the movement of students and staff from one

classroom to the next one, the location of the classroom, and the timeslot (Herath,

2017).

Although the manual approach of solving time problem is time consuming and

inaccurate, it was observed by Herath (2017), that as the complexity of university

increase it become necessary to adopt automate scheduling method to ease the task of

timetabling since as the number of student with diverse interests, and requirements

increases and the teaching technique program get complicated with the growth of

university, the number of growing constraint grows resulting to an exponent rise in the

computation time, making it an NP-Complete operation.

2.1.3 Scheduling System Algorithms

The early technique used in solving timetabling problem were based on a

simulation of the human approach in resolving the problem. These included techniques

based on successive augmentation that were called direct heuristics. These techniques

were based on the idea of creating a partial timetable by scheduling the most

constrained lecturer first and then extending this partial solution lecture by lecture until

all lectures were scheduled (Sandhu, 2003). Evolutionary technique has also been used

to solve the timetable scheduling problem which includes algorithms such as genetic

algorithm,Tuba Search. The use of artificial with the combination of operation

technique has also been used in resolve the problem of timetable scheduling.

2.2 Software Development Life Cycle (SDLC)

Software Development Life Cycle (SDLC) is a framework that defines each

phase of the steps involved in software development. It covers the comprehensive

software design, delivery, and maintenance scheme. SDLC describes the entire

9

development process shown in fig 2.1 i.e. all the activities involved in the preparation,

production, testing, and delivery of a Software Product. Methodologies in application

development have improved progressively over time.

System development in application engineering can be referred to as a series of

steps, activities, methods, tools, and techniques which are used in developing web

application products to produce a project. Many believed that the major reason for

application failure is a result of a lack of planning and system development

methodology. To avoid failure of whatsoever, proper planning of a project is

encouraged. However adopting a particular methodology would not always guarantee

success in a project (Bagul, 2015).

The basic stages for developing an application are listed as follows:

Requirement analysis, Design, Implementation, Testing and Maintenance as shown in

Figure 2.1. The software development cycle can be divided into three different models;

incremental phase, iterative phase, and iterative-incremental phase

2.2.1 Incremental phase

The incremental phase of a software development life cycle is a traditional and

highly sequential model that relies heavily on upward planning through documentation.

Requirements for a software project are thoroughly defined upfront in this model.

Because of this reason, the model is suitable for developing complex systems.

Examples of this model are the waterfall model, Nolan’s stage model, B, and V-model.

The Waterfall model encourages specification of requirements before design and also

design before coding and reduces development and maintenance cost by generating

documents that can be utilized in test and maintenance.

10

Figure 2.1 Software Development Life Cycle

(Source: Bagul, 2015)

11

The incremental phase life cycle such as the V-model, Waterfall model is a good

development process but it is not a suitable choice of methodology for this project due

to the following disadvantages

a.The next phase cannot be started without completing the previous stage and

because of this, it is termed a rigid methodology.

b.It usually takes a longer time to develop an application product using this

methodology as compared to others. Considering the time frame of this frame of

this project which is a matter of a few month.

c.It lacks the customer’s involvement after this requirement definition is completed

and is not suitable for this project.

2.2.2 Iterative model

This process starts with a simple implementation of software requirements. An

iterative model, the model stages of development can start from any phase which

basically means that the next phase can start even if the previous one is not yet

completed. It can start without fully specified requirements. The model involves the

end-user in the development stages of the product. Examples of iterative models include

joint application development (JAD) prototyping and rapid application development

(RAD).

2.2.3 Iterative-incremental model

This is a combination of iterative and incremental models. It is believed to be

the fastest and latest model for developing software applications. It is lightweight and

iterative, able to adapt to changes, ensure that the production of quality of application

meets the needs of the end-users. The model is divided into broad groups:

a.Agile method e.g. Extreme programming and scum; and

b.Spiral model e.g. Rational unified process (RUP)

12

The agile method is the most widely used in this group. According to

(Pressman, 2010) extreme programming method function on iterative development,

recurrent discussion with the consumer, needing minor and regular publication, and

projects are delivered just in time.

2.3 Genetic Algorithm

Genetic Algorithm (GA) is an efficient heuristic search algorithm focused on

evolution and natural selection. GA is working towards sustainable options in the

design space utilizing the survival of the fittest concept. According to this theory, the

best-suited human should overshadow the others. There is a demographic in every

generation and every member of this demographic is a possible solution to the problem.

Each individual in this population is going through an evolution, where only the

strongest individual survives.

Individuals that are best suitable for each age should have an enhanced

probability of replication contributing to better replication. Two good individuals can

produce an offspring that is better than their parents because they can inherit a mixture

of genes from both parents and end up surpassing them. Because of this, every

generation should aspire to change and become better adapted to its environment, just

as in nature. (Hakan, 2015).

2.3.1 Genetic Algorithm Operation

In its natural form, a genetic algorithm consists of the following genetic

operations, selection, reproduction, crossover, and mutation as shown in Figure 2.2.

a. Selection

The selection process is used for choosing the most appropriate individual to be

the progenitors of the next generation of the population. In nature there are various

13

Figure 2.1: Genetic Algorithm Operations

(Source: Mijwel, 2016)

14

factors that make it possible for an individual to have offspring. Firstly, it lives either

because the predators do not consume it or because it can procure food. Secondly,

you're looking for a reproductive mate. The last consideration is that both individual to

create a new one. However, in particular the greatest individual cannot replicate, but

another individual of worst qualities is conceivable.

In genetic algorithm, selection is a series of rules for the choosing of the next

generation parents. These parents reproduce and produce offspring (genetic crossing).

Selection per tournament is a method commonly used in genetic algorithms. This

scheme entails selecting a certain number of people randomly from the population. The

best of all is selected by the father among these people. The procedure is replicated

when choosing the mother: a few people from the community is selected randomly and

the person with the highest quality is selected. This method maintains a minimum of

variation as not all the greatest person in the community chooses to have descendants

(Mijwel, 2016).

b. Reproduction

Reproduction in this context involves cloning an individual. In other words, an

individual can move without change to the next generation. Reproduction is thus a

genetic operator that rejects crossing and mutation as the latter modifies individuals that

are passed to the next generation. The aim of breeding is to retain individuals with a

high degree of health in the next generation. The idea of reproduction concerns the idea

of elitism that preserves the best people from generation to generation, so that their

knowledge is not wasted (Mijwel, 2016).

15

c. Crossing

The individuals chosen for the preceding phase are crossed or combined during

this phase. In other words, the genes of both parents are combined together to cause the

multiple offspring (Mijwel, 2016).

d. Mutation

The Mutation is seen as an integral operator, which gives the individuals of the

population a minor aspect of randomness. Although the crossing operator is considered

responsible for the search for potential solutions, it is for the mutation operator to

increase or decrease the field of search of genetic algorithms and to encourage

heterogeneity (Mijwel, 2016).

2.3.2 Reasons for using Genetic Algorithm

Reason for using genetic algorithm can also be referred to as the advantage of

genetic algorithm and they are discussed as follows: effective with regards to large

number of variables, no derivative information is needed, effective for machines in

parallel, optimizing variable surface at very complex cost, provide a list of best

variables, not just one solution and develops data or analytic functions produced by

numerical data experiment.

2.3.3 Genetic Algorithm Process

A chromosome populace with a random gene array is initiated by the following

steps in a genetic algorithm as shown in Figure 2.3. Produce an initial chromosome

population, assess the adequacy of each (individual) population chromosome, based on

the initial findings, pick chromosomes for mating, develop offspring by crossing the

chromosomes selected, randomly mutate genes and repeat steps 3-5 to establish a new

population. Stop the algorithm until, after a predetermined number of generations, the

best answer has not improved.

16

FIGURE 2.2 PROCESS OF GENETIC ALGORITHM

(Source: Herath, 2017)

17

2.3.4 Use and Limitation of Genetic Algorithm

The genetic algorithm (GA) produced better scheduling frameworks. It gives

the user the flexibility of choice within a set of different schedules and can be applied

to other highly constrained combination optimization problems. Further, some data

mining issues without having any solution and lottery games with probabilistic theory

also use this algorithm. The major disadvantage of the GA is when the population is

large the algorithm execution time also increases. Chiu-Hung Chen and team workers

supply evidence with the use of GA for solving multimodal manufacturing optimization

problems. GA itself takes a long time to be executed and requires a certain machine

configuration. This can be a problem for timely execution. The second limit of the

algorithm is the importance of the random part. Due to a huge set of solutions, the

algorithm cannot guarantee to get the best result or the achievement of a certain level

of fitness.

2.4 Theory of Natural Selection

The history of the species is focused on Preserving favorable variations and

removing unfavorable variations. The variability applies to the differences exhibited

by the members of the species as well as the offspring of the same parents. There are a

lot more people born than they will live, and there's a constant fight for survival.

Individuals with an edge have a better chance of survival, i.e. the survival of the fittest.

For example, Giraffes with long necks can have food from tall trees as well as from the

ground, on the other hand, goat, deer with small necks can have food only from the

ground. As a consequence, natural selection plays a vital function in this evolutionary

cycle. The beneficial (fit) person lives on parallel lines in the genetic equation in each

iteration and the unfavorable (unfit) person dies out. With each step, the cycle begins

18

and persists until the point at which secure or streamlined approaches are achieved,

which can be referred to as adaptability (Mijwel, 2016). Table 2.1 shows the commonly

used terms in natural evolution and genetic algorithm

2.5 Fitness Function

The fitness function is an indicator of the individual's efficiency. The fitness

feature shall be structured to provide an evaluation of the individual's success in the

present population. The fitness task based on objective merit is followed by the

selection of process (Kumar, 2012). This fitness is used in the actual selection process

shown in equation 2.1

minf(x) = 50(x(1)! − x(2))! + (1 − x(1))! (2.1)

2.6 Review of Related Works

Chaya Andradi and Saminda Premaratne, (2016), worked on Utilization of

Timetable Management System to a Medium Scaled University in order to solve the

problem of resource optimization. Genetic algorithm was employed in this study and

the used of PHP server as scripting language for coding process. MVC architecture was

used and MYSQL database management system for the relational database

management System. The overall system developed was user friendly and time

effective but when tested with large set of data the performance of the genetic algorithm

reduces to do it fitness function. However, resource optimization process was achieved.

The study was unable to personalize timetable and the performance declined as the

dataset increased.

Alinaswe Siame and Douglas Kunda,(2016), developed university course

timetabling using Bayesian based Optimization Algorithm. The algorithm was

19

Table 2. 1 Camparison of Natural Evolution and Gentic Algorithm Terminology

Natural evolution Genetic algorithm

Chromosome String

Gene Feature or character

Allele String position

Locus Structure or coded string

Phenotype Parameter set, a decoded structure

(Source: Mijwel, 2016)

20

employed in this research developing a model that help in the allocation of course based

by predicting possible outcomes. The allocation course by predicting the preferred days

and timings of lecturers was achieved. However, this approach is highly prone to

technical challenges and mistakes due to misspecification of the model.

Muhammad, Mustapha, and Yahaya (2017) Designed and implemented an

android web-based customization system which is limited to a web-based system for

scheduling and android based system for students. The research focused object-oriented

design approach which was used data manipulation and UML Model. The system was

able to scheduling, customization and provide on-the go reminder facility for timetable

schedules but the system was not user-friendly.

21

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

Scheduling is continuously said to be a complex optimization issue that has

appeared to be related to the clique of minimization issue which is called NP-Complete.

In such a kind of issue where no proficient algorithm is known, it is perfect to apply

genetic algorithm to such an issue which is utilized for searching a solution space. The

general constraint for timetable scheduling can be classified in two types which are the

hard constraint and soft constraints. A practical and feasible timetable scheduling must

satisfy all the hard constraints with no consideration while the soft constraint are not

absolutely essential but the amount of related violation should be minimized to the

maximize the perfection of the schedule. To implement the Course Scheduling System,

users and systems must meet a number of requirements that are typically known as

functional and non-functional requirements.

3.1.1 Functional Requirement analysis

This is a summary of the system operation and components. it is liable for the

inputs, actions, and outputs of the software system. The system is evaluated using the

necessary unified modeling languages. Therefore the functional requirements for

developing the system by users were as follows:

a. The system will only allow authorized students access to the system using

usernames and passwords provided by system administrator;

b. New student and existing student must be able to change their default passwords

to their preferred password;

c. The system must be able to create an initial population when at initial stage for

creating a schedule

22

d. The system must be able to assign a fitness point for resolving clashes when two

or more course are allocated to the same time

e. Student must be able to view course based on the registered courses

3.1.2 Non-Functional Requirement analysis

This determines the system's quality function. it is a set of standards that are

used to test the specific functionality of a system. It enables the ability to impose

restrictions or restrictions on the system design across the different agile backlogs. The

external limitation of the system should include:

a. Accessibility: tackles unequal app-related issues Disability Training for men. As

regards online usability, that means Disabled people should experience, grasp,

process, and communicate similarly Or resources and websites.

b. Usability: it is designed to be efficient, reliable, and competitive. Usability

includes the design of user experience. This could include general aspects that

affect all and do not impact people with disabilities negatively.

c. Inclusion: addresses ethnicity and encourages the inclusion of all residents as far

as practicable. This is also recognized as a uniform style in certain regions and

For everything, architecture.

d. Security: the mechanism for enforcing activities and processes intended to safely

monitor and preserve knowledge is defined in terms of information management

security. The program was built to adjust device storage control permissions only

from the system data administered; backup every 24 hours of the system data and

backup copies in a secure place that is not in the same building as the network.

This system will use special encryption techniques in securing users’ data,

communication between the system’s data server and clients will be authenticated

in all external correspondence.

23

e. Authentication: authentication is the method of verifying a person's or device's

identification in computing. It's used to figure out what someone or something

really is, whether or what that is.

f. Authorization: Authorization refers to the method of assigning rights to systems

and, generally, to users. This varies from authentication which is the process

used to identify a user. Once identified(reliable), the privileges right, property,

and permissible actions of the user are determined by authorization.

g. Integrity Control: Integrity in terms of data and network protection is

requirement that information can only be obtained by those who are allowed to

do so.

h. Reliability: A device is capable of executing the necessary tasks over a given

amount of time, under certain circumstances.

i. Confidentiality: is the degree to which the information program preserves

confidential data and enables only permitted access to the data

j. Dependability: is the durability of a computer system to deliver a function that

can be trusted by consumers.

3.1.3 Hardware requirements

For reliable and productive project efficiency, certain hardware requirements

must be fulfilled which are as follows: a web server with a considerable amount of large

RAM and hard disk, an Intel i5 macOS with a minimum version of Mojave (version

10.1) and 8 GB ram size, an IOS 12.4 (minimum, iPhone and iPad users), a wireless

router or alternative internet service provider (ISP) and Uninterrupted power supply

(UPS) or Inverter.

24

3.1.4 Software requirements

For efficiency of use and to have system performance in developing of software

various software requirement must be met as showed in Table 3.1.

3.2 Constraints

Constraints are limits which are beyond the project team control and need to be

addressed. They are not conflicts actually. The project manager should, however, be

mindful of the limitations since they are limitations within the project. For instance,

date constraints mean that some events (perhaps the project's end) need to take place

on certain dates. Resources are almost always a constraint since in an unlimited supply

they are not available. (Life cycle for time table).

a. 3.2.1 Hard constraints

A timetable that violates a hard constraint is not a viable solution, and the

scheduling algorithm must be remedied or refused. Hard constraint contains First Order

Conflicts (Life cycle for time table).

i. No student can be assigned to more than one course at the same time

ii. A lecturer cannot teach more than one class at the same time

iii. The room should satisfy the feature required by the course.

iv. The number of students attending the course should be less than or equal to the

capacity of the room.

v. No more than one course is allowed at time slot in each room.

vi. To Generate the timetable based on the number of periods and time schedule.

vii. All the available courses must be entered in the timetable with flexibility for

multi-period sessions.

viii. Lecturers teach at their available schedule.

25

Table 3.1 Software Requirements

Platform Requirements

Web user interface HTML, Bootstrap 4

Web Client-side scripting language React JS

Mobile client-side language Swift (IOS) and Kotin (Android)

Server-side language Node JS

Database Mongodb

Web server Heroku (sever-side) and Netlify (client-

side)

26

ix. Classes can only be scheduled in a free room.

3.2.2 Soft constraints

Soft constraints are less important than hard constraints, and it is usually

impossible to avoid breaking at less some of them. Whichever timetabling method is

applied, timetable are usually rated by a penalty function, which calculates the extent

to which a timetable has violated its soft constraints. Some soft constraints are more

important than others, and this is often specified with a primary value (Life cycle for

timetable). Soft constraint are less important than hard constraint, and it is generally

difficult to prevent violating at least any of them. Whatever method of scheduling is

used, timetable are usually calculated using a penalty function to measure the extent to

which a schedule has breached its soft constraint. Some soft constraint are more

important than others and sometimes a priority value is defined.

i. A student has attend only one course in a day.

ii. A student has attend more than two courses consecutively.

iii. A lunch break must be scheduled.

iv. Lecturer’s daily lecture hours should be restricted to be within the allowed

maximum hours.

v. Lecturer should have normalized distributed load based on the instructor pool of

subjects.

3.3.3 Method of software development

Extreme programming (XP) is probably the best known and commonly used

agile approaches. It was thought that Beck coined this name in 2002, when the method

was formulated by pushing recognized good practice, such as iterative development, to

‘extreme’ levels (Sommerville, 2011). it is methodology is very flexible and make the

use of iterative development a central focus of it as shown in Figure 3.1.

27

Figure 3.1: Extreme Programming (XP) Methodology

28

In extreme programming, every contributor to the project is an integral part of

the whole team. The team form around a business representative called “The

Customer”, who sits with the team and works with them daily (Jeffries, 2011). Mostly

extreme programming is idea for software environments that is dynamically changing

based the customer requirement. extreme programming is set up for small group of

programmers between 1 and 12 which enable easy testability of system requirements.

According to (Well, 2013), the main goal of is to deliver software that is needed when

it is needed. Due to this reason and the aforementioned above extreme programming

was the preferred choice for developing the Automated timetable scheduling system

since the system relies on tweaking and managing constraint.

3.2 System Analysis and Design

System analysis is the method of gathering and interpreting the data, diagnosing

issues, and proposing changes to the program by utilizing the details. System design

involves analyzing and configuring the necessary components of hardware and

software to support the architecture of a solution. The design process transforms the

basic concept specifications into a robust and accurate device specification. Many of

the most relevant tasks in this process are:

a. Identification of all necessary data to handle a course scheduling system and

carrying out all required operations for the system user;

b. Characterization and documentation of all related entities required in the

implementation of a course scheduling system.

c. System components design: coherent diagram for unified modeling language

(UML) shows the relationship between the course scheduling system, the

29

structures, inputs, outputs, central processing, handling, device Interfaces,

technical and system-wide architecture;

d. Carry out design procedures to ensure sure everything is programmable and

fully technically; and

e. Beginning development of approaches to user support and system maintenance

afterwards.

3.2.1 Objectives of the Design

The objective of the design is to create an automated personalized course

scheduling system that is ease the creation of course schedules and give student

adequate access to the schedules based on registered courses.

3.2.2 Factors considered in the Design

The following factors were put into consideration during the design of the

system. User friendliness, flexible timetable construction, effective execution of

academic activities, programming paradigm and organization of system components

3.3 System Modeling

System modeling is a method abstracting and organizing essential aspects of

how the system appears. It involves the desiging of the software application. Modeling

is done prior to coding of the system. In simulation of the system, Unified Modeling

Language (UML) tools were used.

3.3.1 UML Diagram

This is a system notation for object-oriented models which provides a collection

of modeling conventions for defining or representing an object software system. In its

field of system analyzes and development, UML has become an Object Modeling

Standard, introducing a number of techniques (Onuwa, 2015). Hence it is the pereffered

30

choice for this project. To model a system, UML provides 10 different diagrams. The

following diagram can be found as follows: Use case diagram, Class diagram, Object

diagram, Sequence diagram, Collaboration diagram, State diagram, Activity diagram,

Component diagram, Deployment diagram and Package Diagram. In this project, The

Context flow diagram, The Use case diagram, Class diagram, Sequence diagram,

Activity diagram and state diagram will be used for modeling the system.

3.3.2 Context flow diagram

The context diagram is used to evaluate the systems context and limits to be

modeled: what objects are modeling inside and beyond the system and what are the

system 's relation to these external entities as shown in Figure 3.2. In order to describe

and explain the software device constraints, a background diagram, also called a data

flow level 0 diagram is drawn. The knowledge flows between the system and external

actors are defined. The whole system is displayed as a single operation.

3.3.2 Use Case diagram

The use case diagram is primarily designed to capture the system 's dynamic

aspect. It is used to identify system requirements, including internal and external

influences. Most of these requirements are design requirements. Thus, when the system

is analyzed to gather its functionality, use cases are prepared and actors are identified.

The use case diagram was used to describe the functions provided by the system that

have a visible effect on the various actors involved in system use, such as the system

administrator, lecturers and students who are key users of the system. The recognition

of actors and use cases leads to the system boundary concept, which is to differentiate

the tasks carried out by the system and the tasks carried out by its environment.

The case diagram shown in Figure 3.3 demonstrates the definition by using the

proposed structure of actors along with their respective activities. The use-case diagram

31

Figure 3. 2: Context Diagram

32

Figure 3. 3: Use Case Diagram

33

shown in Figure 3.3 shows a description of the actors alongside their respective

activities using the proposed system.

i. System Administrator: is the super-user of the system. He is responsible for

creating access to the system by an authorized user and create course

schedules. He is also referred to as the timetable departmental representative.

The primary responsibilities of the system administrator are to: add student

in a department into the system; create lecturer room in an institute; add

lecturer in a department into the system; add Course for a particular

department; allocated class for a course in a department and create course

schedules

i. Student: is the primary user of the system. The primary responsibilities of

students include viewing course schedules, viewing information lecturer

handling a course; viewing information regarding a course; setting reminder

and create conversation.

3.2.3 Sequence diagram

This explains how objects communicate with each other through messages

during the execution of a use case or any process. They demonstrate how messages are

transmitted and received between objects and the sequence of message transmission as

seen in Figure 3.4. It also explains how operations are performed on a time-by-time

basis (Onuwa, 2015).

3.2.4 Activity diagram

Activity Diagram explains the sequential movement of business or use case

operation. It can also be used for modelling actions that are carried out while an

operation is carried out and the results of such actions as shown in Figure 3.5. It explains

how actions are mutually related (Onuwa, 2015).

34

Figure 3.4: Sequence Diagram

12: Broadcast Timetable

11: Specify Other Constraint

9: Specify Timing Constraint

8: Input Courses

6: Input Lecturers

4: Input Classes

3: Input Rooms

2: Specify Input

10: Send Generated timetable

7: Generate Timetable

5: Set Allocation

1: Invoke

Timetable Writer Timetable Generator Course Allocation Interface Timetable Departmental Representative

35

Figure 3.5: Activity Diagram

Specify Input Collate Input

Specify Constraints Collate Constraints
use input

use constraints

Generate Timetable

No Yes

Constraint Satisified

Verify Input and Constraint Broadcast Timetable

Output Timetable Generator Interface Timetable Departmental Representative

36

3.2.5 State Diagram

It is used for modeling a single object's complex behavior. They demonstrate

the lifecycle of an object (i.e., the different states an object may assume) and events

which cause the object to be transferred between states as shown in Figure 3.6.

3.3 System Implementation Tools

These are the implementation tools needed to carry out the development of an

automated course scheduling system. The tools include: Hypertext Markup Language

(HTML), Cascading Style Sheet (CSS), Hypertext Preprocessor, React JS, Node JS,

Python, Mongodb, Swift, Kotlin and Postman.

a. Hypertext Markup Language (HTML) is the standard markup language for

documents designed to be displayed in a web browser. Technologies like

Cascading Style Sheets (CSS) and scripts like JavaScript can support it. HTML

documents are downloaded from a remote server or a local database and returned

to multimedia web sites via web browsers. HTML defines the Web page layout

semantically and the records are initially used.

b. Cascading Style Sheets is a style sheet language used for describing the

presentation of a document written in a markup language like HTML. CSS, along

with HTML and JavaScript, is a staple of the World Wide Web. CSS is designed

to distinguish formats, colors , and fonts from the displays and text.

c. Syntactically Awesome Style Sheets is a preprocessor scripting language that is

interpreted or compiled into Cascading Style Sheets (CSS). The script language

itself is SassScript. There are two syntaxes in Sass. The original grammar, known

as the "indented grammar," uses Haml-like syntax. The code block and the new

line characters for splitting rules are differentiated by indentation. "SCSS" (Sassy

37

[User enter data & Constraints]

[Randomise Input]

[Verify input with Constraints]

[Confirm Allocation]

[Display Generated Timetable

Figure 3.6: State Diagram

Input

Randomise

Mutation

[Verify Allocation]

[Mutation Allocation]

Verify
[Crossover Allocation]

[Verify Allocation]

Allocated

Crossed

Output

38

CSS) is the newest syntax which uses block formatting like CSS. It uses braces to

mark blocks of text and semicolons in order to distinguish rules in a row. The

package usually contains the extensions .sass and .scss in the indexed syntax and

SCSS format.

d. Syntactically Awesome Style Sheets is a preprocessor scripting language that is

interpreted or compiled into Cascading Style Sheets (CSS). The script language

itself is SassScript. There are two syntaxes in Sass. The original grammar, known

as the "indented grammar," uses Haml-like syntax. The code block and newline

characters for splitting rules are differentiated by indentation. "SCSS" (Sassy

CSS) is the newest syntax which uses block formatting like CSS. It uses braces to

mark blocks of text and semicolons in order to distinguish rules in a row. The

package usually contains the extensions.sass and.scss in the indexed syntax and

SCSS formats.

e. React JS is an open-source JavaScript library designed for user interfaces or UI

modules. React is called a "react. "js or ReactJS." The reaction can be seen as a

framework for creating single page and Smartphone Apps. Facebook is managed

by a group of independent developers and businesses. However, the purpose of

React is to render data only to DOMs, which makes it typically possible to use

external libraries for state administration and routing Redux and the Router React

respectively.

f. Node JS is an open-source, cross-platform, JavaScript runtime environment

(Framework) that executes JavaScript code outside a web browser. Node.js lets

developers code Command Line tools for JavaScript for scripting on a server-side

– running server scripts to create complex content on web sites before submitting

the file to the web browser of the user. Node.js therefore reflects a 'JavaScript

39

anywhere' paradigm uniting the development of web applications around a

common programming language and not multiple languages for server and client

scripts.

g. Python is a widely structured, universal language of programming. Its

arrangement of language and object-oriented methodology was designed to assist

programmers to build simple and functional codes for large and small projects. It

is typed and waste stored dynamically. It supports many paradigms of

programming, including structured programming (especially procedural), object-

orientated and functional. Because of its vast standard library, Python is also

defined as a batteries included script.

h. MongoDB is a document-based storage software that operates across platforms.

MongoDB uses json-like documents with optional schemas, known as a nosql

database application. MongoDB is developed under the public side of the server

license (SSPL) by MongoDB inc. MongoDB is licensed.

i. Swift is a general-purpose, multi-paradigm, compiled programming language

developed by Apple Inc. for iOS, iPadOS, macOS, watchOS, tvOS, and Linux.

Swift is intended to work with the Cocoa and Touch architectures of Apple and

with a broad selection of current Objective C code written for products from

Apple. It's built into the LLVM compiler architecture of the open source

community and has been used in Xcode since version 6 in 2014. Apple's runtime

libraries have been designed to run C, Objective-C , C++ and SWIFT within a

single program.

j. Kotlin is a static cross-platform programming language for general purposes with

a method of inference. Kotlin has been developed for complete interoperability

with Java, while JVM 's regular library implementation of Kotlin focuses on the

40

Java Class library. Kotlin is primarily targeting the JVM, but also compiles to

JavaScript (for example, for frontend web applications using React or Native code

via LLVM). JetBrains funds language production expenses, while Kotlin

Foundation preserves the Kotlin trademark. its preferred language for Android

app developers.

k. Postman is a lightweight API platform that integrates rapidly into the CI / CD

pipeline. In 2012, the API workflow for testing and improving began as a side

project by Abhinav Asthana. it is now one of the most popular API testing

development tools, developers can build, monitor, upload, and record APIs easily

using this tool.

y the sys

41

CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

This section presents the results and the discussion of this study which involved

the design and development of a personalized course scheduling system. The chapter

presents the implemented database of the system using the JavaScript Object Notation

(JSON) alongside the system interface that was implemented using web-based

development technologies such as the HTML, CSS and React JavaScript for the

development of the system interface. The system interface for the secondary user which

is the student was implemented using Mobile technologies such as Kotlin and Swift.

Testing and evaluation of system preformation’s was also an integral part in this

section.

4.2 Implementation of System Database for Course scheduling System

Figure 4.1 shows a description of the database that was implemented for this

study in order to store and retrieve information required by the proposed system. As a

result of this, a database was implemented called the coursekit which consisted of

eleven (11) database collections which were required for managing the various types of

information stored and manipulated b tem. The results of the implemented

collection courses as shown in Figure 4.2 was used to manage information about the

courses that are being taken in that institution. The collection holds an array of

documents, a document in mongoDB is a data structure composed of field and value

pairs.

The values of fields may include other documents, arrays and arrays of

documents. A document in the courses collection had values and keys such as: _id, a

42

Figure 4.1 Database coursekit showing its collections

43

Figure 4.2: Collection coursekit.courses showing the list of courses and

attributes

44

unique id for each document, name, the name of the course, code, unit, description,

level and colorCode. The results of the implemented lecturer’s collection as shown in

Figure 4.3 was used to manage information about the lecturers that are in that

institution. A document in the lecturer’s collection has values, and keys such as: _id,

courses, name, email, educational_bg, phone_no, office_no, ranking, degree,

areaOfSpec, image etc. The results of the implemented courskit.rooms collection as

shown in Figure 4.4 was used to manage information about the rooms that are in that

institution. A document in the room’s collection has values, and keys such as: _id,

name, capacity, createdAt, and updatedAT

Figure 4.5 shows the result of the implementation of courskit.timetable

collection which was used to manage information about the timetable for a department.

A document in the timetables’ collection has values and keys such as: _id, courses,

uuid, createdAt, updateAt, _v, current_progress, name, session, and total progress.

Figure 4.6 shows the result of the implementation of courskit.users collection which

was used to manage information about the students in a department. A document in the

users’ collection has values and keys such as: _id, resetToken, image, maxUnit,

minUnit, courses, firstname, lastname, email, dob, level, matric, password, role,

createdAt, updateAt, _v, current_progress, name, session, and total progress.

The results of the implemented courskit.klasses collection as shown in Figure

4.7 was used to manage information about the classes in a department. A document in

the classes’s collection has values, and keys such as: _id, Courses, name,

AcademicPeriod, Meeting, Population, UnavilableRooms , and _v. Figure 4.8 shows

the result of the implementation of courskit.events collection which was used to manage

information about the events in a department. A document in the events’ collection has

values and keys such as: _id, user, name, date, and time.

45

Figure 4.3: Collection coursekit.lecturers showing the list of lecturer and

attributes

46

Figure 4.4: Collection coursekit.rooms showing the list of rooms and attributes

47

Figure 4.5: Collection coursekit.timetables showing the list of timetables and

attributes

48

Figure 4.6 Collection coursekit.users showing the list of students and attributes

49

Figure 4.7: Collection coursekit.Klasses showing the list of clasess and attributes

50

Figure 4.9 shows the result of the implementation of courskit.discussions

collection which was used to manage information about the discussion in a level. A

document in the discussion’s collection has values and keys such as: _id, user,

comments, title, details, createdBy, createdAt, and updatedBy. Figure 4.10 shows the

result of the implementation of courskit.comments collection which was used to

manage information about the comments in a level. A document in the comment’s

collection has values and keys such as: _id, message, userId, createdAt, and updatedBy.

Figure 4.11 shows the result of the implementation of courskit.admin collection which

was used to manage information about the admins that are in an institution. A document

in the comment’s collection has values and keys such as: _id, image, adminNumber,

and password.

4.3 Result of the User Interface of System Implementation

Following the presentation of the results of the implementation of the system

database using Monogdb the results of the implementation of the system using web-

based technologies are presented. Figure 4.12 shows the system Login page also called

the Home Page open opening the system URL for departmental timetable

representatives. The departmental timetable representatives are required to provide

their admin number issued to them and passwords which is used by the system to

determine the session which is to be created following user access authentication by the

system. Figure 4.13 shows the interface of the dashboard of the system administrator

upon providing his username and password to the system.

The results of this interface show the different information stored on the system

so far such as number of lecture rooms, number of courses offered in a department and

51

Figure 4.8: Collection coursekit.discussions showing the list of events and

attributes

52

Figure 4.9: Collection coursekit.comments showing the list of comments and

attributes

53

Figure 4. 10: Collection coursekit.admin showing the list of admin and attributes

54

Figure 4.11: Screenshot of the Login Page of the Admin Interface

55

Figure 4.12: Screenshot of System Admin dashboard upon login

56

number of lecturers available, number of classes, number of students in a department

and number of events.

Figure 4.14(a) shows the results of the interface when an administrator is to

create a new room to the system which requires the name of the room and the capacity

of the room. Figure 4.14(b) shows the result of the interface is required by the

administrator for viewing information about existing room in a department. Thus, this

interface shows the requirement of details such as name of the rooms, room capacity

and action for editing and deleting an existing room.

Figure 4.15(a) shows the results of the interface when an administrator is to

create a new course to the system which requires the name of the course, course code,

course unit, level, and the capacity of the room. Figure 4.15(b) shows the result of the

interface is required by the administrator for viewing information about existing courses

in a department. Thus, this interface shows the requirement of details such as name of

the course, course code, course unit, number of students offering a course and action

for editing and deleting an existing course.

Figure 4.16(a) shows the results of the interface when an administrator is to

create a new lecturer to the system which requires the name of the lecturer, image,

email, education background, phone number, office number, ranking, degree and area

of specification. Figure 4.16(b) shows the result of the interface is required by the

administrator for viewing information about existing lecturer in a department. Thus,

this interface shows the requirement of details such as name of the lecturer, courses

handle, and action for editing and deleting an existing lecturer. Figure 4.16(c) shows

the result of the interface is required by the administrator for viewing information about

57

Figure 4.13(a): Screenshot of Admin Interface for creating a new Room

Figure 4.14(b): Screenshot of Admin Interface for managing existing Rooms

58

Figure 4.15(a): Screenshot of Admin Interface for creating a new Course

Figure 4.15(b): Screenshot of Admin Interface for managing existing Courses

59

Figure 4.16(a): Screenshot of Admin Interface for creating a new Lecturer

60

Figure 4.16(b): Screenshot of Admin Interface for managing existing Lecturers

Figure 4.16(c): Screenshot of Admin Interface for viewing a lecturer information

61

a lecturer in a department. Thus, this interface shows the requirement of details such as

name of the lecturer, image, educational background, area of specification, office

number, phone number, email address, position of the lecturer and, courses handle.

Figure 4.17(a) shows the results of the interface when an administrator is to

create a new class to the system which requires the name of the class, the course

assigned for the class, the population for the class, and the unavailable lecture room.

Figure 4.17(b) shows the result of the interface is required by the administrator for

viewing information about existing classes in a department. Thus, this interface shows

the requirement of details such as name of the class, class size, courses, unavailable

rooms and action for editing and deleting an existing class.

Figure 4.18(a) shows the results of the interface when an administrator is to

create a new student to the system which requires the name of the student, student

image, full name, matriculation number, level, department, Date of birth and, email

address. Figure 4.18(b) shows the result of the interface is required by the administrator

for viewing information about existing student in a department. Thus, this interface

shows the requirement of details such as name of the student, email, courses, view

profile and action for editing and deleting an existing student. Figure 4.18(c) shows the

result of the interface is required by the administrator for viewing information of student

in a department. Thus, this interface shows the requirement of details such as name of

the student, email, courses, view profile and action for editing and deleting an existing

student.

Figure 4.19(a) shows the results of the interface when an administrator is to

create a new timetable to the system which requires the name of the timetable, academic

session, and selected days. Figure 4.19(b) shows the result of the interface is required

by the administrator for viewing information of a timetable. Thus, this interface shows

62

Figure 4.17(a): Screenshot of Admin Interface for creating a new Class

Figure 4.17(b): Screenshot of Admin Interface for managing existing classes

63

Figure 4.18(a): Screenshot of Admin Interface for creating a new Student

64

Figure 4.18(b): Screenshot of Admin Interface for managing existing Student

Figure 4.18(c): Screenshot of Admin Interface for view the Information of Student

65

Figure 4.19(a): Screenshot of Admin Interface for creating a new Timetable

Figure 4.19(b): Screenshot of Admin Interface for managing existing Timetable

66

the requirement of details such as name of the timetable, academic session, days of the

week, list of various courses in a department, duration of for a course and venue for a

course.

Figure 4.20 shows the system login page also called the Home Page that give

access to the student to use the mobile app. The student is are required to provide their

school mail address or school Id and passwords issued to them (their first name by

default). Figure 4.21(a) shows the result of the interface is required by the Student for

resetting their password in a situation when they are unable to recollect their current

password. Thus, this interface shows that the student is required to provide the school

email to validate if that student exists or not. Figure 4.21(b) shows the result of the

interface is required by the Student for creating a new password. Thus, this interface

shows that the student is required to provide information such as generated password

(token sent to their school mail), and new password.

The result of the interface in Figure 4.22(a) shows is required by a student for

viewing information courses registered by a student. Thus, this interface shows the

requirement of details such as name of the student, image of the student, course title,

code, and unit. Figure 4.22(b) shows result of the interface required by a student for

viewing information regarding a course. Thus, this interface shows the requirement of

details such as course title, code, number of units for the course, lecturer handling the

course, a description of the course, the venue of the of course, and time. Figure 4.22(c)

shows result of the interface required by a student to add new courses. Thus, this

interface shows the requirement of details such as name of the student, image of the

student, a search field to find a course, the maximum unit and minimum unit by a

student, course title, code and number of units for the course.

67

Figure 4.20: Screenshot of the Login page for Student Interface

68

(a) (b)

Figure 4.21 (a) and (b) Shows a Screenshot of the Respective Student interface

for Resetting Password and Creating a New Password

69

(a) (b)

Figure 4.22(a) and (b): Shows a Screenshot of the Respective Student interface

for viewing registered courses and details of a course.

70

Figure 4.23 shows result of the interface required by a student for viewing

information regarding a lecturer handling a course. Thus, this interface shows the

requirement of details such as lecturer image, name, educational background, telephone

number, email address, office number, area of specialization and bio data. Figure

4.24(a) shows result of the interface required by a student for viewing information

regarding course schedules based on registered courses. Thus, this interface shows the

requirement of details such as the day the course is going to be held, course code, venue

of the course, and time allocated for the course.

Figure 4.24(b) shows result of the interface required by a student for viewing

information course schedules based on a particular day of the week. Thus, this interface

shows the requirement of details such as the name of day of the week and the list of

course that is going to be held on that day. Figure 4.24(c) shows result of the interface

required by a student for setting a reminder for courses. Thus, this interface shows the

requirement of details such as the list of course that is going to be held on a particular

day and time for the alert.

Figure 4.25(a) shows result of the interface required by a student for viewing

information no conversation is available. Figure 4.25(b) shows result of the interface

required by a student for creating a new conversation based on the on the student level.

Thus, this interface shows the requirement of details such as title of the conversation,

and the detail of the conversation. Figure 4.25(c) shows result of the interface required

by a student for viewing the list of conversation made the student current level. Thus,

this interface shows the requirement of details such as title of the conversation the detail

of the conversation, the name of user who made the created the conversation, the image

of the user, and the number of replies, list of the replies.

71

Figure 4.22(c): Shows a Screenshot of the Respective Student interface for

Adding of a Course.

72

Figure 4.23: Shows a Screenshot of the Student Interface for viewing information

about a lecturer handling a course.

73

(a) (b)

Figure 4.24(a) and (b): Shows a Screenshots of the Respective Student interface

for viewing information of course schedule for a student based on registered

course, and day of the week

74

Figure 4.24 (c): Shows a Screenshot of the Student interface for setting reminder

75

(a) (b)

Figure 4.25 (a) and (b) shows a Screenshot the Respective Student interface when

no conversation is available and creating a conversation.

76

Figure 4.25(c) shows a Screenshot the Respective Student interface viewing a

conversation.

77

Figure 4.25 (d) shows a Screenshot the Respective Student interface for

commenting on a conversation.

78

The result of the interface in Figure 4.26(a) is required by a student for viewing

information regarding a student profile. Thus, this interface shows the requirement of

details such as full name of the student, image of the student, level, date of birth, and

list of courses offered by a student. The result of the interface in Figure 4.26(b) is

required by a student for editing their profile. Thus, this interface shows the requirement

of details such as full name of the student, image of the student, level, date of birth, and

password. Thus, this interface shows the requirement of details such as title of the

conversation the detail of the conversation, the name of user who made the created the

conversation, the image of the user, and the number of replies. Figure 4.26(d) shows

result of the interface required by a student for commenting on a conversation of

interest.

4.4 Discussion of Result

The results of the study as presented, shows the different expectations of this

study based on the objectives that were stated in the earlier chapters of this study. The

results of the identification of the user and system requirements allowed for the

identification of the different users of the proposed system such as primary and

secondary user of the system. The results showed that the primary user was responsible

for creating course scheduling and managing information regarding a department.

which in return lead slow response time, the results showed that the secondary users

can only access the system using their school email or Id and passwords provided by

the system administrator of the system. The result also shows that the primary user is

can view course schedules based on their registered courses, set reminder and make

create a conversation.

79

(a) (b)

Figure 4.26 (a), and (b) a Screenshot shows the Respective Student interface for

viewing and editing Student Profile.

80

The result shows that with the help of genetic algorithm the system was able to

schedule course efficient based on the class size. Although when the number of

mutation iteration was increase from 5,000 to 10,000 the accuracy of fitness increased

exponentially the web server in generating the course schedules as a result of low

memory size and processing speed of size of the web server. However, the system was

able to performed exceptionally well even when number of data input was increased

with a benchmark of 5,000 of iteration.

The results of the system implementation showed the database of system

implemented using Mongodb. For each collection in the database, a number of

documents was used for storing and retrieving of information. Also, the system

database information regarding location were restricted only to Computer Science and

Mathematics department. The results of the web and mobile system interface showed

that the system was able to provide interfaces that were compliant with the system and

user requirements that were identified in this study. The system implementation

allowed users of various roles to perform their various duties using the system thus,

removing the challenges such as the manual approach of scheduling course and cluster

of course schedule.

81

CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

5.1 Summary

This study developed a personalized course scheduling system that enables a

timetable departmental representative created course schedules and student view course

schedules on registered course. The study identified the user and system requirements

that were required to be met by the system. The user and system requirements were

identified alongside the hardware and software requirements of the system. The

requirements of the system were also specified using unified modeling languages using

use-case diagrams for user requirements specification and class diagrams for data

modeling specification. The system was implemented using Web 3.0 technologies such

as HTML, CSS and React JS for the web layout and data movement in and out of web

interface forms from and to system database. MongodB was also used to implement the

system database and python for creating the genetic algorithm for this study.

5.2 Conclusion

In conclusion, this study has designed and implemented a system to solve the

currently challenge faced in scheduling of courses in academic institutions. The study

was able to identify the respective user and system requirements of the system and

appropriate designs were used to specify these requirements provided by the users using

use-case and class diagrams. The system database was implemented in order to suit the

mechanisms and inner workings of the proposed system.

82

5.3 Recommendation

This study recommends that further work on this study can be focused creating

a personalized interface for academic staff for viewing course handled so that they that

will help be able the organize of task and allocation of time and resources efficiently.

83

Reference

Muhammad, S.H.1, Galadanci, B.S.1, Mustapha, A.1 and Yahaya, A.S2. (2017).

DESIGN AND IMPLEMENTATION OF AN ANDROID AND WEB-BASED

UNIVERSITY TIMETABLE CUSTOMIZATION SYSTEM. Bayero Journal

of Pure and Applied Science, 7.

Gilberto Rivera, Luis Cisneros, Patricia Sánchez-Solís, Nelson Rangel-Valdez and

Jorge Rodas-Osollo. (2019, 09 21). Genetic Algorithm for Scheduling

Optimization Considering Heterogeneous Containers: A Real-World Case

Study, 16.

Celiz, E. A. (2018). UNIVERSITY TIMETABLE SCHEDULING USING

METAHEURISTIC ADAPTIVE-ELITIST GENETIC ALGORITHM. 70.

Sandhu, K. S. (2003). Automating Class Schedule Generation in the Context of a

University Timetabling Information System. 202.

Onuwa, N. I. (2015). DESIGN AND IMPLEMENTATION OF MOBILE BASED

STUDENTS TIMETABLE MANAGEMENT SYSTEM. 89.

Herath, A. K. (2017). Genetic Algorithm For University Course Timetabling Problem.

47.

Sommerville, I. (2011). SOFTWARE ENGINEERING (Vol. 9). (M. H. Marcia Horton,

Ed.) Addison-Wesley.

Jeffries, R. E. (2011, 03 16). What is Extreme Programming. From ronjeffries.com:

https://ronjeffries.com/xprog/what-is-extreme-programming/ m well, D. (2013,

10 8). When should extreme programming be used. From Extreme

programming: http://www.extremeprogramming.org/ (n.d.).

Wren, A. 1996. Scheduling, Timetabling and Rostering - A Special Relationship? In

Proc. of 1st Practice and Theory of Automated Timetabling, 46-75

http://www.extremeprogramming.org/

84

Rohini V (2016). Scheduling System for Univearsity.

Asif Ansari, and Prof Sachin Bojewar (2014). Genetic Algorithm to Generate the

Automatic Time-Table – An OverView

Media Mark (3.2.12). "Sass - Syntactically Awesome Stylesheets". Sass-lang.com.

Retrieved 2014-02-23.

Sass: Syntactically Awesome Style Sheets". sass-lang.com. Archived from the

originalon 2013-09-01.

CSS developer guide". Mozilla Developer Network. Archived from the original on

2015-09-25. Retrieved 2015-09-24.

The MIT License". Open Source Initiative. 17 September 2018. Retrieved 17

September 2018.

85

RoomModel.js

Appendix I

Source Code for Models

const mongoose = require('mongoose');

const Schema = mongoose.Schema;

const mongoosePaginate = require('mongoose-paginate-v2');

const RoomSchema = new Schema({

name: {

type: String,

required: true

},

capacity: {

type: Number,

required: true

},

},

{ timestamps: true }

)

RoomSchema.plugin(mongoosePaginate);

const Room = mongoose.model('room', RoomSchema);

module.exports = { Room };

LecturerModel.js
const mongoose = require('mongoose');

const Schema = mongoose.Schema

const mongoosePaginate = require('mongoose-paginate-v2');

const LecturerSchema = new Schema({

name: {

type: String,

required: true,

},

image: {

type: String

},

ranking: {

type: String

},

degree: {

type: String

},

office_no: {

type: String,

required: true

},

phone_no: {

type: Number,

required: true

},

email: {

type: String,

required: true,

},

areaOfSpec: {

86

type: String,

required: true

},

education_bg: {

type: String,

required: true

},

unavailablePeriods: {

type: String,

},

Courses: [{ type: Schema.Types.ObjectId, ref: 'Course', default:

null }]

})

LecturerSchema.plugin(mongoosePaginate);

const Lecturer = mongoose.model("Lecturer", LecturerSchema)

CouresModel.js
const mongoose = require('mongoose');

const mongoosastic = require('mongoosastic')

const Schema = mongoose.Schema

const mongoosePaginate = require('mongoose-paginate-v2');

const aggregatePaginate = require('mongoose-aggregate-paginate-v2');

const colorValidator = (v) => (/^#([0-9a-f]{3}){1,2}$/i).test(v)

const CourseSchema = new Schema({

name: {

type: String,

required: true,

},

code: {

type: String,

required: true,

},

unit: {

type: Number,

required: true

},

day: {

type: [String]

},

description: {

type: String

},

level: {

type: Number

},

colorCode: {

type: String,

validator: [colorValidator, 'Invalid color'],

required: true

},

lecturer: [{type: Schema.Types.ObjectId, ref: 'Lecturer' }],

students: [{type: Schema.Types.ObjectId, ref: 'User'}],

venue: {type: Schema.Types.ObjectId, ref: 'room'},

time: {

type: String,

},

87

})

//CourseSchema.plugin(mongoosastic)

CourseSchema.plugin(aggregatePaginate);

CourseSchema.plugin(mongoosePaginate);

CourseSchema.index({

name: "text", code:

})

const Course = mongoose.model("Course", CourseSchema)

module.exports = Course

StudentModel.js
const mongoose = require('mongoose');

const bcrypt = require('bcrypt');

const Schema = mongoose.Schema;

const SALT_WORK_FACTOR = 10

const mongoosePaginate = require('mongoose-paginate-v2');

const aggregatePaginate = require('mongoose-aggregate-paginate-v2');

const UserSchema = new Schema({

firstname: {

type: String,

required: true

},

lastname: {

type: String,

required: true

},

email: {

type: String,

required: true

},

dob: {

type: String,

required: true

},

level: {

type: String,

required: true

},

matric: {

type: String,

required: true

},

password: {

type: String,

required: true

},

role: {

type: String,

enum: ["basic", "admin"]

},

resetToken: {

type: String,

default: ''

},

"text"

88

image: {

type: String,

default: ''

},

maxUnit: {

type: Number,

default: 24

},

minUnit: {

type: Number,

default: 16

},

selectedUnit: {

type: Number,

},

courses: [{ type: Schema.Types.ObjectId, ref: 'Course' }]

},

{ timestamps: true }

)

TimetableModel.js
const mongoose = require('mongoose');

const Schema = mongoose.Schema;

const TimetableSchema = new Schema({

courses: {

type: Array

},

name: {

type: String

},

session: {

type: String

},

uid: {

type: String

},

current_progress: {

type: Number

},

total_progress: {

type: Number

},

},

{ timestamps: true }

)

const Timetable = mongoose.model('timetable', TimetableSchema);

module.exports = Timetable

89

/* eslint-disable array-callback-return */

import React,{useState} from "react"

import {Link} from "react-router-dom"

import { CSSTransition, TransitionGroup } from "react-transition-

group";

import "./room.css"

import "../../global/global.css"
import plus from "../../images/plus.svg"

import bin from "../../images/bin.png"

import pen from "../../images/pencil 1.png"

import cross from "../../images/close.png"

import logo from "../../images/Logo.png"

import axios from "axios"

import spinner from "../../images/spinner.gif"

import checkg from "../../images/checkg.png"

import checkr from "../../images/checkr.png"

import checkb from "../../images/checkb.png"

import ReactPaginate from "react-paginate"

import { useQuery, useMutation , queryCache } from "react-query"

const getRooms = (page, {pageNo, search}) => {

return axios.get('https://tbe-node-

deploy.herokuapp.com/Admin/room', {

headers: {},

params: {perPage: 5, page: pageNo, searchQuery: search}

})

.then((response) => {

var rooms = response.data?.data.docs

var pages = response.data?.data.totalPages

return {rooms, pages}

})

}

const createRoom = (roomData) => {

let data = JSON.stringify(roomData);

return axios.post('https://tbe-node-

deploy.herokuapp.com/Admin/room', data, {

headers: {

'Content-Type': 'application/json'

}

})

.then((response) => {

return response;

})

.then((error)=> {

return error

})

}

Lecturer.js
const createLect = (datum) => {

let data = new FormData();

// Getting values

var file = document.getElementById("fileInput").files[0]

90

var name = document.querySelector("#namec").value

var edubg = document.querySelector("#edubgc").value

var pos = document.querySelector("#posc").value

var email = document.querySelector("#emailc").value

var phone = document.querySelector("#phonec").value

var aos = document.querySelector("#aosc").value

var officeno = document.querySelector("#officenoc").value

var degree = document.querySelector("#degreec").value

data.append('name', name);

data.append('email', email);

data.append('education_bg', edubg);

data.append('phone_no', phone);

data.append('office_no', officeno);

data.append('ranking', pos);

data.append('degree', degree);

data.append('areaOfSpec', aos);

data.append('image', file);

var array = []

for (var i = 0; i < datum.length; i++) {

array.push(datum[i])

data.append(`Courses[${datum.indexOf(datum[i])}]`,

datum[i])

}

console.log(...data)

return axios.post('https://tbe-node-

deploy.herokuapp.com/Admin/lecturer/image', data, {

headers: {

'Content-Type': 'multipart/form-data'

}

})

.then((response) => {

return response;

})

.then((error)=> {

return error

})

}

const getCourses = () => {

return axios.get('https://tbe-node-

deploy.herokuapp.com/Admin/getCourse', {

headers: {},

params: { page: 1, searchQuery: ''}

})

.then((response) => {

return response.data.data.docs

})

}

const getLect = (page, {pageNo, search}) => {

return axios.get('https://tbe-node-

deploy.herokuapp.com/Admin/getlecturer', {

headers: {},

params: {perPage: 5, page: pageNo, searchQuery: search}

})

.then((response) => {

var lect = response.data?.data.docs

91

var pages = response.data?.data.totalPages

return {lect, pages}

})

}

Course.js
onst createCourse = (finalDataObj) => {

let data = JSON.stringify(finalDataObj);

return axios.post('https://tbe-node-

deploy.herokuapp.com/Admin/course', data, {

headers: {

'Content-Type': 'application/json'

}

})

.then((response) => {

return response;

})

.then((error)=> {

return error

})

}

const getCourses = (page, {pageNo, search}) => {

return axios.get('https://tbe-node-

deploy.herokuapp.com/Admin/getCourse', {

headers: {},

params: {perPage: 5, page: pageNo, searchQuery: search}

})

.then((response) => {

var courses = response.data?.data.docs

var pages = response.data?.data.totalPages

return {courses, pages}

})

}

Student.js
const createStud = () => {

let data = new FormData();

var file = document.getElementById("fileInput").files[0]

var firstname = document.querySelector("#firstname").value

var lastname = document.querySelector("#lastname").value

var dob = document.querySelector("#dob").value

var email = document.querySelector("#email").value

var matric = document.querySelector("#matric").value

var role = document.querySelector("#role").value

var level = document.querySelector("#level").value

data.append('firstname', firstname);

data.append('lastname', lastname);

data.append('email', email);

data.append('dob', dob);

data.append('matric', matric);

data.append('role', role);

data.append('image', file);

92

data.append('level', level)

return axios.post('https://tbe-node-

deploy.herokuapp.com/signup', data, {

headers: {

'Content-Type': 'multipart/form-data'

}

})

.then((response) => {

return response;

})

.then((error)=> {

return error

})

}

const getStudentsL = () => {

return axios.get('https://tbe-node-

deploy.herokuapp.com/Admin/students/all', {

headers: {},

params: { page: 1, searchQuery: ''}

})

.then((response) => {

return response.data.data.docs

})

}

Timetable.js
const Dashboard = (props) => {

const [timetableFn, {status}] = useMutation(postTimetable, {

onSuccess: () => {

console.log("created")

setCreated(true)

setModalOut(false)

setTimeout(() => {

// setCreated(true)

}, 10);

// setCreated(false)

},

onError: (error) => {

console.log({...error})

}

})

function uuidFn() {
return 'xxxxxxxx-xxxx-4xxx-yxxx-

xxxxxxxxxxxx'.replace(/[xy]/g, function(c) {

var r = Math.random() * 16 | 0, v = c == 'x' ? r : (r &

const [uuid, setUuid] = useState(uuidFn())

const [int, setInt] = useState(2000)

const [enable, setEnable] = useState(false)

const tResponse = useQuery(['tResponse', {uuid}], getTRes, {

93

refetchOnWindowFocus: false,

refetchInterval: int,

enabled: enable

})

const coursesT = useQuery('coursesT', getCoursesT, {

refetchOnWindowFocus: false

})

console.log(tResponse.data?.data.data)

const roomsT = useQuery('roomsT', getRoomsT, {

refetchOnWindowFocus: false

})

const {isLoading, data} = useQuery('lengths', getLength, {

refetchOnWindowFocus: false

})

const [modalOut, setModalOut] = useState(false)

const [updateOut, setUpdateOut] = useState(false)

const [created, setCreated] = useState(false)

const [showT, setShowT] = useState(false)

const submit = (e) => {

e.preventDefault()

const datum =

[...document.querySelectorAll('input[type=checkbox]:checked')].map(e

=> e.value);

timetableFn({roomsT, coursesT, datum, uuid})

setEnable(true)

tResponse.refetch()

}

setInterval(()=> {

if(tResponse.data?.data.data?.current_progress === 5000){

setInt(-1)

}

}, 1000)

const cProgress = tResponse.data?.data.data?.current_progress;

const tProgress = tResponse.data?.data.data?.total_progress;

const tDate = new

Date(tResponse.data?.data.data?.updatedAt.substring(0,10)).toDateStri

ng();

const tTime =

tResponse.data?.data.data?.updatedAt.substring(11,16);

var monday;

const [mon1, setMon1] = useState([])

const [mon2, setMon2] = useState([])

const [mon3, setMon3] = useState([])

const [mon4, setMon4] = useState([])

94

var tuesday;

const [tue1, setTue1] = useState([])

const [tue2, setTue2] = useState([])

const [tue3, setTue3] = useState([])

const [tue4, setTue4] = useState([])

var wednesday;

const [wed1, setWed1] = useState([])

const [wed2, setWed2] = useState([])

const [wed3, setWed3] = useState([])

const [wed4, setWed4] = useState([])

var thursday;

const [thur1, setThur1] = useState([])

const [thur2, setThur2] = useState([])

const [thur3, setThur3] = useState([])

const [thur4, setThur4] = useState([])

var friday;

const [fri1, setFri1] = useState([])

const [fri2, setFri2] = useState([])

const [fri3, setFri3] = useState([])

const [fri4, setFri4] = useState([])

var saturday;

const [sat1, setSat1] = useState([])

const [sat2, setSat2] = useState([])

const [sat3, setSat3] = useState([])

const [sat4, setSat4] = useState([])

const arrangeT = () => {

// eslint-disable-next-line no-unused-expressions

console.log(JSON.stringify(tResponse.data?.data.data?.courses))

monday = tResponse.data?.data.data?.courses.filter((course)

=> {

return course.assignedDay === 'monday'

})

tResponse.data?.data.data?.courses.filter((course) => {

return course.assignedDay === 'wednesday'

95

=> {

=> {

friday = tResponse.data?.data.data?.courses.filter((course)

return course.assignedDay === 'friday'

})

saturday = tResponse.data?.data.data?.courses.filter((course)

return course.assignedDay === 'saturday'

})

console.log(monday)

console.log(tuesday)

console.log(wednesday)

console.log(thursday)

console.log(friday)

console.log(saturday)

monday.map((mon)=> {

if(mon.startHour === 9){

setMon1(mon.name)

}else if(mon.startHour === 11){

setMon2(mon.name)

}else if(mon.startHour === 13){

setMon3(mon.name)

}else if(mon.startHour === 15){

setMon4(mon.name)

}

})

tuesday.map((tue)=> {

if(tue.startHour === 9){

setTue1(tue.name)

}else if(tue.startHour === 11){

setTue2(tue.name)

}else if(tue.startHour === 13){

setTue3(tue.name)

}else if(tue.startHour === 15){

setTue4(tue.name)

}

})

wednesday.map((wed)=> {

if(wed.startHour === 9){

setWed1(wed.name)

}else if(wed.startHour === 11){

setWed2(wed.name)

}else if(wed.startHour === 13){

setWed3(wed.name)

}else if(wed.startHour === 15){

setWed4(wed.name)

}

})

thursday.map((thur)=> {

if(thur.startHour === 9){

setThur1(thur.name)

}else if(thur.startHour === 11){

setThur2(thur.name)

}else if(thur.startHour === 13){

setThur3(thur.name)

96

}else if(thur.startHour === 15){

setThur4(thur.name)

}

})

friday.map((fri)=> {

if(fri.startHour === 9){

setFri1(fri.name)

}else if(fri.startHour === 11){

setFri2(fri.name)

}else if(fri.startHour === 13){

setFri3(fri.name)

}else if(fri.startHour === 15){

setFri4(fri.name)

}

})

saturday.map((sat)=> {

if(sat.startHour === 9){

setSat1(sat.name)

}else if(sat.startHour === 11){

setSat2(sat.name)

}else if(sat.startHour === 13){

setSat3(sat.name)

}else if(sat.startHour === 15){

setSat4(sat.name)

}

})

}

97

RoomController.js

Appendix III

Source Code for Controllers

const { query } = require("express");

const express = require("express");

const mongoose = require("mongoose");

const { Room } = require("../models/room");

require('mongodb');

/ create a Room

const createRoom = async (req, res) => {

const { name, capacity } = req.body;

try {

const existingroom = await Room.findOne({ name: req.body.name

}).exec();

if (existingroom) {
return res.status(401).json({

message: "name already taken",

});

}

const room = new Room({

name,

capacity,

});

await room.save();

return res.json({

success: true,

data: room,

});

} catch (error) {
return res.status(500).json({

error: "There was an error.",

success: false,

});

}

};

// get all rooms

const GetAllRooms = async (req, res) => {

try{

const { page, perPage, searchQuery, sort } = req.query;

let sortQuery = { }

switch (sort) {
case "name": {

sortQuery.name = 1;

break;

}

case "capacity": {

sortQuery.capacity = 1;

break;

}

default: {

sortQuery.name = 1;

}

}

const options = {

98

page: parseInt(page, 10) || 1,

limit: parseInt(perPage, 10) || 10,

};

const rooms = await Room.paginate({ name: new

RegExp(`^${searchQuery}`, "i")}, options);

if (rooms) {
return res.status(200).json({

success: true,

data: rooms,

});

} else {
return res.status(404).json({

error: "no rooms found",

});

}

} catch (error) {
return res.status(500).json({

error: "error",

success: false,

});

}

};

LecturerController.js
const express = require("express");

const mongoose = require("mongoose");

const Lecturer = require("../models/lecturer");

// create a lecturer

const createLecturer = async (req, res) => {

const lecturer = await Lecturer.create({

name: req.body.name,

email: req.body.email,

unavailablePeriods: req.body.unavailablePeriods,

courses: req.body.courses,

education_bg: req.body.education_bg,

phone_no: req.body.phone_no,

office_no: req.body.office_no,

ranking: req.body.ranking,

degree: req.body.degree,

areaOfSpec: req.body.areaOfSpec,

image: req.file.path,

});

if (!lecturer) {

res.status(400).json({

success: false,

message: "lecturer not created",

});

}

res.json({

success: true,

message: "lecturer created",

data: lecturer,

});

};

// get all lecturers

const getAllLecturer = async (req, res) => {

try {

const { page, perPage, searchQuery } = req.query;

99

const options = {

page: parseInt(page, 10) || 1,
limit: parseInt(perPage, 50) || 50,

populate: [{path: 'Courses'}]

};

const data = await Lecturer.paginate({ name: new

RegExp(`^${searchQuery}`, "i")}, options);

if (!data) {

res.status(404).json({

success: false,

message: "not found",

});

return;
} else {

res.status(200).json({

success: true,

data,

});

}

} catch (error) {

console.log(error);

res.status(400).json(error);

}

};

CourseController.js
const express = require("express");

const mongoose = require("mongoose");
const generateColor = require("generate-color");

const Course = require("../models/course");

const User = require("../models/user");

const Lecturer = require('../models/lecturer');

var myAggregate = Course.aggregate([{$lookup: {from: "lecturers",

localField: "lecturer", foreignField: "_id", as: "lecturer"}},

{$addFields:{ number: {$size: { "$ifNull": ["$students", []]

}}}}]);

// create a course

const createCourse = async (req, res) => {

const {

name,

code,

unit,

time,

day,

venue,

description,

lecturer,

level,

} = req.body;

try {

const existingcourse = await Course.findOne({ name: req.body.name

}).exec();

if (existingcourse) {

return res.status(401).json({

message: "name already taken",

});

}

100

const colorCode = generateColor.default();

const course = new Course({

name,

code,

unit,

day,

time,

venue,

description,

level,

lecturer,

colorCode,

});

await course.save();

const data = await Course.findOne({ name: req.body.name

}).populate(

"lecturer"

);

return res.json({

success: true,

data: data,

});

} catch (error) {
return res.status(500).json({

error: "There was an error.",

success: false,

});

}

};

// get all courses

const GetAllCourses = async (req, res) => {

const { page, perPage, searchQuery } = req.query;

const options = {

page: parseInt(page, 10) || 1,

limit: parseInt(perPage, 10) || 50,

populate: [{path: "venue"}, {path: "lecturer"}]

};

const courses = await Course.aggregatePaginate(myAggregate,

options)

if (courses) {

return res.status(200).json({

success: true,

data: courses,

});

} else {
return res.status(404).json({

error: "no course found",

});

}

};

// mobile get all courses

const GetCourseAll = async (req, res) => {

const course = await Course.find({})

.populate("venue")

.populate("lecturer");

101

if (course) {

return res.status(200).json({

success: true,

data: course,

});

} else {
return res.status(404).json({

error: "no course found",

});

}

};

StudentController.js
const express = require("express");

const mongoose = require("mongoose");

const User = require("../models/user");

const Notifications = require("../models/user");

const Course = require("../models/course");

const jwt = require("jsonwebtoken");

const { secret } = require("../config/helper");

const { transporter } = require("../config/nodemailer");

const { nanoid, customAlphabet } = require("nanoid");

const bcrypt = require("bcrypt");

const Pusher = require("pusher");

var _ = require("lodash");

const { nextTick } = require("process");

const { error } = require("console");

const { use } = require("bcrypt/promises");
const { json } = require("express");

const Socket = require("../index");

require("dotenv").config();

const login = async (req, res) => {

const { matric, password } = req.body;

try {

const user = await User.findOne({ matric: req.body.matric

}).exec();

if (!user) {

return res.status(404).json({

error: "user not found",

success: false,

});

}

user.comparePassword(req.body.password, (err, match) => {

if (!match) {

return response

.status(400)

.send({ message: "The password is invalid" });

}

});

const token = jwt.sign({ _id: user._id }, secret);
return res.json({

success: true,

data: token,

});

} catch (err) {
return res.status(500).json({

err: "error login in",

success: false,

102

});

}

};

const signup = async (req, res) => {

try {

const existingUser = await User.findOne({ matric: req.body.matric

}).exec();

if (existingUser) {
return res.status(401).json({

error: "account alrady exists",

success: false,

});

}

const course = await Course.find({ level: req.body.level

}).populate("lecturer");

console.log(course);

const user = new User({

firstname: req.body.firstname,

lastname: req.body.lastname,

email: req.body.email,

dob: req.body.dob,

level: req.body.level,

matric: req.body.matric,

password: req.body.firstname,

role: req.body.role,

courses: course,

image: req.file.path

});

TimetableController.js
const { model } = require("mongoose");

const axios = require("axios");

const Course = require("../models/course");

const Lecturer = require("../models/lecturer");

const { Room } = require("../models/room");

const { response } = require("express");

const Timetable = require("../models/tinetable");

const { error } = require("winston");

const sendTimetabledata = async (req, res) => {

console.log(req.body);

const timetable = new Timetable({

uid: req.body.timetableId,

});

const existing = await timetable.find({ session: req.body.session})

if (existing) {

return res.status(401).json({

error: "session already has timetable"

});

} else {

await timetable.save();

}

const data = req.body;

var config = {

103

method: "get",

url: "https://coursekit-timetable.herokuapp.com/generate/",

headers: {

"Content-Type": "application/json",

},

data: data,

};

axios(config)

.then(function (response) {

console.log(JSON.stringify(response.data));

const result = JSON.stringify(response.data);

return res.json({

data: result,

});

})

.catch(function (error) {

console.log(error);

});

};

const receivedata = async (req, res) => {

const data = req.body;

console.log(req.query.current_progress);

console.log(data);

await Timetable.findOneAndUpdate(

{ uid: req.query.timetableId },

{

current_progress: req.query.current_progress,

total_progress: req.query.total_progress,

name: req.body.timetableName,

session: req.body.academicSession,

courses: req.body.courses,

},

(err, timetable) => {

if (err) {

console.log(err);

} else
res.status(200).json({

data: timetable,

});

}

);

};

const progress = async (req, res) => {
const timetable = await Timetable.findOne({ uid:

req.query.timetableId });

if (!timetable) {

return res.json({

error: "error",

});

} else {

return res.json({

data: timetable,

});

}

};

const allTimetable = async (req, res) => {

104

const data = await Timetable.find({});

if (!data) {
return res.status(404).json({

error: "timetables not found",

});

} else {

return res.status(200).json({

data: data,

});

}

};

module.exports = { sendTimetabledata, receivedata, progress,

allTimetable };

