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ABSTRACT 

The aim of this study is to apply genetic algorithm to the optimization of the timetable 

scheduling problem for the examination timetable based on the size of the registered 

students, the number of courses and the carryover courses of the students. 

This was achieved by eliciting knowledge on identifying the requirements of 

the system, formulating the genetic algorithm model and the simulation of the genetic 

algorithm model. 

A structured interview was conducted with the timetable representative in 

order to obtain quantitative data  for the purpose of testing the system and the data 

collected consisted of sets of school configurations like the number of examination 

halls, the capacity of each hall, the number of timeslots per day etc. 

Hard and soft constraint of the genetic algorithm were formulated based on the 

limitations and feedbacks of timetable representative. Anaconda Navigator was used 

as an Integrated Development Environment (IDE). The system was simulated using 

comma separated values (CSV) file which served as a storage capacity for all the 
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quantitative data gotten. The program was written using the Jupyter notebook with 

python being the interpreter. 

After representing the different constraints using mathematical modelling and 

the simulation of the GA using the python interpreter, the result has shown that the 

system is capable of providing useful solutions. It does not, however, fully automate 

the process. There are still some circumstances when the operator will need to make 

changes to some of the entries in order to achieve a flawless result. The enormous 

number of possible combinations for testing in order to arrive at an appropriate 

assessment for the application has proven to be impossible. However, considering the 

number of constraints set on the system, it can be inferred that the system was able to 

provide findings that, despite being imperfect, are valid and acceptable. 

In conclusion, the system was developed to improve timetabling scheduling in 

general, this study suggested that the approach/technique to tackling the problem of 

genetic algorithms should be used. Although the experimental results show that a 

more efficient and dependable schedule can be reached with a properly constructed 

genetic algorithm. This offers good review schedules without conflicting 

examinations and in a much quicker time. 

Keywords: University Timetable scheduling, Examination, Genetic Algorithm, 

Modelling, Constraints. 
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CHAPTER ONE 

INTRODUCTION 

1.1. Background to the study 

Timetabling can be defined as the act of scheduling something to happen at a particular time. 

Timetable scheduling is one of the problems in the educational sector. An example of a 

scheduling issue is the university course and examination scheduling problem, which is NP-

hard. The timetabling procedure must be completed for each semester on a regular basis, 

which is a time-consuming and demanding activity. (Hamed Babaei, 2015) 

There are different algorithms that are used to solve timetabling problems, some examples are 

the ant colony algorithm, the bee algorithm, the genetic algorithm or any other type of hybrid 

algorithms. (Kadam, 2015). But in this study, the application of genetic algorithm is 

employed.  

Genetic algorithms can be simply put, as heuristic techniques that are used to provide 

multiple possible solutions to a particular problem and finding that which optimally solves 

the problem. Genetic algorithms can be simple or complex. Like the natural evolution process 

itself, Life has identified a wide range of genetic information sharing methods. Genetic 

algorithms are known to solve multiple problems such as scheduling problems and 

optimization problems. (Mallawaarachchi, 2017). 

Many studies have been conducted to determine which problems can be solved using genetic 

algorithms. Some of them are in Risk assessment, Bio-Medical problems, Minimum 

Dominating Set of Queens problem and the famous timetabling problem. 
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1.2. Statement of the problem 

In the educational sector of today, manual methods of timetable scheduling are employed, 

which is the use of paper. There are a lot of problems faced in using this manual method due 

to the limited time slots, limited venues and the availability of the lecturers at that particular 

time and this poses as problems for course scheduling whereas in examination scheduling a 

lot of more difficulties are faced. For example, clashes between normal semester courses and 

carryover courses and having limited timeslots to fit theses examinations into. In recent 

studies, genetic algorithm is used in the implementation of examination timetabling system 

but without considering the clashes of the carryover courses taken by the students with other 

courses. This study will take into consideration the clashes of the carry-over courses taken by 

the students and it will be simulated in an examination timetable. 

1.3. Aim and objectives of the study 

The aim of this study is to apply genetic algorithm to the optimization of the timetable 

scheduling problem for the examination timetable. 

The specific objectives are to; 

a) identify the requirements of the system 

b) formulate the genetic algorithm model 

c) simulate the genetic algorithm model 

1.4. Proposed methodology 

In order for the aforementioned objectives to be actualized, the various methods will be 

adopted. 

a) conduct an informal interview with the examination officer in charge of the 

timetables. 
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b) formulate hard and soft constraints of the genetic algorithm needed for the timetable 

scheduling problem. 

c) the genetic algorithm will be simulated using the python programming language. 

 

1.5. Scope and limitations of the study 

This study is limited to the development of an examination timetable schedule for the 

computer science and mathematics department in Mountain Top university. This study will 

also be considering the carry-over courses across different levels in the department. 

1.6. Significance of the study 

FOR MOUNTAIN TOP UNIVERSITY 

The system will be used to create not only an examination timetable but also a normal 

lecture/departmental timetable that efficiently allocates courses to lecture rooms when the 

lecturer will be available and at the proper time at that. It would not have to be adjusted 

frequently and it will save time and little effort will also be utilized. And this will be a major 

breakthrough for the university. 

FOR THE EDUCATIONAL SYSTEM AT LARGE 

Other educational institutions can also utilize this system and improve their time table‟s 

quality and save time. 

1.7. Definition of terms 

 Heuristics: is any strategy to problem solving or self-discovery that involves a 

practical method that is not guaranteed to be ideal, perfect, or rational, but is sufficient 

for obtaining an immediate, short-term objective or approximation. 
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 Prototype: is an early sample, model, or release of a product designed to test a 

concept or method. It is a phrase that is used in a variety of areas, including 

semantics, design, electronics, and software engineering. 

 Tabu search: is a metaheuristic search method employing local search methods used 

for mathematical optimization. 

 Natural selection: is the differential survival and reproduction of individuals due to 

differences in phenotype. It is a key mechanism of evolution, the change in a 

population's heritable traits through generations. 

 Timetable scheduling: is selecting how to prioritize work and allocate resources 

among a multitude of options. (Hojjat Adeli, 2003) 

 Mutation: is a modification that happens in the DNA sequence, either owing to 

mistakes when the DNA is duplicated or as the result of environmental influences 

such as UV light and cigarette smoke. 

 Crossover: when two chromosomes, usually homologous instances of the same 

chromosome, split and subsequently reconnect but to different ends, this occurs. 

 Genetic algorithm: modelled after the mechanism of natural selection, in which the 

fittest individuals are chosen for growth and reproduction in order to create offspring 

for the next generation. 

 Optimization: making the finest or most efficient use of a situation or resource 

 Evolutionary algorithms: is a subset of evolutionary computation, which is a type of 

population-based metaheuristic optimization method. An EA employs biological 

evolution-inspired techniques such as reproduction, mutation, recombination, and 

selection. 

 Search heuristic: refers to a method of searching that tries to solve a problem by 

iteratively refining the solution using a heuristic function or cost measure. 
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 Feasible solution: is a set of decision variable values in an optimization problem that 

meet all of the constraints. 

 Selection: Individual genomes from a population are selected for later breeding at this 

stage of a genetic algorithm. 

 Carryover courses: refer to courses that are not passed and have to be retaken by the 

student in the consequent session. 

 Soft constraints: refer to restrictions with certain variable values that are punished in 

the objective function if and to the degree that the variables' requirements are not met. 

 Hard constraints: any successful model solution must satisfy this restriction. 

 Timeslots: a period of time that has been given to someone or something 

 Metaheuristic: is a higher-level process or heuristic for locating, developing, or 

selecting a heuristic (partial search algorithm) that can sufficiently solve an 

optimization problem. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1.  Information system 

An information system (IS) is formally structured to provide, process, store and disseminate 

information in a sociotechnical organizational structure (Piccolo & Pigni, 2018). Information 

systems comprise four elements: task, personnel, structure (or roles) and technology, from a 

socio-technological perspective. The academic analysis of the data-collecting, filtering, 

analyzing, producing and distributing data systems and its associated hardware and software 

nets are called information systems. Users, processors, storage, inputs, outputs, and the 

previously mentioned communications networks all constitute part of the information system 

(O‟Hara, Watson, & Cavan, 1999). Information systems are defined as a set of components 

that work together to gather, store, and process data, with the data being utilized to give 

information, contribute to knowledge, and create digital products that help people make better 

decisions (Jessup & Valacich, 2008). 

2.1.1. History of information systems 

Information systems (IS) have only been around for five decades. Despite this, IS has done 

more than any other convention in history to expand business and industry into global 

marketplaces. The backbone of IS is currently known as the World Wide Web, Internet, or in 

the case of a business, a Local Area Network, as well as a slew of acronym buzz words like 

EDI, EIS, ERP, SCM, and a slew of others to explain new ways in which IS may be used to 

expand a business. Contrary to today's communication speed, just over four decades ago, the 
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business climate in the United States was seeing post-war expansion like it had never seen 

before.(JMJ, 2000) Much of the knowledge that helped the economy grow was gained during 

World War II when the nation's industries were geared up to produce an effective war 

machine. The field of Operations Research arose as a result of this endeavor to win the war 

(OR). When the war ended, those involved with OR were freed from government service, 

releasing an experienced and highly trained field unlike any other in history into business and 

industry, ushering the United States into a period of wealth and expansion that lasted more 

than two decades. During World War II, the first functional computers, known as Turing 

Machines, were created, which were responsible for deciphering German codes and 

providing the allies with advanced warning of enemy operations (JMJ, 2000). These earliest 

practical computers were not particularly practical by today's standards, costing half a million 

dollars and being substantially less powerful than a pocket calculator, which can currently be 

purchased for less than ten dollars. These first computers, on the other hand, provided 

Operations Researchers with the ability to begin simulating larger and more complex 

systems, which in business and industry substantially aids in transforming capital 

expenditures into successful endeavors. This context from the early days of simulation, OR, 

and new technology inspired study into what became known as Information Systems 

(JMJ,2000). 

2.1.2. Types of information system 

In the 1980s, the "traditional" image of information systems in textbooks was a pyramid of 

systems that matched the organization's structure, with transaction processing systems at the 

bottom, management information systems, decision support systems, and executive 

information systems at the top. Although the pyramid model has remained helpful since its 
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inception, a number of new technologies and kinds of information systems have arisen, some 

of which do not easily fit into the original pyramid model.  

There are different types of information systems. Some of them are; 

 

 

a) Transaction processing systems 

A transaction includes all product and service purchases and sales, as well as any 

daily business transactions or operations required to run a business. Depending on the 

business and the size/scope of the organization, the quantity and types of transactions 

executed varies. Typical transactions include billing clients, bank deposits, new hire 

data, inventory counts, and a record of client-customer relationship management data. 

All contractual, transactional, and customer relationship data is maintained secure and 

accessible to all parties who require it, thanks to a transaction processing system. It 

also helps with sales order entry, payroll, shipping, sales administration, and other 

routine transactions that are necessary to keep companies running efficiently. 

Organizations can increase the dependability and quality of their user/customer data 

while reducing the risk of human mistake by implementing a TPS (Christiansen, 

2021). 

b) Office automation systems 

Office Automation Systems An office automation system is a collection of tools, 

technologies, and people that enable clerical and managerial tasks to be 

completed.  Printing documents, shipping paperwork, mailing, maintaining a 

company calendar, and providing reports are all common services handled by an 

OAS. An office automation system helps to improve communication between 
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departments so that everyone can work together to finish a task. To ensure that all 

communication data is easily available and in one centralized area, an OAS can 

integrate with e-mail or word processing apps. Businesses can increase employee 

communication, expedite managerial processes, and maximize knowledge 

management by implementing an office automation system (Christiansen, 2021). 

 

 

c) Knowledge Management Systems 

A knowledge management system collects and organizes data to help users improve 

their knowledge and collaborate more effectively to perform tasks. Employee training 

materials, company policies and procedures, and replies to client questions are all 

examples of documents found in a knowledge management system. Employees, 

customers, management, and other stakeholders engaged with the firm use a KMS. It 

guarantees that technical skills are distributed throughout the organization while also 

giving graphics to assist employees in making sense of the data they are presented 

with. Workers who require outside knowledge to accomplish their duties can also use 

this information system to gain intuitive access to external information. A KMS, for 

example, may contain competitor data that aids a sales team member in optimizing his 

or her pitch to a customer. Using a KMS can improve communication among team 

members and aid everyone in meeting performance goals by sharing expertise and 

providing answers to key issues (Christiansen, 2021). 

d) Decision Support Systems 

A decision support system analyzes data to aid managers in making decisions. It 

collects and stores the data necessary for management to take the appropriate 

decisions at the appropriate time. A bank manager, for example, can use a DSS to 
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examine changing loan trends and determine which annual loan targets to reach. The 

IS is built with decision models that evaluate and synthesize enormous amounts of 

data and provide it in a visual way that is easy to understand. Management may 

simply add or delete data and ask relevant questions because a DSS is interactive. 

This gives mid-management the evidence they need to make the best decisions 

possible to ensure the company fulfills its goals (Christiansen, 2021). 

 

e) Executive Support System 

Executive support systems are similar to decision support systems, except they are 

primarily used by executives and owners to help them make better decisions (Jackson, 

1998). Enterprise leaders can use an expert system to obtain answers to non-routine 

issues, allowing them to make decisions that improve the company's outlook and 

performance. Unlike a DSS, an executive support system has superior 

telecommunication capabilities and more processing power. Data on tax regulations, 

new competitor startups, internal compliance issues, and other essential executive 

information is displayed using graphics software embedded into an ESS. This enables 

leaders to keep track of internal performance, keep tabs on the competition, and 

identify growth opportunities (Christiansen, 2021). 

2.1.3 Student information systems 

A student information system (SIS) is a management information system that is used in 

educational institutions to manage student data. It is also known as a student management 

system, school administration software, or student administration system. Student 

information systems allow educational institutions to register students for classes, document 

grading, transcripts of academic achievement and co-curricular activities, and the results of 
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student assessment scores, create student schedules, track student attendance, and manage 

other student-related data requirements. Universities contain a variety of sensitive personal 

information, making them potentially attractive targets for security breaches similar to those 

faced by retail firms or healthcare organizations. (Gagliordi, 2014). 

2.2. Scheduling 

Scheduling is a method that is used to distribute valuable computing resources, usually 

processor time, bandwidth and memory, to the various processes, threads, data flows and 

applications that need them. Scheduling is performed to balance the load on the system, 

maintain equal allocation of resources, and provide some prioritization based on predefined 

rules. This assures that a computer system can service all requests while maintaining a 

particular level of service quality. In a production or industrial process, scheduling is the 

process of organizing, managing, and optimizing work and workloads. Plant and machinery 

resources are allocated, human resources are planned, production processes are planned, and 

supplies are purchased using scheduling. It's a crucial tool in manufacturing and engineering, 

where it can make a big difference in a process' productivity. The goal of scheduling in 

manufacturing is to reduce production time and costs by instructing a manufacturing facility 

when to manufacture what, with whom, and on what equipment. The goal of production 

scheduling is to increase the efficiency of the operation while lowering expenses. 

2.2.1 Classification of scheduling 

Scheduling can be broadly grouped into the following categories: 

a) Semi-Active Scheduling 

A schedule is considered semi-active if no job or operation can be completed sooner 

without affecting the processing order on any of the machines. By sequencing 
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processes, these workable schedules are completed as soon as possible. There is no 

way to start an operation without first changing the processing sequences in a semi-

active schedule (Rohini, 2016). 

b) Active Scheduling 

If it is not possible to design another schedule by changing the order of processing on 

the machines and having at least one job/operation finish earlier and no job/operation 

finish later, the schedule is called active (Nieberg, n.d). This viable schedules are 

those in which no process begins earlier than necessary without interruption or 

exceeding a precedence cap. Semi-active timetables remain in effect. In order to 

safely limit search space to the collection of active programs, an optimum technique is 

frequently used (Rohini, 2016). 

c) Non-delay Scheduling 

This viable schedules are those that have no interruptions in the machine's operation 

until it begins to function. Non-delay schedules must be active, so they're only semi-

active. (Rohini, 2016). Job scheduling systems, parallel machine scheduling, group 

job scheduling, resource constraint scheduling, timetable scheduling, and dynamic 

task scheduling are all examples of scheduling systems (Rohini, 2016). 

2.3. Types of scheduling systems 

Scheduling has been applied to different areas and it has proven itself as effective. Below are 

some of the areas in which scheduling is utilized. 

a) Project scheduling 

Project scheduling in the service industries includes consulting projects, system 

installation projects, maintenance and repair projects, and so on. Annual auditing 

processes, which are required by every public corporation and must be done by 
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independent accounting (CPA) companies, may also be incorporated in consulting 

assignments. A systems installation project could include the installation of a major 

computer system for a firm or the adoption of a large ERP system; these projects 

could take years to complete. Project scheduling has a wide range of applications in 

management consulting, accounting and auditing, and system deployment. 

 

 

b) Workforce scheduling 

Because schedules must be established in such a way that they can deal with 

unpredictable and random demand, workforce scheduling is a vital aspect of many 

service businesses. Nurse scheduling in hospitals, operator scheduling in call centers, 

and other application areas are examples. Workforce scheduling can be divided into 

two categories. The first is about shift scheduling, which is important in call centers, 

and the second is about crew scheduling, which is important in the transportation 

industry. 

c) Timetabling, Reservations, and Appointments 

In the hotel, education, and health-care industries, there are several timetabling, 

reservation, and appointment scheduling challenges. These problems are frequently 

mathematically linked, and similar solutions, such as integer programming 

formulations and graph theoretic techniques, may be required. In the hospitality 

industry, such as hotels and car rentals, interval scheduling challenges are common, 

although appointment scheduling is popular in many service industries, mostly to 

maximize resource use and eliminate queueing And timetabling is a general term for a 

set of scheduling issues that can be found in a variety of fields such as education, 

transportation, health care, and other service industries. 



 

 

14 

d) Transportation Scheduling  

Transportation is a fundamental service that can take several forms depending on the 

mode of travel. Buses, trains, airplanes, and ships are among the different types of 

transportation available. Various modes of transportation have different planning 

horizons, restrictions, and objectives. 

2.4. Timetable scheduling 

According to Collins English Dictionary, “Timetabling can be defined as the act of 

scheduling something to happen or do something at a particular time”. Timetabling is a well-

known NP-Hard combinatorial optimization issue that has yet to be solved using a 

deterministic solution in polynomial time. To handle the timetabling problem, several 

strategies are utilized, including manual building, search heuristics (tabu search, simulated 

annealing, and evolutionary algorithms), neural networks, and graph colouring algorithms. 

Because most scheduling problems have application-specific properties, it is not uncommon 

to apply domain-specific patterns in conjunction with the majority of the aforementioned 

strategies to improve computing performance. (Walusungu 2014).  

A school schedule is a combinatorial optimization problem that is structured as 

follows: Given a set of resources (lecture rooms, laboratories, etc.), a set of student groups, 

and a set of teachers, how can these three entities be organized in time such that given 

constraints are met while still satisfying optimality conditions. The most complicated 

timetables are found in universities, where the number of students and lecturers is high and 

enrolment into courses is guided by route maps. In such cases, allocating courses and 

lecturers to time slots and rooms necessitates the fulfilment of a number of potentially 

conflicting constraints. (Walusungu, 2014). 
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There are two types of constraints to consider: hard constraints and soft constraints. 

The former must be met in order for the timetable to be realistic (applicable), whereas the 

latter can be met to improve the timetable's consistency. Conflicts or collisions (an 

examination cannot take place in more than one venue, students can only attend one 

examination at a time), and capacity are examples of hard constraints (an examination must 

be allocated a venue with enough capacity).  

Administrative requirements or individual/departmental desires are examples of soft 

constraints. Examination position and timing preferences, departmental room allocation 

preferences, and venue spacing are a few examples. (Walusungu 2014). 

2.5. Timetable scheduling algorithms 

There are different algorithms that are used to solve timetabling problems, they are: 

a) Ant colony algorithm 

A probabilistic method for solving computational problems is the ant colony 

optimization algorithm (ACO) which can be reduced in order to find good graphical 

paths. Artificial ants stand for the actions of real ants based on the multi-agent 

methods. The prevalent model of pheromone-based contact of organic aunts is also 

used. Combinations of artificial ants and local search algorithms have become a tool 

for choosing various optimizing activities, such as vehicle routing and internet 

routing. (Monmarché Nicolas, 2010)  

 

procedure ACO_Metaheuristic is 

While not terminated do 

generateSolutions() 

daemonSolutions() 
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pheromoneUpdate() 

repeat 

end procedure 

Ant algorithm pseudocode  (Awan-Ur-Rahman, 2020)  

 

 

b) Bee algorithm 

In 2005 the algorithm of the bee created Pham, Ghanbarzadeh and collaborators as a 

population-based research technique (Pham DT, 2005). It mimics the forging 

behaviour of honey bee colonies. The method performs a type of neighbourhood 

search, combined with global search, for combinatorial and continuous optimisation 

in the most basic version. The only criteria for the application of the bee approach is 

that some distance between the solutions can be specified. A variety of experiments 

have shown the efficacy and basic abilities of the bee‟s algorithm. 

  

 Figure2.5(a) Pseudocode of the bee algorithm (Pham DT, 2005) 

c) Memetic algorithm 

A memetic algorithm (MA) is a genetic algorithm that has been extended. It employs 

a local search technique to reduce the possibility of premature convergence (Garg, 
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2009).  One of the most current and rapidly increasing branches of evolutionary 

calculation research are memetic algorithms. MA is now often applied to indicate a 

combination of evolutionary or other population-based approaches and independent 

human learning and local issue solving improvement techniques. MAs are known in 

the literature as Baldwinian evolutionary algorithms, Lamarckian EAs, cultural 

algorithms or local genetic searches (Moscato & Mathieson, 2019).  

 

 

Figure 2.5(b) Pseudocode for the memetic algorithm (Majdi,2015) 

d) Tabu search 

A meta heuristics technique was developed to deal with large and complex 

combinatorial optimization problems (Ferland et al. 2000, Gendreau et al. 1994).  This 

approach has been widely utilized to solve and build schedules due to the difficulties 

of timetabling as a combinatorial optimization problem. Regardless of its advantages 

and disadvantages (Brucker,1995), "Tabu search is an intelligent search method that 

uses a memory function to avoid becoming stuck at a local minimum and 

hierarchically canalizes one or more local search methods to swiftly identify the local 
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optimality.” Some previous information on the evolution of the search is retained to 

improve the effectiveness of the exploration process. 

e) Constant logic programming approach (CLP) 

For finite domains and huge combinatorial problems, CLP is widely and successfully 

employed. A schedule is a problem of the same kind with numerous resources (rooms 

and teachers) with particular schedule restrictions to achieve the optimum or close 

solution by allowing a maximum use of resources. The essential brilliance of CLP is 

its declarative handling of restrictions (both hard and soft). Because timetabling has 

been proven to be NP complete, despite the fact that a variety of software is available 

in the market, it is inflexible due to a variety of constraints in some situations, making 

it a tough topic of research (Murugan, 2009). 

f) Genetic algorithm 

Genetic algorithms were introduced as a ciphering analogy of adaptive systems. It is 

used for problem solving and for modelling (Murugan, 2009). A genetic algorithm is 

a search heuristic based on Charles Darwin's theory of natural selection. This 

algorithm is modelled after the mechanism of natural selection, in which the fittest 

individuals are chosen for growth and reproduction in order to create offspring for the 

next generation. 

 

Create a population of objects (creatures) //Initialization 

the fitness of each object //analysing 

While the population is not fit enough //Fitness check 

{ 

Delete all unfit objects //Removing unfit objects 

While population size <max: //size check 
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{ 

Select two best populations 

Create new objects 

Random mutations 

Evaluate and place in population //breeding 

                                                        Evolutionary growth. (Murugan, 2009) 

 

Genetic Algorithm is a particular order of evolutionary algorithms that uses the 

methodology of evolutionary biology such as mutation, crossover, selection and 

inheritance (Murugan, 2009).  

 

Figure 2.5(c) the basic genetic algorithm (Murugan, 2009) 
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2.5.1. The theory of natural selection 

Natural selection begins with the selection of the fittest individuals from a population. They 

have children that inherit the traits of their parents and are passed on to the next generation. If 

parents are more fit, their children would be fitter than their parents and have a greater chance 

of survival. This method is repeated indefinitely until a generation of the fittest individuals is 

discovered. There are five cases to be considered in genetic algorithm. 

They are: 

a) Initial population 

The phase starts with a group of individuals known as a Population. Each individual is a 

solution to the problem you wish to solve. A person is defined by a set of parameters 

(variables) known as Genes. To form a Chromosome, genes are linked together in a string 

(solution). A genetic algorithm represents an individual's collection of genes as a string in 

terms of an alphabet. Binary values are commonly used (string of 1s and 0s). We call this 

encoding the genes on a chromosome. 

 

Figure2.5.1(a) representation of the initial population of a GA (Mallawaarachchi, 2017) 

b) Fitness function 
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The fitness function defines an individual's level of fitness (the ability of an individual 

to compete with other individuals). It assigns a fitness score to each individual. The 

fitness score of an organism determines the likelihood that it will be chosen for 

reproduction.  (Mallawaarachchi, 2017). 

c) Selection 

The concept behind the selection process is to choose the fittest individuals and allow 

them to pass on their genes to the next generation.  Two pairs of people (parents) are 

chosen based on their fitness levels. Individuals with high fitness have a better chance 

of being chosen for reproduction. (Mallawaarachchi, 2017) 

d) Crossover 

The most important step of a genetic algorithm is crossover. A crossover point is 

selected at random from within the genes for each pair of parents to be mated.  

 

Figure 2.5.1(b) representation of the crossover point in the GA 

Offspring are created by exchanging the genes of parents among themselves until the    

crossover point is reached. 

 



 

 

22 

Figure 2.5.1(c) representation of the exchanging genes among parents 

The new offspring are incorporated into the population. 

 

Figure 2.5.1(d) representation of the new offspring (Mallawaarachchi, 2017) 

 

e) Mutation 

Any of the genes of certain newly developed offspring may be exposed to a mutation 

with a low random probability. This means that some of the bits in the bit string are 

able to be flipped. 

 

2.5.1(e) representation of the mutation: Before and After 

                                                                               (Mallawaarachchi, 2017) 

2.6. Fitness function 

The fitness function is a function that, when given a solution, determines whether it is good 

or bad. The answer improves as the fitness function's return value drops. The fitness function 

might simply check for any constraints that have been violated and return infinity if this is the 

case. It returns 0 if no limitations are violated. The fitness function provides no information 

about how excellent or awful the solution is, which is a flaw in that method. To gain a feel of 
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how excellent or poor a solution is, the fitness function should return a value proportionate to 

the number of constraints violated. There are two sorts of limitations: hard and soft 

constraints. Hard constraint violations will not be permitted. As a result, violating a single 

hard requirement while also violating a large number of soft constraints is worse than 

meeting all soft constraints while also violating a single hard constraint. The fact that there 

are two types of constraints does not imply that there are only two penalty values. Some of 

the soft limitations turn out to be more important than others. Staff members' seniority, for 

example, suggests that those with higher seniority should be comfortable first, followed by 

those with lower seniority. To account for the severity of the breach, soft constraints must 

have varied punishments. Hard constraints, on the other hand, all bear the same penalty: 

breaking any one of them indicates the solution is infeasible and unacceptable. As a result, 

the fitness function still indicates whether a solution is good or bad (Ahmed F. 

AbouElhamayed, 2016). 

Figure2.6 Mathematical model of the fitness function 

2.7.  Review of related works 

(Hong Siaw Theng, Abu Bakar Bin Md Sultan and Norhayati Mohd Ali, 2015) operated on a 

hybrid case-based reasoning approach to solving the university timetabling problem They 

developed the case-based approach as well as the classical and model methods to case-based 
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reasoning. They used real-life test cases, which were past timetables obtained from the 

department of computer science at the University of Putra in Malaysia, for their study 

methodology. The timetables were then restructured into Database Management System 

(DBMS) format with suitable connections. They used the PHP web-based scheduler for their 

paper test. The DBMS of their experiment was MySQL, and the webhosting service that was 

used was APACHE. Their hardcoded text was converted into a database using Regular 

Expression Replacement (RegEx). Notepad++ served as the Integrated Development 

Environment (IDE). The entire experiment was based on actual past databases, and the results 

were planned to be compared for current accuracy, making the experiment a real-time test 

bed. The experiment was carried out on a high-performance desktop computer. The desktop's 

performance specifications were 3.4 Ghz i7-Quad Core (Hyper-thread) Intel processor and 

8GB RAM. They conducted experiments with datasets obtained from the department of 

computer science at the University of Putra in Malaysia. The Human Preference Adaptable 

Retrieval Approach was used (HPARA). They demonstrated accuracy while generating a new 

schedule by obtaining lower counts of soft constraint violation. The proposed method's 

results demonstrated that there will be no soft constraint violation with a lower number of 

components. They also discovered that time taken results were significantly improving for 

schedule plotting with an average rating of 200ms. Their experiments demonstrated that the 

HPARA approach was successful in terms of both accuracy and reduction in solving 

scheduling in University timetabling. However, the component-by-component approach was 

used instead of the retrieval method used in their paper. This posed a problem in terms of 

reducing retrieval processing time. 

(R Raghavjee, N Pillay, 2014), utilized a selection perturbative hyper-heuristic in 

solving the school scheduling problem was investigated. On various types of school 

timetabling problems, a genetic algorithm selection perturbative hyper-heuristic was 
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implemented and tested. The hyper-heuristic generated feasible timetables for all problem 

instances and provided a generalized solution to the school scheduling problem, 

outperforming other methods applied to the same set of problems. They also discovered that 

the hyper-heuristic genetic algorithm outperformed the genetic algorithm applied directly to 

the solution space. 

Another body of work done by (Rakesh P. Badoni and D.K. Gupta, 2015) combined 

the use of Genetic Algorithm (GA) and the Iterative Local Search (ILS) which resulted in 

Genetic Algorithm Iterative Local Search (GAILS) was described for solving the University 

Course Timetabling Problem (UCTP) It was based on ILS using three types of 

neighbourhood moves and four types of perturbations. This allowed them to develop each 

generation produced by GA. It was demonstrated that GAILS provided optimal solutions 

with zero fitness function values in all small problem instances within nanoseconds. 

Comparisons were made in order to demonstrate the efficacy of their proposed algorithm. 

When used differently, they suggested that GAILS is a better algorithm than GA and ILS.  

In contrast to (Nashwan Ahmed Al-Majmar, Talal Hamid Al-Shfaq, 2016), which 

demonstrated that the use of Genetic algorithm (GA) was a powerful method for solving 

timetabling problems, especially with some suggested improvements. By combining multiple 

binary variables into one gene value on the chromosome, the initial timetabling problem with 

a large number of binary variables was greatly reduced to an appropriate scale. They created 

their software application in C# and used a SQL SERVER database to store and archive 

timetable data for future use. The model tested the method's efficacy and functionality using 

real-world datasets. The software model was very useful because it generated various types of 

timetables and contained a strong mix of artificial intelligence and software engineering. 

Their only drawback was that real-world teaching scheduling issues were not addressed. 
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Research by (H. M. Sani, 2016) also applied  GA on ETP. They used a sample exam‟s 

data of college of education located in Sokoto and grouped them into three scenarios; 40, 100 

and 200 exams, respectively. They scheduled these exams into 36 timeslots (2 weeks of 

exams from Monday to Saturday with 3 time slots in 1 day). In Sokoto, students are allowed 

to take elective courses. The elective courses will increase the possibility of clashes since 

students are free to choose many other courses. They ran the GA by using the ECJ toolkit. 

The ECJ toolkit is a software system that is specially designed for GAs and provides most of 

the standard components needed. Their aimed to avoid clashes (hard constraint) and also 

avoid students having two consecutive exams on the same day (soft constraint), but the result 

shows that the timetable produced had two exams scheduled on the same day. This means 

that the ECJ toolkit is only suitable to schedule courses or subjects which are not elective 

courses. 

(Farah Adibah Adnan, 2018), unlike (H. M. Sani, 2016)  specified the hard and soft 

constraints for the examination timetable. A weighted penalty value was attached to each 

violation of the soft constraint and the objective was to minimize the total penalty value of 

those violations. The paper was focused on applying the combination of the use of heuristic 

methods and the filtering of overlapping courses. There was no implementation of a timetable 

but they created mathematical models to satisfy the constraints. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1 Introduction 

When it comes to scheduling timetables, it is always referred to be a difficult optimization 

issue that has been proved to be related to the clique of minimization problem, which is also 

referred to as NP complete. When faced with a problem for which there is no efficient 

algorithm available, it is desirable to apply a genetic algorithm to the problem, which is used 

to search for a solution space in the first place. It is important to recognise that this type of 

scheduling is a global problem that has immediate relevance in a variety of timetabling 

situations, including typical course timetables, examination timetables, and public 

transportation schedules. 

3.1.1. Method of identification of user and system requirements 

When it comes to identifying user and system needs, there are a variety of approaches that 

can be applied. The following are the sources of identification that were used in this project: 
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a) Primary source: It refers to the method of data collection, which in this case was an 

empirical approach, which was a personal interview with the timetabling officer, 

which was utilised to gather the information. 

b) Secondary source: refers to information obtained from publications such as journals, 

conferences, websites, and books. 

Functional, service, and operational restrictions of the software system are described in 

further detail in system requirements documents (also known as system specifications). The 

computer system is composed of various components that work together to accomplish a 

specific aim.  

 

The following are the requirements that must be met in order for the system to be 

implemented. 

a) Non-functional requirements 

These are limitations on the services that the system is able to provide. They include 

time limits as well as restrictions imposed by industry standards. The following are 

the non-functional requirements that must be met by this system. 

i. When it comes to preparing error-free timetables, the system must be up to 

speed. 

ii. A flexible mechanism is required 

b) Functional requirements 

It is a list of services that the system must deliver, as well as how the system should 

react to specific inputs and how the system should behave in specific circumstances. 

The following are the functional requirements that must be met by the system: 
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i. The system must be able to create an initial population when at initial 

stage for creating a schedule 

ii. The system must be able to assign a fitness for resolving clashes 

when two or more exams allocated to the same time 

c) Hardware requirements 

For reliable and productive project efficiency, certain hardware requirements must be 

met which are as follows:  

i. 250 GB hard drive 

ii. an Intel i5 processor 

iii.  4 GB ram size 

d) Software requirements 

For efficiency of use and to have system performance in developing of software the 

following various software requirement must be met. 

i. Operating system: Mac OS, Windows, Linux etc.  

ii. Python interpreter 

iii. Anaconda Navigator 

3.1.2  Requirements gathering 

During the system design phase, the quantitative technique of collecting and analyzing data 

for the purpose of testing the system was chosen, and the data to be collected consisted of sets 

of school configurations that were collected. Which are as follows: 

i. The number of halls, 

ii. The capacity of each hall, 

iii. The total number of exams to be administered, 

iv. The amount of time-slots per day, 
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v. Population of the  students for each course, 

vi. The number of days for examination. 

3.1.3   Constraints 

It is necessary to deal with constraints since they represent barriers to progress. It is not a case 

of literal disagreement. For example, because to time constraints, some events (such as the 

project's conclusion) must take place on specific dates in order to be completed. Resources 

are nearly always a limitation, because they are not available in a limitless supply in a free 

market. There are two sorts of limitations that will be addressed in this project: structural and 

operational restrictions. 

 They are; 

a) Hard constraints 

Hard constraints play a major role in arriving at an optimized timetable. They are; 

i. Exam Population (registered students for the exam) must be less than the 

venue capacity i.e All events are to be assigned to rooms having adequate 

seating capacity and all the required features 

ii. Students in the same class cannot take exams in different venues at the same 

time slot. 

iii. No two courses taken by the same student group or registered as a carryover 

course can take place at the same venue and time slot. 

iv. Each course should be assigned to a timeslot. 

v. Final period on Wednesdays is not permitted. 

b) Soft constraints  
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Soft constraints do not adversely affect the quality of the timetable but they have 

considerable influence on the output of the system. The considered soft constraint are 

i. Students can have exams in consecutive time slots in a day. 

ii. No gaps between examinations. 

3.2. Genetic Algorithm based approach  

Genetic algorithms (also known as adaptable evolutionary algorithms) are evolutionary 

algorithms that are inspired by nature and can be used to solve complex problems as well as 

search vast problem spaces. According to GA, every possible solution is considered a 

"person," and a significant number of such individuals or a collection of solutions compose 

the "population" at the end of every generation. Random selection can be used to generate the 

first set of solutions (referred to as the "initial population"); individuals are then randomly 

mated, allowing for the recombination of genetic material. Individuals resulting from this 

method can then be mutated with a particular mutation probability assigned to each of the 

individuals. Natural selection is then applied to the new population, favouring the survival of 

better solutions and serving as the starting point for a new evolutionary cycle to begin. A 

database of feasible timetables is maintained and updated on a regular basis. The most 

effective timelines are selected as the foundation for the next iteration or generation of the 

product. Basic operators such as selection, mutation, and crossover are employed in order to 

produce the best possible results. 
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Figure 3.2 Flowchart of a simple of genetic algorithm 

The first genetic operator, selection, aims to increase the number of copies of people 

who have better fitness values than those who have lower fitness values. It is also referred to 

as "roulette wheel" selection because it produces more copies of people who have better 

fitness values than those who have lower fitness values. Due to the fact that the mechanism is 

similar to that of a roulette wheel, it has gained popularity. The roulette wheel is spun in 

order to generate the future generation, with the large chunk indicating high fitness and the 

small piece representing low fitness reflecting the two extremes of fitness. So, the segment 

with the highest surface area stands a better chance of being selected as the next generation. 

The second operator is referred to as a crossover. As a result of the selection process, it 

generates two new individuals (parents). Among the different types of crossover operations 
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are the one-point crossover, two-point crossover, cycle crossover, and uniform crossover. 

Mutation is regarded as the final operator in GA, and it occurs frequently after a crossover 

event. It makes a random change to a single bit of the bit string. This is accomplished by 

selecting a random value from the bit string and then transforming that value into another 

value (Mitchell 1997). The binary scenario, for example, converts the selected value from 0 

to 1 or vice versa if the selected value is 0. 

3.3.  Model formulation 

Variables 

a) A set of students, S={s1,s2…,si} 

The students in the department of computer science and mathematics. 

b) A set of examination venues, E={e1,e2,e3}  

     The examination halls for the examinations to be held. 

c) A set of courses , C={c1,c2,c3….,ck}.  

Courses offered by students in the department for the semester 

d) A set of students taking the same exams, z={z1,z2…,zl} 

               Zl =  si                Ck.    defined as Z(s) = C  

e)  A set of examination taking place, A={a1,a2...am} 

                       : Zk                       Am. A group of students taking the same exam. 
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f) A set of time slots, T={t1,t2…tn} is the number of timeslots available daily except on 

Wednesday which has two slots. Examination will hold for two weeks leads to a total 

timeslot of 28 timeslots due to the exclusion of the final period  Wednesdays.  

Where T1 = Monday first period, T2 = Monday second period, T3  = Monday third 

period etc. 

3.4. Problem definition 

To allocate an examination to a specific time-slot of a particular day in a particular venue. 

3.4.1. Model 

Each examination is Am 

Time slot is Tn 

Venue Ej 

                             : Amn                     Ej 

Such that:  

 |Zk|   |Ej| fulfils the constraint which says size of students taking a course must be less than 

capacity of venue                    

   jn(Z1)    jn(Z2) fulfils the constraint which says no two courses can take place at the same 

venue and time. 

 1n (Z1)    2n . fulfils the constraint which says students cannot take exams at different 

venues at the same time slot, n.  
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1. Introduction 

This section presents the result and the discussion of this study which involved the 

development of an examination timetabling system using genetic algorithm. The chapter 

presents the Comma separated values (CSV) files where the list of courses, venues and their 

capacities are stored as well has the various modules used for the simulation of the GA. 
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4.2. Representation of the data used in the simulation of the Genetic Algorithm 

The figure 4.2.1 shows the test values that are passed into the genetic algorithm for a 

simulation test of the implemented genetic algorithm. As a result of this, a CSV file was 

implemented called the Courses.csv file which were required for managing the various 

courses to be displayed in the timetable.  

Figure 4.2.1 displays the courses passed into the GA 
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Figure 4.2.2 shows the name for the invigilators to be used in the GA 
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Figure 4.2.3 shows the student names to be used in the timetable 

In the figure 4.2.4 below, students and the various courses that they registered for are 

displayed. Many names occur more than once and some students have courses that are seen 

as foreign. These courses are recognized as carry over courses.     
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Figure 4.2.4 shows the students and the courses they registered. 

4.3 Requirements for the simulation of the Genetic Algorithm 

The figure 4.3.1 below shows the various functions that make the simulation of the genetic 

algorithm feasible. The panda function  or pandas dataframe consists of rows and columns so, 

in order to iterate over dataframe, we can iterate a dataframe like a dictionary, the NumPy 

function contains a vast number of diverse mathematical operations. NumPy includes 

standard trigonometric functions, functions for arithmetic operations, managing complex 

numbers, etc. Standard trigonometric functions in NumPy return trigonometric ratios for a 

given angle in radians. 
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Figure 4.3.1 displays the methods used 

4.4 Loading of data into the genetic algorithm program 

For the timetable to actually work, all the data stored in the csv file has to be loaded into the 

GA program. Figure 4.4.1 displays the first five student names present in the CSV file. Figure 

4.4.2 displays the first five courses present in the CSV file and this was called using the . 

head function. Figure 4.4.3 displays the first five invigilator names that will be used in the 

GA. 
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Figure 4.4.1 displays the first five student names 
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Figure 4.4.2 displays a list containing 10 student names 

4.5 Population model 

Genes - Chromosome - Population. Each course, instructor, students, day, time, classroom 

name were stored as genes. Random.randint was utilized for the generation of random data 

from each array. Gene is a full schedule entry. It contains: 

a) Day of exam, 

b) Start time of exam, 

c) End time of exam, 

d) Invigilator (a lecturer), 

e) A list of students taking the exam, 

f) A classroom  

Chromosome is made up of a range of genes. A range of chosen chromosomes are present in 

the population. The schedule is established for each chromosome. 
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Figure 4.4.3 displays the first five invigilators 
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Figure 4.5.1(a) displays the representation of the genes. 
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Figure 4.5.1(b) shows the representation of the chromosome. 

Based on the Darwin theory of natural evolution, the genetic algorithm produces an initial 

population, shown in Figure 4.5.2. The roulette wheel selection is employed in Figure 

4.5.3(a) when parent chromosomes have been selected randomly. The function elitism is then 

specified by parent chromosomes in figure 4.5.3(b) The best chromosomes are represented. I 

utilized the randomized fixed point crossover technique shown in Figure 4.5.4 for crossover.  
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Figure 4.5.1(c) shows the representation of the population. 
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Figure 4.5.2 displays the initialization of the first population 
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Figure 4.5.3(a) displays the roulette wheel selection method 
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Figure 4.5.3(b) displays elitism 
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Figure 4.5.4 displays the randomized fixed point crossover technique. 

Random probability is dependent on mutation. The chromosome level or gene level may be 

affected by mutations. It is either used heuristically at the gene level or a totally new gene is 

produced. At the level of a chromosome, a gene can be removed or an entirely new 

chromosome can be produced. Figure 4.5.5 displays start time, end time, instructor and day 

as the variables that underwent mutation. 
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Figure 4.5.5 displays the mutated variables. 

4.6 Fitness Calculation and heuristic function 

To maximise the quality of the chromosome, I assigned points upon every constraint that was 

passed into the Genetic algorithm. For the hard constraints , the points assigned were fixed. 

However, for the soft constraints, I assigned variable points that was less than the hard 

constraints based on their priority. Whenever a constraint‟s passing points are less than a 

desired amount for a specific gene, I added only the relevant fields to a list. This list is 

provided to the mutation function, which uses it to only modify the fields which actually need 

to be modified. 

4.7 Constraints 

The constraints that were to be addressed like , students in the same class cannot take exams 

in different venues at the same time slot, no two courses taken by the same student group or 
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registered as a carryover course can take place at the same venue and time slot and each 

course should be assigned to a timeslot were addressed. 

4.8 Timetable 

After generating this timetable 131 times, it was selected as that which best fits the addressed 

constraints. Although not generated in a table format, the timetable contained the venue, start 

and end time, the course, students and the invigilator. In figure 4.8.1(a), The fitness value for 

each parent is displayed for each generation of the timetable. The timetable is displayed in 

figure 4.8.1 (b,c,d,e) respectively. 

 

 

Figure 4.8.1(a) The fitness value for each parent is displayed. 
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Figure 4.8.1 (b) displays the examination timetable. 
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Figure 4.8.1(c) displays the examination timetable. 
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Figure 4.8.1 (d) displays the examination timetable. 
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Figure 4.8.1 (e) displays the examination timetable. 
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CHAPTER FIVE 

SUMMARY AND CONCLUSION 

The system was developed to improve timetabling scheduling in general, the primary aim of 

applying genetic algorithm to the optimization of the timetable scheduling problem for the 

examination timetable. Examination timetables, especially if they are manually generated, are 

in effect a very demanding chore in any learning institution. The preparation can take days 

and weeks. This study suggested that the approach/technique to tackling the problem of 

genetic algorithms should be used. Although the experimental results show that a more 

efficient and dependable schedule can be reached with a properly constructed genetic 

algorithm. This offers good review schedules without conflicting examinations and in a much 

quicker time. 

5.1 Limitations 

One of the limitations of this project was that not all the hard constraints were addressed. I 

was able to populate each of the venues with students but due to the limited time, I was not 

able to declare the capacity of each of the venue and populate the venue based on that 

constraint. Due to the same reason, I could not fulfil the final period on Wednesday should 

not have any exams constraint.  

5.2 Conclusion 

The result has shown that the system is capable of providing useful solutions. It does not, 

however, fully automate the process. There are still some circumstances when the operator 

will need to make changes to some of the entries in order to achieve a flawless result. The 

enormous number of possible combinations for testing in order to arrive at an appropriate 

assessment for the application has proven to be impossible. However, considering the number 
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of constraints set on the system, it can be inferred that the system was able to provide 

findings that, despite being imperfect, are valid and acceptable. 

5.3 Recommendation 

This study recommends that further work on this study can be focused on increasing the 

number of constraints and creating a neat table using the Hypertext Markup Language 

(HTML). 
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Appendix 

import pandas as pd 

import numpy as np 

import copy 

print("libraries imported!") 

 TO LOAD DATA 

student_file = pd.read_csv('stNames.csv', header=None) 

student_file.reset_index(drop=True, inplace=True) 

course_file = pd.read_csv('courses.csv', header=None) 

student_course_file = pd.read_csv('studentCourses.csv') 

teacher_file = pd.read_csv('invigilator.csv', header=None) 

Classrooms_Array = ["BIGLT", "LT1", "LT2"] 

Courses_Array = list(course_file[0]) 

Instructors_Array = list(teacher_file[0]) 

Students_Array = list(student_file[0]) 

student_courses = [] 

for idx, student in enumerate(Students_Array): 

    for index, row in student_course_file.iterrows(): 

        if row["Name"] == student: 

            student_course_file.at[index, "Name"]=idx 
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Days_Array = [ 

    'Monday', 

    'Tuesday', 

    'Wednesday', 

    'Thursday', 

    'Friday', 

] 

num_of_days_in_week = 5 

start_times = [9, 12, 15] # i.e 9am - 12pm, 12pm - 3pm, 3pm - 6pm in 24hrs format 

Days_ID_Array = [0,1,2,3,4,] 

def change_fundamentals(): 

    next_day = Days_Array[(Days_ID_Array[-1] + 1)%num_of_days_in_week] 

    Days_ID_Array.append(Days_ID_Array[-1] + 1) 

    Days_Array.append(next_day)   

POPULATION MODEL 

class Gene: 

    def __init__( 

            self,course=None, 

            instructor=None, 
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            students=None, 

            day=None, 

            start_time=None, 

            end_time=None, 

            classroom_name=None, 

    ): 

 

        if course is None: 

            course = Courses_Array[np.random.randint(0, len(Courses_Array))] 

 

        if instructor is None: 

            instructor = np.random.randint(0, len(Instructors_Array)) 

 

        if students is None: 

            std_list = [] 

            for i in range(1, 10): 

                L = np.random.randint(1, len(Students_Array)) 

                std_list.append(L) 

            students = np.array(std_list) 
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        if day is None: 

            day = Days_ID_Array[np.random.randint(0, len(Days_ID_Array))] 

 

        if start_time is None: 

            start_time = start_times[np.random.randint(0,3)] 

 

        if end_time is None: 

            end_time = start_time + 3 

 

        if classroom_name is None: 

            classroom_name = Classrooms_Array[np.random.randint(0, len(Classrooms_Array))] 

 

        self.course = course 

        self.instructor = instructor 

        self.students = students 

        self.day = day 

        self.start_time = start_time 

        self.end_time = end_time 

        self.classroom_name = classroom_name 
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    def __str__(self): 

        student_names = [] 

        for student in self.students: 

            student_names.append(Students_Array[int(student)]) 

        temp_day_name = Days_Array[self.day] 

     

        instructor_name = Instructors_Array[self.instructor] 

         

        return ("{}\t{}\t{}\t{}\t{}\t{}\t{}\t.".format( 

            self.classroom_name, 

            temp_day_name, 

            self.start_time, 

            self.end_time, 

            self.course, 

            instructor_name, 

            student_names 

            ) 

        ) 

 

class Chromosome: 
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    def __init__(self, 

                 genes=None, 

                 fitness_value=None, 

                 ): 

 

        if genes is None: 

            genes = [] 

            for i in range(0, np.random.randint(10, 31)): 

                genes.append(Gene()) 

 

        if fitness_value is None: 

            fitness_value = 0 

 

        self.genes = np.array(genes) 

 

        self.fitness_value = fitness_value 

 

    def __getitem__(self, index): 

        return self.genes[index] 
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class Population: 

 

    def __init__(self, 

                chromosomes=None 

                 ): 

 

        if chromosomes is None: 

            chromosomes = [] 

            for i in range(1, 8): 

                chromosomes.append(Chromosome()) 

 

        self.chromosomes = np.array(chromosomes) 

 

    def __getitem__(self, index): 

        return self.chromosomes[index] 
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SELECTION 

def roulette_wheel_selection(population): 

    maximum_val = sum(chromosome.fitness_value for chromosome in population) 

    pick = np.random.uniform(0, maximum_val) 

    current = 0 

    mom = None 

    dad = None 

    for chromosome in population: 

        current += chromosome.fitness_value 

        if current > pick: 

            mom = chromosome 

            break 

    # reinititlize values 

    pick = np.random.uniform(0, maximum_val) 

    current = 0 

    for chromosome in population: 

        current += chromosome.fitness_value 

        if current > pick: 

            dad = chromosome 

            break 
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    # if mom and dad have no chromosome value randomly select 

    if mom is None: 

        mom = population[np.random.randint(0, len(population.chromosomes))] 

    if dad is None: 

        dad = population[np.random.randint(0, len(population.chromosomes))] 

    return mom, dad 

def elitism(population): 

    max_index_1 = 0 

    max_index_2 = 0 

    max_fitness1 = 0 

    max_fitness2 = 0 

 

    for idx, individual in enumerate(population.chromosomes): 

        if individual.fitness_value > max_fitness2: 

            if individual.fitness_value > max_fitness1: 

                max_fitness2 = max_fitness1 

                max_index_2 = max_index_1 

                max_fitness1 = individual.fitness_value 

                max_index_1 = idx 

            elif individual.fitness_value > max_fitness2: 
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                max_fitness2 = individual.fitness_value 

                max_index_2 = idx 

    return population[max_index_1], population[max_index_2] 

def select_best_mom_and_dad(population): 

    coin = np.random.randint(0, 2) 

    if coin: # if coin value is set to 1 i.e True 

        return roulette_wheel_selection(population) # use 

    return elitism(population) 

CROSSOVER 

def binary_crossover(husband, wife): 

    length = len(husband.genes) // 2 

    children = [] 

    son = husband.genes[:length] + wife.genes[length:] 

    children.append(son) 

    daughter = wife.genes[:length] + husband.genes[length:] 

    children.append(daughter) 

    return children 

# TODO: remove binary_crossover  

def randomized_fixed_point_crossover(mom, dad): 

    pass_loop = True 
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    new_pop = [] 

    while pass_loop: 

        try: 

            random_fixed_point = np.random.randint(1, len(mom.genes)) 

            son = np.concatenate((mom.genes[:random_fixed_point], 

dad.genes[random_fixed_point:])) 

            daughter = np.concatenate((dad.genes[:random_fixed_point], 

mom.genes[random_fixed_point:])) 

            new_pop.append(son) 

            new_pop.append(daughter) 

            pass_loop = False 

        except Exception as e: 

            print("Error! ", str(e)) 

            pass_loop = True 

 

    return new_pop 

#implementation of crossover 

def crossover(mom, dad, population): 

    new_chromosomes = [] 

    for i in range(0, np.random.randint(2,9)): 



 

 

72 

        children = randomized_fixed_point_crossover(mom, dad) 

        for child in children: 

            new_chromosomes.append(Chromosome(genes=child)) 

 

    return Population(chromosomes=new_chromosomes) 

 

CONSTRAINTS 

def hard_test_invigilator(chromosome): 

    wrong_value = 0 

    wrong_genes = [] 

     

    points = 0 

    for gene_1 in chromosome: 

        for gene_2 in chromosome: 

            if gene_2 == gene_1: 

                continue 

            if gene_2.day == gene_1.day: 

                if abs(gene_2.start_time - gene_1.start_time) < 3: 

                    if gene_2.classroom_name == gene_1.classroom_name: 

                        if gene_2.instructor == gene_1.instructor: 
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                            continue 

                        else: 

                            points += 10 

    return points 

 

 

def hard_test_valid_paper_duration(chromosome): 

    points = 0 

    for gene_p in chromosome: 

        if (gene_p.end_time - gene_p.start_time) != 3 or gene_p.start_time == 14: 

            continue 

        else: 

            points += 10 

 

    return points 

 

 

def hard_test_no_exam_on_weekends(chromosome): 

    #     for chromosome in chromosomes: 

    points = 0 
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    for gene_p in chromosome: 

        if (gene_p.day in ["Saturday", "Sunday"]): 

            continue 

        else: 

            points += 10 

    return points 

 

 

 

## Possible generic constraints 

def hard_test_student_one_exam_at_a_time(chromosome): 

    """At a given time, student can only give one exam""" 

    # Note: Also test the current gene from which the student is selected, because the same 

student might be repeated in a single class 

    points = 0 

    i = j = 0 

 

    while i < len(chromosome.genes): 

        for student in chromosome.genes[i].students: 

            for genes in chromosome: 
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                if genes == chromosome.genes[i]: 

                    continue 

                if genes.start_time == chromosome.genes[i].start_time and genes.day == 

chromosome.genes[i].day: 

                    if student in genes.students: 

                        continue 

                    else: 

                        points += 10 

        i += 1 

    return points 

 

 

def hard_test_one_exam_per_course(chromosome): 

    """First hard constraint: Every course must have an exam""" 

    courses_marked = [] 

    points = 0 

     

    for genes in chromosome: 

        if genes.course not in courses_marked: 

            courses_marked.append(genes.course) 
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            points += 10 

 

    return points 

 

 

def hard_test_one_exam_per_classroom(chromosome): 

    """At a given time, a classroom can only have one exam ongoing""" 

    for genes_1 in chromosome: 

        for genes_2 in chromosome: 

            if genes_1 == genes_2: 

                continue 

            if genes_2.classroom_name == genes_1.classroom_name: 

                if genes_1.start_time < genes_2.start_time or genes_2.start_time < 

genes_1.start_time: 

                    return False 

    return True 

 

def hard_test_students_taking_correct_exam(chromosome): 

    """Students must be taking the exam of the course they're registered for""" 

    points = 0 
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    for genes in chromosome: 

        for student in genes.students: 

            mask = student_course_file["Name"] == student 

            student_courses = student_course_file[mask]["CourseCode"] 

            if genes.course in student_courses: 

                points += 10 

    return points 

def soft_test_consecutive_exams(chromosome): 

    points = 0 

    for genes in chromosome: 

        for student in genes.students: 

            first_paper_time = genes.start_time 

            for gene_1 in chromosome:   # for the rest of the genes in the chromosome 

                if gene_1 == genes: 

                    continue 

                if student in gene_1.students:  # if the student is present in other gene 

                    if gene_1.start_time != first_paper_time + 3: # if the gene start_time != first 

paper +3 hrs 

                        points += 5 

    return points 
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def soft_test_manna_water(chromosome): 

    points = 0 

    for genes in chromosome: 

        if genes.day == 'Wednesday': 

            if 10 <= genes.start_time and genes.start_time <= 15: 

                continue 

            else: 

                points += 8             

    return points 

FITNESS OF CHROMOSOME 

def set_fitness(chromosome_p): 

    constraints_passed = 0 

    fields_to_mutate = [] 

    # Right now, checking only hard constraints 

    for constraint in HARD_CONSTRAINTS: 

        constraints_passed += constraint["func"](chromosome_p) 

        if constraints_passed < 1000: 

            if constraint["fields"] not in fields_to_mutate: fields_to_mutate += constraint["fields"] 

    # Set fitness value of individual chromosome 

    chromosome_p.fitness_value = constraints_passed 
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    return constraints_passed, fields_to_mutate 

MUTATION 

def modify_gene(gene, fields): 

    # Two different approaches: 

    # 1. Only mutate those values which were found to violate the constraints e.g time was not 

right so mutate time only 

    #    -> will require a list of all constraints not met by the chromosome 

    # 2. Mutate the entire gene completely 

 

    # For now, let's try a combination of both. 

    # Our model is partially self-aware. 

    # So what we can do is that flip a coin. 

    # If heads, then return a completely new gene. 

    # If tails, apply some self-awareness. 

 

    coin = np.random.randint(0, 2) 

 

    # First make a completely random new Gene 

    new_gene = Gene() 
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    # If heads... 

    if coin: 

        return new_gene 

 

    # Else if tails... 

 

    # Modify the existing fields of the selected gene 

    else: 

        for field in fields: 

            setattr(gene, field, getattr(new_gene, field)) 

        return gene 

 

 

def modify_chromosome(chromosome, random_index): 

    # if heads, delete a gene 

    # if tails, regenerate the entire chromosome 

    coin = np.random.randint(0, 2) 

 

    if coin: 

        np.delete(chromosome.genes, random_index) 
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    else: 

        chromosome = Chromosome() 

 

    return chromosome 

 

 

def mutate(chromosome, fields_to_mutate): 

    random_index = np.random.randint(0, len(chromosome.genes)) 

 

    coin = np.random.randint(0, 2) 

 

    # if heads, modify a gene 

    if coin: 

        chromosome.genes[random_index] = modify_gene(chromosome.genes[random_index], 

fields_to_mutate) 

    # if tails, modify the chromosome itself 

    else: 

        chromosome = modify_chromosome(chromosome, random_index) 

    return chromosome 

    new_pop = initialize_population() 
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    for chromosome in new_pop: 

        chromosome.fitness_value = np.random.randint(0, 21) 

    mom, dad = select_best_mom_and_dad(new_pop) 

    fields_to_mutate = [] 

    fitness_value, temp_fields = set_fitness(mom) 

    if temp_fields not in fields_to_mutate: 

        fields_to_mutate.append(temp_fields) 

    else: 

        fields_to_mutate.append([]) 

 

    print(fields_to_mutate) 

 

    random_index = np.random.randint(0, len(mom.genes)) 

    previous_constraint, fields_to_mutate = set_fitness(mom) 

    print('Constraints met before mutation: ', previous_constraint) 

    for i in range(0, 200): 

        mom = mutate(mom, fields_to_mutate) 

        new_constraint, fields_to_mutate = set_fitness(mom) 

    for gene in mom: 

        print(gene) 
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    print('Constraints met after mutation: ', new_constraint) 

EVALUATION 

min_soft_constraints = 3 

def evaluate(candidate, useless): 

    if useless is None: 

        useless = copy.deepcopy(candidate) 

    elif candidate.fitness_value > useless.fitness_value: 

        useless = copy.deepcopy(candidate) 

    return useless 

def print_mom_and_dad(mom, dad): 

    print("Mom genes:") 

    for gene in mom: 

        print(gene) 

    print("Mom Fitness Value: ", mom.fitness_value) 

    print("\n") 

    print("Dad genes:") 

    for gene in dad: 

        print(gene) 

    print("Dad Fitness Value: ", dad.fitness_value) 
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data = {} 

monday_courses = [] 

tuesday_courses = [] 

wednesday_courses = [] 

thursday_courses = [] 

friday_courses = [] 

def GeneticAlgorithm(): 

    max_generations = np.random.randint(40, 201) 

    mutation_probability = np.random.randint(0, 21) 

    gen_check = np.random.randint(10, max_generations // 4) 

    rand_val = np.random.randint(0, 6) 

    threshold = np.random.randint(rand_val, gen_check // 2) 

 

    print("========================    HYPERPARAMETERS    

==========================") 

    print("Max generations\t\t:", max_generations) 

    print("Mutation Probability\t:", mutation_probability) 

    print("Gen Check\t\t:", gen_check) 

    print("rand_val\t\t:", rand_val) 

    print("threshold\t\t:", threshold) 



 

 

85 

    print("\n\n") 

 

    print("Initializing population...") 

    new_generation = initialize_population() 

 

    solution_counter = 0 

    prev_best_solution = None 

    best_solution = None 

 

    print("Setting fitness of each chromosome...") 

    for chromosome in new_generation: 

        set_fitness(chromosome) 

 

    print("Selecting best mom and dad...") 

    mom, dad = select_best_mom_and_dad(new_generation) 

 

    print("\n\n") 

 

    for i in range(0, max_generations): 

        children = crossover(mom, dad, new_generation) 
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        new_chromosomes = [] 

        fields_to_mutate = [] 

        for idx, chromosome in enumerate(children): 

            fitness_value, temp_fields = set_fitness(chromosome) 

            fields_to_mutate.append(temp_fields) 

 

            if np.random.randint(0, 101) < mutation_probability: 

                mutate(chromosome, fields_to_mutate[idx]) 

                fitness_value_changed, fields_to_mutate[idx] = set_fitness(chromosome) 

                fitness_value = fitness_value_changed 

 

            new_chromosomes.append(chromosome) 

 

        next_gen = Population(chromosomes=new_chromosomes) 

 

        mom, dad = select_best_mom_and_dad(next_gen) 

 

        best_solution = evaluate(mom, best_solution) 

 

        ### print Every 100th generation results 
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        if i % gen_check == 0: 

 

            print('\nCurrent generation..: {}'.format(i)) 

            print('Current Mom fitness value:', mom.fitness_value) 

            print('Current Dad fitness value:', dad.fitness_value) 

            print('Best solution so far: {}'.format(best_solution.fitness_value)) 

            if prev_best_solution is None: 

                prev_best_solution = best_solution 

            if best_solution.fitness_value > prev_best_solution.fitness_value: 

                solution_counter = 0 

            elif best_solution.fitness_value == prev_best_solution.fitness_value: 

                solution_counter += 1 

 

            if solution_counter > threshold: 

                # change_fundamentals() 

                 

                new_generation = initialize_population() 

                np.append(new_generation.chromosomes, mom) 

                np.append(new_generation.chromosomes, prev_best_solution) 
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                solution_counter = 0 

 

            elif solution_counter > rand_val: 

                dad = best_solution 

            else: 

                prev_best_solution = best_solution 

    # -------------------------------- END GA LOOP 

    print("\n\n") 

    print("\n\n=================================------------

======================================") 

 

    print("Our best solution is:") 

    for gene in best_solution: 

        print(gene) 

        if Days_Array[gene.day] == "Monday": 

            monday_courses.append(gene.course) 

        elif Days_Array[gene.day] == "Tuesday": 

            tuesday_courses.append(gene.course) 

        elif Days_Array[gene.day] == "Wednesday": 

            wednesday_courses.append(gene.course) 
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        elif Days_Array[gene.day] == "Thursday": 

            thursday_courses.append(gene.course) 

        else: 

            friday_courses.append(gene.course) 

        print("\n\n") 

    print("\nFitness value is: ", best_solution.fitness_value) 

 

 


