
DEVELOPMENT OF AN EXAMINATION TIMETABLING SYSTEM USING

GENETIC ALGORITHM

By

ADESAGBA OLOLADE ELIZABETH

18010301074

A PROJECT SUBMITTED IN THE DEPARTMENT OF COMPUTER

SCIENCE AND MATHEMATICS, COLLEGE OF BASIC AND APPLIED

SCIENCES, IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR

THE AWARD OF DEGREE OF BACHELOR OF SCIENCE.

2021

ii

DECLARATION

I hereby declare that this project has been written by me is a record of my own

research work. It has not been presented in any previous application for a higher

degree of this or any other University. All citations and sources of information are

clearly acknowledged by means of reference.

ADESAGBA, OLOLADE ELIZABETH

Date

iii

CERTIFICATION

This Project titled, „Development Of An Examination Timetabling System Using

Genetic Algorithm’, was prepared and submitted by ADESAGBA OLOLADE

ELIZABETH in partial fulfillment of the requirements for the degree of

BACHELOR OF SCIENCE IN COMPUTER SCIENCE. The original research

work was carried out by her under by supervision and is hereby accepted.

____________________________ (Signature and Date)

Prof. I.O Akinyemi

(Supervisor)

____________________________ (Signature and Date)

Matthew O. Adewole, PhD

Coordinator, Department of Computer Science and Mathematics.

iv

DEDICATION

This project is dedicated to God Almighty.

v

ACKNOWLEDGEMENTS

I owe my profound gratitude to Almighty God who gave the strength, wisdom and

courage, divine help and provision to me from the beginning to the completion of this

work. I express gratitude to my supervisor, Prof. I.O Akinyemi, for his guidance and

support in ensuring the successful completion of this project work. God bless you Sir.

I sincerely appreciate Mr Jeremiah Balogun, for his guidance and teachings.

My heart-felt gratitude goes to the Head of Department, Computer Science and

Mathematics – Dr. M.O Adewole and all other members of staff of the Department of

Computer Science: Late Dr. Oyetunji M.O., Dr. (Mrs.) Kasali F.A., Dr (Mrs.) Oladejo

Bola, Prof. Idowu P.A., Dr. Okunoye O.B., Dr. (Mrs.) Oladeji F.A., Dr. (Mrs.) Igiri,

Mr. J.A Balogun, Mr. Ebo I.O and others too that I could not mention.

I acknowledge the constant support of my lecturer Mr. J.A Balogun who had

contributed greatly to my academics. I pray God would continually make him a force

to reckon with in his area of expertise and that God increases his knowledge.

I will forever be grateful to my parents Major and Mrs. Adesagba, who

sacrificed wealth, time and other resources for the sake of my success; and my

siblings, Adeola, Mayowa and Temilade then my cousins Sodiq and Rukayat for their

love and support. I also want to appreciate my uncles, Mr. Adekunle Adeyeye, Mr.

Phillip Adesagba and my aunts Dr. Tayo Adesagba and Mrs. Fadeke Adeyonu for

their love and endless support. And my profound gratitude goes to Hunzlah Malik,

Saad Bazaz, Abdul Rehman Subhani, Emmanuel Sule, Tolu Odey and Benjamin

Akighbe for their help in making this project feasible and all my Mountain Top

University colleagues and friends for their prayers and support, and help in one way

or the other. God bless them all immensely.

vi

TABLE OF CONTENTS

DECLARATION II

CERTIFICATION III

DEDICATION IV

ACKNOWLEDGEMENTS V

LIST OF FIGURES IX

ABSTRACT XI

CHAPTER ONE : INTRODUCTION 1

1.1. Background to the study 1

1.2. Statement of the problem 2

1.3. Aim and objectives of the study 2

1.4. Proposed methodology 2

1.5. Scope and limitations of the study 3

1.6. Significance of the study 3

1.7. Definition of terms 3

CHAPTER TWO: LITERATURE REVIEW 6

vii

2.1. Information system 6

2.1.1. History of information systems 6

2.1.2. Types of information system 7

2.1.3 Student information systems 10

2.2. Scheduling 11

2.2.1 Classification of scheduling 11

2.3. Types of scheduling systems 12

2.4. Timetable scheduling 14

2.5. Timetable scheduling algorithms 15

2.5.1. The theory of natural selection 20

2.6. Fitness function 22

2.7. Review of related works 23

CHAPTER THREE: RESEARCH METHODOLOGY 27

3.1 Introduction 27

3.1.1. Method of identification of user and system requirements 27

3.1.2 Requirements gathering 29

3.1.3 Constraints 30

3.2. Genetic Algorithm based approach 31

viii

3.3. Model formulation 33

3.4. Problem definition 34

3.4.1. Model 34

CHAPTER FOUR: IMPLEMENTATION AND RESULTS 35

4.1. Introduction 35

4.2. Representation of the data used in the simulation of the Genetic Algorithm 36

4.3 Requirements for the simulation of the Genetic Algorithm 39

4.4 Loading of data into the genetic algorithm program 40

4.5 Population model 42

4.6 Fitness Calculation and heuristic function 51

4.7 Constraints 51

4.8 Timetable 52

CHAPTER FIVE: CONCLUSION AND RECOMMENDATION 57

5.1 Limitations 57

5.2 Conclusion 57

5.3 Recommendation 58

References 59

ix

LIST OF FIGURES

Pages

Figure2.5(a) Pseudocode of the bee algorithm 16

Figure 2.5(b) Pseudocode for the memetic algorithm 18

Figure 2.5(c) The basic genetic algorithm 19

Figure2.5.1(a) Representation of the initial population of a GA 20

Figure 2.5.1(b) Representation of the crossover point in the GA

21

Figure 2.5.1(c) representation of the exchanging genes among parents

21

Figure 2.5.1(d)representation of the new offspring. 21

Figure 2.5.1(e)representation of the mutation: Before and After. 22

Figure2.6 Mathematical model of the fitness function 23

Figure 3.2 Flowchart of a simple of genetic algorithm

31

Figure 4.2.1 courses passed into the GA

35

Figure 4.2.2 shows the name for the invigilators to be used in the GA.

36

Figure 4.2.3 shows the student names to be used in the timetable. 37

Figure 4.2.4 shows the students and the courses they registered. 38

Figure 4.3.1 displays the methods used 39

Figure 4.4.1 displays the first five student names 40

Figure 4.4.2 displays a list containing 10 student names 41

Figure 4.4.3 displays the first five invigilators 42

x

Figure 4.5.1(a) displays the representation of the genes. 43

Figure 4.5.1(b) shows the representation of the chromosome. 44

Figure 4.5.1(c) shows the representation of the population. 45

Figure 4.5.2 displays the initialization of the first population 46

Figure4.5.3(a) displays the roulette wheel selection method. 47

Figure 4.5.3(b) displays elitism 48

Figure 4.5.4 displays the randomized fixed point crossover technique.

49

Figure 4.5.5 displays the mutated variables.

50

Figure 4.8.1(a), The fitness value for each parent is displayed.

51

Figure 4.8.1 (b) displays the examination timetable.

52

Figure 4.8.1(c) displays the examination timetable

53

Figure 4.8.1 (d) displays the examination timetable.

54

Figure 4.8.1 (e) displays the examination timetable

55

xi

ABSTRACT

The aim of this study is to apply genetic algorithm to the optimization of the timetable

scheduling problem for the examination timetable based on the size of the registered

students, the number of courses and the carryover courses of the students.

This was achieved by eliciting knowledge on identifying the requirements of

the system, formulating the genetic algorithm model and the simulation of the genetic

algorithm model.

A structured interview was conducted with the timetable representative in

order to obtain quantitative data for the purpose of testing the system and the data

collected consisted of sets of school configurations like the number of examination

halls, the capacity of each hall, the number of timeslots per day etc.

Hard and soft constraint of the genetic algorithm were formulated based on the

limitations and feedbacks of timetable representative. Anaconda Navigator was used

as an Integrated Development Environment (IDE). The system was simulated using

comma separated values (CSV) file which served as a storage capacity for all the

xii

quantitative data gotten. The program was written using the Jupyter notebook with

python being the interpreter.

After representing the different constraints using mathematical modelling and

the simulation of the GA using the python interpreter, the result has shown that the

system is capable of providing useful solutions. It does not, however, fully automate

the process. There are still some circumstances when the operator will need to make

changes to some of the entries in order to achieve a flawless result. The enormous

number of possible combinations for testing in order to arrive at an appropriate

assessment for the application has proven to be impossible. However, considering the

number of constraints set on the system, it can be inferred that the system was able to

provide findings that, despite being imperfect, are valid and acceptable.

In conclusion, the system was developed to improve timetabling scheduling in

general, this study suggested that the approach/technique to tackling the problem of

genetic algorithms should be used. Although the experimental results show that a

more efficient and dependable schedule can be reached with a properly constructed

genetic algorithm. This offers good review schedules without conflicting

examinations and in a much quicker time.

Keywords: University Timetable scheduling, Examination, Genetic Algorithm,

Modelling, Constraints.

xiii

1

CHAPTER ONE

INTRODUCTION

1.1. Background to the study

Timetabling can be defined as the act of scheduling something to happen at a particular time.

Timetable scheduling is one of the problems in the educational sector. An example of a

scheduling issue is the university course and examination scheduling problem, which is NP-

hard. The timetabling procedure must be completed for each semester on a regular basis,

which is a time-consuming and demanding activity. (Hamed Babaei, 2015)

There are different algorithms that are used to solve timetabling problems, some examples are

the ant colony algorithm, the bee algorithm, the genetic algorithm or any other type of hybrid

algorithms. (Kadam, 2015). But in this study, the application of genetic algorithm is

employed.

Genetic algorithms can be simply put, as heuristic techniques that are used to provide

multiple possible solutions to a particular problem and finding that which optimally solves

the problem. Genetic algorithms can be simple or complex. Like the natural evolution process

itself, Life has identified a wide range of genetic information sharing methods. Genetic

algorithms are known to solve multiple problems such as scheduling problems and

optimization problems. (Mallawaarachchi, 2017).

Many studies have been conducted to determine which problems can be solved using genetic

algorithms. Some of them are in Risk assessment, Bio-Medical problems, Minimum

Dominating Set of Queens problem and the famous timetabling problem.

2

1.2. Statement of the problem

In the educational sector of today, manual methods of timetable scheduling are employed,

which is the use of paper. There are a lot of problems faced in using this manual method due

to the limited time slots, limited venues and the availability of the lecturers at that particular

time and this poses as problems for course scheduling whereas in examination scheduling a

lot of more difficulties are faced. For example, clashes between normal semester courses and

carryover courses and having limited timeslots to fit theses examinations into. In recent

studies, genetic algorithm is used in the implementation of examination timetabling system

but without considering the clashes of the carryover courses taken by the students with other

courses. This study will take into consideration the clashes of the carry-over courses taken by

the students and it will be simulated in an examination timetable.

1.3. Aim and objectives of the study

The aim of this study is to apply genetic algorithm to the optimization of the timetable

scheduling problem for the examination timetable.

The specific objectives are to;

a) identify the requirements of the system

b) formulate the genetic algorithm model

c) simulate the genetic algorithm model

1.4. Proposed methodology

In order for the aforementioned objectives to be actualized, the various methods will be

adopted.

a) conduct an informal interview with the examination officer in charge of the

timetables.

3

b) formulate hard and soft constraints of the genetic algorithm needed for the timetable

scheduling problem.

c) the genetic algorithm will be simulated using the python programming language.

1.5. Scope and limitations of the study

This study is limited to the development of an examination timetable schedule for the

computer science and mathematics department in Mountain Top university. This study will

also be considering the carry-over courses across different levels in the department.

1.6. Significance of the study

FOR MOUNTAIN TOP UNIVERSITY

The system will be used to create not only an examination timetable but also a normal

lecture/departmental timetable that efficiently allocates courses to lecture rooms when the

lecturer will be available and at the proper time at that. It would not have to be adjusted

frequently and it will save time and little effort will also be utilized. And this will be a major

breakthrough for the university.

FOR THE EDUCATIONAL SYSTEM AT LARGE

Other educational institutions can also utilize this system and improve their time table‟s

quality and save time.

1.7. Definition of terms

 Heuristics: is any strategy to problem solving or self-discovery that involves a

practical method that is not guaranteed to be ideal, perfect, or rational, but is sufficient

for obtaining an immediate, short-term objective or approximation.

4

 Prototype: is an early sample, model, or release of a product designed to test a

concept or method. It is a phrase that is used in a variety of areas, including

semantics, design, electronics, and software engineering.

 Tabu search: is a metaheuristic search method employing local search methods used

for mathematical optimization.

 Natural selection: is the differential survival and reproduction of individuals due to

differences in phenotype. It is a key mechanism of evolution, the change in a

population's heritable traits through generations.

 Timetable scheduling: is selecting how to prioritize work and allocate resources

among a multitude of options. (Hojjat Adeli, 2003)

 Mutation: is a modification that happens in the DNA sequence, either owing to

mistakes when the DNA is duplicated or as the result of environmental influences

such as UV light and cigarette smoke.

 Crossover: when two chromosomes, usually homologous instances of the same

chromosome, split and subsequently reconnect but to different ends, this occurs.

 Genetic algorithm: modelled after the mechanism of natural selection, in which the

fittest individuals are chosen for growth and reproduction in order to create offspring

for the next generation.

 Optimization: making the finest or most efficient use of a situation or resource

 Evolutionary algorithms: is a subset of evolutionary computation, which is a type of

population-based metaheuristic optimization method. An EA employs biological

evolution-inspired techniques such as reproduction, mutation, recombination, and

selection.

 Search heuristic: refers to a method of searching that tries to solve a problem by

iteratively refining the solution using a heuristic function or cost measure.

5

 Feasible solution: is a set of decision variable values in an optimization problem that

meet all of the constraints.

 Selection: Individual genomes from a population are selected for later breeding at this

stage of a genetic algorithm.

 Carryover courses: refer to courses that are not passed and have to be retaken by the

student in the consequent session.

 Soft constraints: refer to restrictions with certain variable values that are punished in

the objective function if and to the degree that the variables' requirements are not met.

 Hard constraints: any successful model solution must satisfy this restriction.

 Timeslots: a period of time that has been given to someone or something

 Metaheuristic: is a higher-level process or heuristic for locating, developing, or

selecting a heuristic (partial search algorithm) that can sufficiently solve an

optimization problem.

6

CHAPTER TWO

LITERATURE REVIEW

2.1. Information system

An information system (IS) is formally structured to provide, process, store and disseminate

information in a sociotechnical organizational structure (Piccolo & Pigni, 2018). Information

systems comprise four elements: task, personnel, structure (or roles) and technology, from a

socio-technological perspective. The academic analysis of the data-collecting, filtering,

analyzing, producing and distributing data systems and its associated hardware and software

nets are called information systems. Users, processors, storage, inputs, outputs, and the

previously mentioned communications networks all constitute part of the information system

(O‟Hara, Watson, & Cavan, 1999). Information systems are defined as a set of components

that work together to gather, store, and process data, with the data being utilized to give

information, contribute to knowledge, and create digital products that help people make better

decisions (Jessup & Valacich, 2008).

2.1.1. History of information systems

Information systems (IS) have only been around for five decades. Despite this, IS has done

more than any other convention in history to expand business and industry into global

marketplaces. The backbone of IS is currently known as the World Wide Web, Internet, or in

the case of a business, a Local Area Network, as well as a slew of acronym buzz words like

EDI, EIS, ERP, SCM, and a slew of others to explain new ways in which IS may be used to

expand a business. Contrary to today's communication speed, just over four decades ago, the

7

business climate in the United States was seeing post-war expansion like it had never seen

before.(JMJ, 2000) Much of the knowledge that helped the economy grow was gained during

World War II when the nation's industries were geared up to produce an effective war

machine. The field of Operations Research arose as a result of this endeavor to win the war

(OR). When the war ended, those involved with OR were freed from government service,

releasing an experienced and highly trained field unlike any other in history into business and

industry, ushering the United States into a period of wealth and expansion that lasted more

than two decades. During World War II, the first functional computers, known as Turing

Machines, were created, which were responsible for deciphering German codes and

providing the allies with advanced warning of enemy operations (JMJ, 2000). These earliest

practical computers were not particularly practical by today's standards, costing half a million

dollars and being substantially less powerful than a pocket calculator, which can currently be

purchased for less than ten dollars. These first computers, on the other hand, provided

Operations Researchers with the ability to begin simulating larger and more complex

systems, which in business and industry substantially aids in transforming capital

expenditures into successful endeavors. This context from the early days of simulation, OR,

and new technology inspired study into what became known as Information Systems

(JMJ,2000).

2.1.2. Types of information system

In the 1980s, the "traditional" image of information systems in textbooks was a pyramid of

systems that matched the organization's structure, with transaction processing systems at the

bottom, management information systems, decision support systems, and executive

information systems at the top. Although the pyramid model has remained helpful since its

8

inception, a number of new technologies and kinds of information systems have arisen, some

of which do not easily fit into the original pyramid model.

There are different types of information systems. Some of them are;

a) Transaction processing systems

A transaction includes all product and service purchases and sales, as well as any

daily business transactions or operations required to run a business. Depending on the

business and the size/scope of the organization, the quantity and types of transactions

executed varies. Typical transactions include billing clients, bank deposits, new hire

data, inventory counts, and a record of client-customer relationship management data.

All contractual, transactional, and customer relationship data is maintained secure and

accessible to all parties who require it, thanks to a transaction processing system. It

also helps with sales order entry, payroll, shipping, sales administration, and other

routine transactions that are necessary to keep companies running efficiently.

Organizations can increase the dependability and quality of their user/customer data

while reducing the risk of human mistake by implementing a TPS (Christiansen,

2021).

b) Office automation systems

Office Automation Systems An office automation system is a collection of tools,

technologies, and people that enable clerical and managerial tasks to be

completed. Printing documents, shipping paperwork, mailing, maintaining a

company calendar, and providing reports are all common services handled by an

OAS. An office automation system helps to improve communication between

9

departments so that everyone can work together to finish a task. To ensure that all

communication data is easily available and in one centralized area, an OAS can

integrate with e-mail or word processing apps. Businesses can increase employee

communication, expedite managerial processes, and maximize knowledge

management by implementing an office automation system (Christiansen, 2021).

c) Knowledge Management Systems

A knowledge management system collects and organizes data to help users improve

their knowledge and collaborate more effectively to perform tasks. Employee training

materials, company policies and procedures, and replies to client questions are all

examples of documents found in a knowledge management system. Employees,

customers, management, and other stakeholders engaged with the firm use a KMS. It

guarantees that technical skills are distributed throughout the organization while also

giving graphics to assist employees in making sense of the data they are presented

with. Workers who require outside knowledge to accomplish their duties can also use

this information system to gain intuitive access to external information. A KMS, for

example, may contain competitor data that aids a sales team member in optimizing his

or her pitch to a customer. Using a KMS can improve communication among team

members and aid everyone in meeting performance goals by sharing expertise and

providing answers to key issues (Christiansen, 2021).

d) Decision Support Systems

A decision support system analyzes data to aid managers in making decisions. It

collects and stores the data necessary for management to take the appropriate

decisions at the appropriate time. A bank manager, for example, can use a DSS to

10

examine changing loan trends and determine which annual loan targets to reach. The

IS is built with decision models that evaluate and synthesize enormous amounts of

data and provide it in a visual way that is easy to understand. Management may

simply add or delete data and ask relevant questions because a DSS is interactive.

This gives mid-management the evidence they need to make the best decisions

possible to ensure the company fulfills its goals (Christiansen, 2021).

e) Executive Support System

Executive support systems are similar to decision support systems, except they are

primarily used by executives and owners to help them make better decisions (Jackson,

1998). Enterprise leaders can use an expert system to obtain answers to non-routine

issues, allowing them to make decisions that improve the company's outlook and

performance. Unlike a DSS, an executive support system has superior

telecommunication capabilities and more processing power. Data on tax regulations,

new competitor startups, internal compliance issues, and other essential executive

information is displayed using graphics software embedded into an ESS. This enables

leaders to keep track of internal performance, keep tabs on the competition, and

identify growth opportunities (Christiansen, 2021).

2.1.3 Student information systems

A student information system (SIS) is a management information system that is used in

educational institutions to manage student data. It is also known as a student management

system, school administration software, or student administration system. Student

information systems allow educational institutions to register students for classes, document

grading, transcripts of academic achievement and co-curricular activities, and the results of

11

student assessment scores, create student schedules, track student attendance, and manage

other student-related data requirements. Universities contain a variety of sensitive personal

information, making them potentially attractive targets for security breaches similar to those

faced by retail firms or healthcare organizations. (Gagliordi, 2014).

2.2. Scheduling

Scheduling is a method that is used to distribute valuable computing resources, usually

processor time, bandwidth and memory, to the various processes, threads, data flows and

applications that need them. Scheduling is performed to balance the load on the system,

maintain equal allocation of resources, and provide some prioritization based on predefined

rules. This assures that a computer system can service all requests while maintaining a

particular level of service quality. In a production or industrial process, scheduling is the

process of organizing, managing, and optimizing work and workloads. Plant and machinery

resources are allocated, human resources are planned, production processes are planned, and

supplies are purchased using scheduling. It's a crucial tool in manufacturing and engineering,

where it can make a big difference in a process' productivity. The goal of scheduling in

manufacturing is to reduce production time and costs by instructing a manufacturing facility

when to manufacture what, with whom, and on what equipment. The goal of production

scheduling is to increase the efficiency of the operation while lowering expenses.

2.2.1 Classification of scheduling

Scheduling can be broadly grouped into the following categories:

a) Semi-Active Scheduling

A schedule is considered semi-active if no job or operation can be completed sooner

without affecting the processing order on any of the machines. By sequencing

12

processes, these workable schedules are completed as soon as possible. There is no

way to start an operation without first changing the processing sequences in a semi-

active schedule (Rohini, 2016).

b) Active Scheduling

If it is not possible to design another schedule by changing the order of processing on

the machines and having at least one job/operation finish earlier and no job/operation

finish later, the schedule is called active (Nieberg, n.d). This viable schedules are

those in which no process begins earlier than necessary without interruption or

exceeding a precedence cap. Semi-active timetables remain in effect. In order to

safely limit search space to the collection of active programs, an optimum technique is

frequently used (Rohini, 2016).

c) Non-delay Scheduling

This viable schedules are those that have no interruptions in the machine's operation

until it begins to function. Non-delay schedules must be active, so they're only semi-

active. (Rohini, 2016). Job scheduling systems, parallel machine scheduling, group

job scheduling, resource constraint scheduling, timetable scheduling, and dynamic

task scheduling are all examples of scheduling systems (Rohini, 2016).

2.3. Types of scheduling systems

Scheduling has been applied to different areas and it has proven itself as effective. Below are

some of the areas in which scheduling is utilized.

a) Project scheduling

Project scheduling in the service industries includes consulting projects, system

installation projects, maintenance and repair projects, and so on. Annual auditing

processes, which are required by every public corporation and must be done by

13

independent accounting (CPA) companies, may also be incorporated in consulting

assignments. A systems installation project could include the installation of a major

computer system for a firm or the adoption of a large ERP system; these projects

could take years to complete. Project scheduling has a wide range of applications in

management consulting, accounting and auditing, and system deployment.

b) Workforce scheduling

Because schedules must be established in such a way that they can deal with

unpredictable and random demand, workforce scheduling is a vital aspect of many

service businesses. Nurse scheduling in hospitals, operator scheduling in call centers,

and other application areas are examples. Workforce scheduling can be divided into

two categories. The first is about shift scheduling, which is important in call centers,

and the second is about crew scheduling, which is important in the transportation

industry.

c) Timetabling, Reservations, and Appointments

In the hotel, education, and health-care industries, there are several timetabling,

reservation, and appointment scheduling challenges. These problems are frequently

mathematically linked, and similar solutions, such as integer programming

formulations and graph theoretic techniques, may be required. In the hospitality

industry, such as hotels and car rentals, interval scheduling challenges are common,

although appointment scheduling is popular in many service industries, mostly to

maximize resource use and eliminate queueing And timetabling is a general term for a

set of scheduling issues that can be found in a variety of fields such as education,

transportation, health care, and other service industries.

14

d) Transportation Scheduling

Transportation is a fundamental service that can take several forms depending on the

mode of travel. Buses, trains, airplanes, and ships are among the different types of

transportation available. Various modes of transportation have different planning

horizons, restrictions, and objectives.

2.4. Timetable scheduling

According to Collins English Dictionary, “Timetabling can be defined as the act of

scheduling something to happen or do something at a particular time”. Timetabling is a well-

known NP-Hard combinatorial optimization issue that has yet to be solved using a

deterministic solution in polynomial time. To handle the timetabling problem, several

strategies are utilized, including manual building, search heuristics (tabu search, simulated

annealing, and evolutionary algorithms), neural networks, and graph colouring algorithms.

Because most scheduling problems have application-specific properties, it is not uncommon

to apply domain-specific patterns in conjunction with the majority of the aforementioned

strategies to improve computing performance. (Walusungu 2014).

A school schedule is a combinatorial optimization problem that is structured as

follows: Given a set of resources (lecture rooms, laboratories, etc.), a set of student groups,

and a set of teachers, how can these three entities be organized in time such that given

constraints are met while still satisfying optimality conditions. The most complicated

timetables are found in universities, where the number of students and lecturers is high and

enrolment into courses is guided by route maps. In such cases, allocating courses and

lecturers to time slots and rooms necessitates the fulfilment of a number of potentially

conflicting constraints. (Walusungu, 2014).

15

There are two types of constraints to consider: hard constraints and soft constraints.

The former must be met in order for the timetable to be realistic (applicable), whereas the

latter can be met to improve the timetable's consistency. Conflicts or collisions (an

examination cannot take place in more than one venue, students can only attend one

examination at a time), and capacity are examples of hard constraints (an examination must

be allocated a venue with enough capacity).

Administrative requirements or individual/departmental desires are examples of soft

constraints. Examination position and timing preferences, departmental room allocation

preferences, and venue spacing are a few examples. (Walusungu 2014).

2.5. Timetable scheduling algorithms

There are different algorithms that are used to solve timetabling problems, they are:

a) Ant colony algorithm

A probabilistic method for solving computational problems is the ant colony

optimization algorithm (ACO) which can be reduced in order to find good graphical

paths. Artificial ants stand for the actions of real ants based on the multi-agent

methods. The prevalent model of pheromone-based contact of organic aunts is also

used. Combinations of artificial ants and local search algorithms have become a tool

for choosing various optimizing activities, such as vehicle routing and internet

routing. (Monmarché Nicolas, 2010)

procedure ACO_Metaheuristic is

While not terminated do

generateSolutions()

daemonSolutions()

16

pheromoneUpdate()

repeat

end procedure

Ant algorithm pseudocode (Awan-Ur-Rahman, 2020)

b) Bee algorithm

In 2005 the algorithm of the bee created Pham, Ghanbarzadeh and collaborators as a

population-based research technique (Pham DT, 2005). It mimics the forging

behaviour of honey bee colonies. The method performs a type of neighbourhood

search, combined with global search, for combinatorial and continuous optimisation

in the most basic version. The only criteria for the application of the bee approach is

that some distance between the solutions can be specified. A variety of experiments

have shown the efficacy and basic abilities of the bee‟s algorithm.

 Figure2.5(a) Pseudocode of the bee algorithm (Pham DT, 2005)

c) Memetic algorithm

A memetic algorithm (MA) is a genetic algorithm that has been extended. It employs

a local search technique to reduce the possibility of premature convergence (Garg,

17

2009). One of the most current and rapidly increasing branches of evolutionary

calculation research are memetic algorithms. MA is now often applied to indicate a

combination of evolutionary or other population-based approaches and independent

human learning and local issue solving improvement techniques. MAs are known in

the literature as Baldwinian evolutionary algorithms, Lamarckian EAs, cultural

algorithms or local genetic searches (Moscato & Mathieson, 2019).

Figure 2.5(b) Pseudocode for the memetic algorithm (Majdi,2015)

d) Tabu search

A meta heuristics technique was developed to deal with large and complex

combinatorial optimization problems (Ferland et al. 2000, Gendreau et al. 1994). This

approach has been widely utilized to solve and build schedules due to the difficulties

of timetabling as a combinatorial optimization problem. Regardless of its advantages

and disadvantages (Brucker,1995), "Tabu search is an intelligent search method that

uses a memory function to avoid becoming stuck at a local minimum and

hierarchically canalizes one or more local search methods to swiftly identify the local

18

optimality.” Some previous information on the evolution of the search is retained to

improve the effectiveness of the exploration process.

e) Constant logic programming approach (CLP)

For finite domains and huge combinatorial problems, CLP is widely and successfully

employed. A schedule is a problem of the same kind with numerous resources (rooms

and teachers) with particular schedule restrictions to achieve the optimum or close

solution by allowing a maximum use of resources. The essential brilliance of CLP is

its declarative handling of restrictions (both hard and soft). Because timetabling has

been proven to be NP complete, despite the fact that a variety of software is available

in the market, it is inflexible due to a variety of constraints in some situations, making

it a tough topic of research (Murugan, 2009).

f) Genetic algorithm

Genetic algorithms were introduced as a ciphering analogy of adaptive systems. It is

used for problem solving and for modelling (Murugan, 2009). A genetic algorithm is

a search heuristic based on Charles Darwin's theory of natural selection. This

algorithm is modelled after the mechanism of natural selection, in which the fittest

individuals are chosen for growth and reproduction in order to create offspring for the

next generation.

Create a population of objects (creatures) //Initialization

the fitness of each object //analysing

While the population is not fit enough //Fitness check

{

Delete all unfit objects //Removing unfit objects

While population size <max: //size check

19

{

Select two best populations

Create new objects

Random mutations

Evaluate and place in population //breeding

 Evolutionary growth. (Murugan, 2009)

Genetic Algorithm is a particular order of evolutionary algorithms that uses the

methodology of evolutionary biology such as mutation, crossover, selection and

inheritance (Murugan, 2009).

Figure 2.5(c) the basic genetic algorithm (Murugan, 2009)

20

2.5.1. The theory of natural selection

Natural selection begins with the selection of the fittest individuals from a population. They

have children that inherit the traits of their parents and are passed on to the next generation. If

parents are more fit, their children would be fitter than their parents and have a greater chance

of survival. This method is repeated indefinitely until a generation of the fittest individuals is

discovered. There are five cases to be considered in genetic algorithm.

They are:

a) Initial population

The phase starts with a group of individuals known as a Population. Each individual is a

solution to the problem you wish to solve. A person is defined by a set of parameters

(variables) known as Genes. To form a Chromosome, genes are linked together in a string

(solution). A genetic algorithm represents an individual's collection of genes as a string in

terms of an alphabet. Binary values are commonly used (string of 1s and 0s). We call this

encoding the genes on a chromosome.

Figure2.5.1(a) representation of the initial population of a GA (Mallawaarachchi, 2017)

b) Fitness function

21

The fitness function defines an individual's level of fitness (the ability of an individual

to compete with other individuals). It assigns a fitness score to each individual. The

fitness score of an organism determines the likelihood that it will be chosen for

reproduction. (Mallawaarachchi, 2017).

c) Selection

The concept behind the selection process is to choose the fittest individuals and allow

them to pass on their genes to the next generation. Two pairs of people (parents) are

chosen based on their fitness levels. Individuals with high fitness have a better chance

of being chosen for reproduction. (Mallawaarachchi, 2017)

d) Crossover

The most important step of a genetic algorithm is crossover. A crossover point is

selected at random from within the genes for each pair of parents to be mated.

Figure 2.5.1(b) representation of the crossover point in the GA

Offspring are created by exchanging the genes of parents among themselves until the

crossover point is reached.

22

Figure 2.5.1(c) representation of the exchanging genes among parents

The new offspring are incorporated into the population.

Figure 2.5.1(d) representation of the new offspring (Mallawaarachchi, 2017)

e) Mutation

Any of the genes of certain newly developed offspring may be exposed to a mutation

with a low random probability. This means that some of the bits in the bit string are

able to be flipped.

2.5.1(e) representation of the mutation: Before and After

 (Mallawaarachchi, 2017)

2.6. Fitness function

The fitness function is a function that, when given a solution, determines whether it is good

or bad. The answer improves as the fitness function's return value drops. The fitness function

might simply check for any constraints that have been violated and return infinity if this is the

case. It returns 0 if no limitations are violated. The fitness function provides no information

about how excellent or awful the solution is, which is a flaw in that method. To gain a feel of

23

how excellent or poor a solution is, the fitness function should return a value proportionate to

the number of constraints violated. There are two sorts of limitations: hard and soft

constraints. Hard constraint violations will not be permitted. As a result, violating a single

hard requirement while also violating a large number of soft constraints is worse than

meeting all soft constraints while also violating a single hard constraint. The fact that there

are two types of constraints does not imply that there are only two penalty values. Some of

the soft limitations turn out to be more important than others. Staff members' seniority, for

example, suggests that those with higher seniority should be comfortable first, followed by

those with lower seniority. To account for the severity of the breach, soft constraints must

have varied punishments. Hard constraints, on the other hand, all bear the same penalty:

breaking any one of them indicates the solution is infeasible and unacceptable. As a result,

the fitness function still indicates whether a solution is good or bad (Ahmed F.

AbouElhamayed, 2016).

Figure2.6 Mathematical model of the fitness function

2.7. Review of related works

(Hong Siaw Theng, Abu Bakar Bin Md Sultan and Norhayati Mohd Ali, 2015) operated on a

hybrid case-based reasoning approach to solving the university timetabling problem They

developed the case-based approach as well as the classical and model methods to case-based

24

reasoning. They used real-life test cases, which were past timetables obtained from the

department of computer science at the University of Putra in Malaysia, for their study

methodology. The timetables were then restructured into Database Management System

(DBMS) format with suitable connections. They used the PHP web-based scheduler for their

paper test. The DBMS of their experiment was MySQL, and the webhosting service that was

used was APACHE. Their hardcoded text was converted into a database using Regular

Expression Replacement (RegEx). Notepad++ served as the Integrated Development

Environment (IDE). The entire experiment was based on actual past databases, and the results

were planned to be compared for current accuracy, making the experiment a real-time test

bed. The experiment was carried out on a high-performance desktop computer. The desktop's

performance specifications were 3.4 Ghz i7-Quad Core (Hyper-thread) Intel processor and

8GB RAM. They conducted experiments with datasets obtained from the department of

computer science at the University of Putra in Malaysia. The Human Preference Adaptable

Retrieval Approach was used (HPARA). They demonstrated accuracy while generating a new

schedule by obtaining lower counts of soft constraint violation. The proposed method's

results demonstrated that there will be no soft constraint violation with a lower number of

components. They also discovered that time taken results were significantly improving for

schedule plotting with an average rating of 200ms. Their experiments demonstrated that the

HPARA approach was successful in terms of both accuracy and reduction in solving

scheduling in University timetabling. However, the component-by-component approach was

used instead of the retrieval method used in their paper. This posed a problem in terms of

reducing retrieval processing time.

(R Raghavjee, N Pillay, 2014), utilized a selection perturbative hyper-heuristic in

solving the school scheduling problem was investigated. On various types of school

timetabling problems, a genetic algorithm selection perturbative hyper-heuristic was

25

implemented and tested. The hyper-heuristic generated feasible timetables for all problem

instances and provided a generalized solution to the school scheduling problem,

outperforming other methods applied to the same set of problems. They also discovered that

the hyper-heuristic genetic algorithm outperformed the genetic algorithm applied directly to

the solution space.

Another body of work done by (Rakesh P. Badoni and D.K. Gupta, 2015) combined

the use of Genetic Algorithm (GA) and the Iterative Local Search (ILS) which resulted in

Genetic Algorithm Iterative Local Search (GAILS) was described for solving the University

Course Timetabling Problem (UCTP) It was based on ILS using three types of

neighbourhood moves and four types of perturbations. This allowed them to develop each

generation produced by GA. It was demonstrated that GAILS provided optimal solutions

with zero fitness function values in all small problem instances within nanoseconds.

Comparisons were made in order to demonstrate the efficacy of their proposed algorithm.

When used differently, they suggested that GAILS is a better algorithm than GA and ILS.

In contrast to (Nashwan Ahmed Al-Majmar, Talal Hamid Al-Shfaq, 2016), which

demonstrated that the use of Genetic algorithm (GA) was a powerful method for solving

timetabling problems, especially with some suggested improvements. By combining multiple

binary variables into one gene value on the chromosome, the initial timetabling problem with

a large number of binary variables was greatly reduced to an appropriate scale. They created

their software application in C# and used a SQL SERVER database to store and archive

timetable data for future use. The model tested the method's efficacy and functionality using

real-world datasets. The software model was very useful because it generated various types of

timetables and contained a strong mix of artificial intelligence and software engineering.

Their only drawback was that real-world teaching scheduling issues were not addressed.

26

Research by (H. M. Sani, 2016) also applied GA on ETP. They used a sample exam‟s

data of college of education located in Sokoto and grouped them into three scenarios; 40, 100

and 200 exams, respectively. They scheduled these exams into 36 timeslots (2 weeks of

exams from Monday to Saturday with 3 time slots in 1 day). In Sokoto, students are allowed

to take elective courses. The elective courses will increase the possibility of clashes since

students are free to choose many other courses. They ran the GA by using the ECJ toolkit.

The ECJ toolkit is a software system that is specially designed for GAs and provides most of

the standard components needed. Their aimed to avoid clashes (hard constraint) and also

avoid students having two consecutive exams on the same day (soft constraint), but the result

shows that the timetable produced had two exams scheduled on the same day. This means

that the ECJ toolkit is only suitable to schedule courses or subjects which are not elective

courses.

(Farah Adibah Adnan, 2018), unlike (H. M. Sani, 2016) specified the hard and soft

constraints for the examination timetable. A weighted penalty value was attached to each

violation of the soft constraint and the objective was to minimize the total penalty value of

those violations. The paper was focused on applying the combination of the use of heuristic

methods and the filtering of overlapping courses. There was no implementation of a timetable

but they created mathematical models to satisfy the constraints.

27

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

When it comes to scheduling timetables, it is always referred to be a difficult optimization

issue that has been proved to be related to the clique of minimization problem, which is also

referred to as NP complete. When faced with a problem for which there is no efficient

algorithm available, it is desirable to apply a genetic algorithm to the problem, which is used

to search for a solution space in the first place. It is important to recognise that this type of

scheduling is a global problem that has immediate relevance in a variety of timetabling

situations, including typical course timetables, examination timetables, and public

transportation schedules.

3.1.1. Method of identification of user and system requirements

When it comes to identifying user and system needs, there are a variety of approaches that

can be applied. The following are the sources of identification that were used in this project:

28

a) Primary source: It refers to the method of data collection, which in this case was an

empirical approach, which was a personal interview with the timetabling officer,

which was utilised to gather the information.

b) Secondary source: refers to information obtained from publications such as journals,

conferences, websites, and books.

Functional, service, and operational restrictions of the software system are described in

further detail in system requirements documents (also known as system specifications). The

computer system is composed of various components that work together to accomplish a

specific aim.

The following are the requirements that must be met in order for the system to be

implemented.

a) Non-functional requirements

These are limitations on the services that the system is able to provide. They include

time limits as well as restrictions imposed by industry standards. The following are

the non-functional requirements that must be met by this system.

i. When it comes to preparing error-free timetables, the system must be up to

speed.

ii. A flexible mechanism is required

b) Functional requirements

It is a list of services that the system must deliver, as well as how the system should

react to specific inputs and how the system should behave in specific circumstances.

The following are the functional requirements that must be met by the system:

29

i. The system must be able to create an initial population when at initial

stage for creating a schedule

ii. The system must be able to assign a fitness for resolving clashes

when two or more exams allocated to the same time

c) Hardware requirements

For reliable and productive project efficiency, certain hardware requirements must be

met which are as follows:

i. 250 GB hard drive

ii. an Intel i5 processor

iii. 4 GB ram size

d) Software requirements

For efficiency of use and to have system performance in developing of software the

following various software requirement must be met.

i. Operating system: Mac OS, Windows, Linux etc.

ii. Python interpreter

iii. Anaconda Navigator

3.1.2 Requirements gathering

During the system design phase, the quantitative technique of collecting and analyzing data

for the purpose of testing the system was chosen, and the data to be collected consisted of sets

of school configurations that were collected. Which are as follows:

i. The number of halls,

ii. The capacity of each hall,

iii. The total number of exams to be administered,

iv. The amount of time-slots per day,

30

v. Population of the students for each course,

vi. The number of days for examination.

3.1.3 Constraints

It is necessary to deal with constraints since they represent barriers to progress. It is not a case

of literal disagreement. For example, because to time constraints, some events (such as the

project's conclusion) must take place on specific dates in order to be completed. Resources

are nearly always a limitation, because they are not available in a limitless supply in a free

market. There are two sorts of limitations that will be addressed in this project: structural and

operational restrictions.

 They are;

a) Hard constraints

Hard constraints play a major role in arriving at an optimized timetable. They are;

i. Exam Population (registered students for the exam) must be less than the

venue capacity i.e All events are to be assigned to rooms having adequate

seating capacity and all the required features

ii. Students in the same class cannot take exams in different venues at the same

time slot.

iii. No two courses taken by the same student group or registered as a carryover

course can take place at the same venue and time slot.

iv. Each course should be assigned to a timeslot.

v. Final period on Wednesdays is not permitted.

b) Soft constraints

31

Soft constraints do not adversely affect the quality of the timetable but they have

considerable influence on the output of the system. The considered soft constraint are

i. Students can have exams in consecutive time slots in a day.

ii. No gaps between examinations.

3.2. Genetic Algorithm based approach

Genetic algorithms (also known as adaptable evolutionary algorithms) are evolutionary

algorithms that are inspired by nature and can be used to solve complex problems as well as

search vast problem spaces. According to GA, every possible solution is considered a

"person," and a significant number of such individuals or a collection of solutions compose

the "population" at the end of every generation. Random selection can be used to generate the

first set of solutions (referred to as the "initial population"); individuals are then randomly

mated, allowing for the recombination of genetic material. Individuals resulting from this

method can then be mutated with a particular mutation probability assigned to each of the

individuals. Natural selection is then applied to the new population, favouring the survival of

better solutions and serving as the starting point for a new evolutionary cycle to begin. A

database of feasible timetables is maintained and updated on a regular basis. The most

effective timelines are selected as the foundation for the next iteration or generation of the

product. Basic operators such as selection, mutation, and crossover are employed in order to

produce the best possible results.

32

Figure 3.2 Flowchart of a simple of genetic algorithm

The first genetic operator, selection, aims to increase the number of copies of people

who have better fitness values than those who have lower fitness values. It is also referred to

as "roulette wheel" selection because it produces more copies of people who have better

fitness values than those who have lower fitness values. Due to the fact that the mechanism is

similar to that of a roulette wheel, it has gained popularity. The roulette wheel is spun in

order to generate the future generation, with the large chunk indicating high fitness and the

small piece representing low fitness reflecting the two extremes of fitness. So, the segment

with the highest surface area stands a better chance of being selected as the next generation.

The second operator is referred to as a crossover. As a result of the selection process, it

generates two new individuals (parents). Among the different types of crossover operations

33

are the one-point crossover, two-point crossover, cycle crossover, and uniform crossover.

Mutation is regarded as the final operator in GA, and it occurs frequently after a crossover

event. It makes a random change to a single bit of the bit string. This is accomplished by

selecting a random value from the bit string and then transforming that value into another

value (Mitchell 1997). The binary scenario, for example, converts the selected value from 0

to 1 or vice versa if the selected value is 0.

3.3. Model formulation

Variables

a) A set of students, S={s1,s2…,si}

The students in the department of computer science and mathematics.

b) A set of examination venues, E={e1,e2,e3}

 The examination halls for the examinations to be held.

c) A set of courses , C={c1,c2,c3….,ck}.

Courses offered by students in the department for the semester

d) A set of students taking the same exams, z={z1,z2…,zl}

 Zl = si Ck. defined as Z(s) = C

e) A set of examination taking place, A={a1,a2...am}

 : Zk Am. A group of students taking the same exam.

34

f) A set of time slots, T={t1,t2…tn} is the number of timeslots available daily except on

Wednesday which has two slots. Examination will hold for two weeks leads to a total

timeslot of 28 timeslots due to the exclusion of the final period Wednesdays.

Where T1 = Monday first period, T2 = Monday second period, T3 = Monday third

period etc.

3.4. Problem definition

To allocate an examination to a specific time-slot of a particular day in a particular venue.

3.4.1. Model

Each examination is Am

Time slot is Tn

Venue Ej

 : Amn Ej

Such that:

 |Zk| |Ej| fulfils the constraint which says size of students taking a course must be less than

capacity of venue

 jn(Z1) jn(Z2) fulfils the constraint which says no two courses can take place at the same

venue and time.

 1n (Z1) 2n . fulfils the constraint which says students cannot take exams at different

venues at the same time slot, n.

35

CHAPTER FOUR

RESULTS AND DISCUSSION

4.1. Introduction

This section presents the result and the discussion of this study which involved the

development of an examination timetabling system using genetic algorithm. The chapter

presents the Comma separated values (CSV) files where the list of courses, venues and their

capacities are stored as well has the various modules used for the simulation of the GA.

36

4.2. Representation of the data used in the simulation of the Genetic Algorithm

The figure 4.2.1 shows the test values that are passed into the genetic algorithm for a

simulation test of the implemented genetic algorithm. As a result of this, a CSV file was

implemented called the Courses.csv file which were required for managing the various

courses to be displayed in the timetable.

Figure 4.2.1 displays the courses passed into the GA

37

Figure 4.2.2 shows the name for the invigilators to be used in the GA

38

Figure 4.2.3 shows the student names to be used in the timetable

In the figure 4.2.4 below, students and the various courses that they registered for are

displayed. Many names occur more than once and some students have courses that are seen

as foreign. These courses are recognized as carry over courses.

39

Figure 4.2.4 shows the students and the courses they registered.

4.3 Requirements for the simulation of the Genetic Algorithm

The figure 4.3.1 below shows the various functions that make the simulation of the genetic

algorithm feasible. The panda function or pandas dataframe consists of rows and columns so,

in order to iterate over dataframe, we can iterate a dataframe like a dictionary, the NumPy

function contains a vast number of diverse mathematical operations. NumPy includes

standard trigonometric functions, functions for arithmetic operations, managing complex

numbers, etc. Standard trigonometric functions in NumPy return trigonometric ratios for a

given angle in radians.

40

Figure 4.3.1 displays the methods used

4.4 Loading of data into the genetic algorithm program

For the timetable to actually work, all the data stored in the csv file has to be loaded into the

GA program. Figure 4.4.1 displays the first five student names present in the CSV file. Figure

4.4.2 displays the first five courses present in the CSV file and this was called using the .

head function. Figure 4.4.3 displays the first five invigilator names that will be used in the

GA.

41

Figure 4.4.1 displays the first five student names

42

Figure 4.4.2 displays a list containing 10 student names

4.5 Population model

Genes - Chromosome - Population. Each course, instructor, students, day, time, classroom

name were stored as genes. Random.randint was utilized for the generation of random data

from each array. Gene is a full schedule entry. It contains:

a) Day of exam,

b) Start time of exam,

c) End time of exam,

d) Invigilator (a lecturer),

e) A list of students taking the exam,

f) A classroom

Chromosome is made up of a range of genes. A range of chosen chromosomes are present in

the population. The schedule is established for each chromosome.

43

Figure 4.4.3 displays the first five invigilators

44

Figure 4.5.1(a) displays the representation of the genes.

45

Figure 4.5.1(b) shows the representation of the chromosome.

Based on the Darwin theory of natural evolution, the genetic algorithm produces an initial

population, shown in Figure 4.5.2. The roulette wheel selection is employed in Figure

4.5.3(a) when parent chromosomes have been selected randomly. The function elitism is then

specified by parent chromosomes in figure 4.5.3(b) The best chromosomes are represented. I

utilized the randomized fixed point crossover technique shown in Figure 4.5.4 for crossover.

46

Figure 4.5.1(c) shows the representation of the population.

47

Figure 4.5.2 displays the initialization of the first population

48

Figure 4.5.3(a) displays the roulette wheel selection method

49

Figure 4.5.3(b) displays elitism

50

Figure 4.5.4 displays the randomized fixed point crossover technique.

Random probability is dependent on mutation. The chromosome level or gene level may be

affected by mutations. It is either used heuristically at the gene level or a totally new gene is

produced. At the level of a chromosome, a gene can be removed or an entirely new

chromosome can be produced. Figure 4.5.5 displays start time, end time, instructor and day

as the variables that underwent mutation.

51

Figure 4.5.5 displays the mutated variables.

4.6 Fitness Calculation and heuristic function

To maximise the quality of the chromosome, I assigned points upon every constraint that was

passed into the Genetic algorithm. For the hard constraints , the points assigned were fixed.

However, for the soft constraints, I assigned variable points that was less than the hard

constraints based on their priority. Whenever a constraint‟s passing points are less than a

desired amount for a specific gene, I added only the relevant fields to a list. This list is

provided to the mutation function, which uses it to only modify the fields which actually need

to be modified.

4.7 Constraints

The constraints that were to be addressed like , students in the same class cannot take exams

in different venues at the same time slot, no two courses taken by the same student group or

52

registered as a carryover course can take place at the same venue and time slot and each

course should be assigned to a timeslot were addressed.

4.8 Timetable

After generating this timetable 131 times, it was selected as that which best fits the addressed

constraints. Although not generated in a table format, the timetable contained the venue, start

and end time, the course, students and the invigilator. In figure 4.8.1(a), The fitness value for

each parent is displayed for each generation of the timetable. The timetable is displayed in

figure 4.8.1 (b,c,d,e) respectively.

Figure 4.8.1(a) The fitness value for each parent is displayed.

53

Figure 4.8.1 (b) displays the examination timetable.

54

Figure 4.8.1(c) displays the examination timetable.

55

Figure 4.8.1 (d) displays the examination timetable.

56

Figure 4.8.1 (e) displays the examination timetable.

57

CHAPTER FIVE

SUMMARY AND CONCLUSION

The system was developed to improve timetabling scheduling in general, the primary aim of

applying genetic algorithm to the optimization of the timetable scheduling problem for the

examination timetable. Examination timetables, especially if they are manually generated, are

in effect a very demanding chore in any learning institution. The preparation can take days

and weeks. This study suggested that the approach/technique to tackling the problem of

genetic algorithms should be used. Although the experimental results show that a more

efficient and dependable schedule can be reached with a properly constructed genetic

algorithm. This offers good review schedules without conflicting examinations and in a much

quicker time.

5.1 Limitations

One of the limitations of this project was that not all the hard constraints were addressed. I

was able to populate each of the venues with students but due to the limited time, I was not

able to declare the capacity of each of the venue and populate the venue based on that

constraint. Due to the same reason, I could not fulfil the final period on Wednesday should

not have any exams constraint.

5.2 Conclusion

The result has shown that the system is capable of providing useful solutions. It does not,

however, fully automate the process. There are still some circumstances when the operator

will need to make changes to some of the entries in order to achieve a flawless result. The

enormous number of possible combinations for testing in order to arrive at an appropriate

assessment for the application has proven to be impossible. However, considering the number

58

of constraints set on the system, it can be inferred that the system was able to provide

findings that, despite being imperfect, are valid and acceptable.

5.3 Recommendation

This study recommends that further work on this study can be focused on increasing the

number of constraints and creating a neat table using the Hypertext Markup Language

(HTML).

59

References

Ahmed F. AbouElhamayed, A. S. (2016). An Enhanced Genetic Algorithm-Based

Timetabling System with Incremental Changes.

Awan-Ur-Rahman. (2020, April 26). Introduction to ant colony optimization. Retrieved from

Towards data science: https://towardsdatascience.com/the-inspiration-of-an-ant-

colony-optimization-f377568ea03f

Burke, E. A. (1996). Lecture Notes in Computer Science . Practice and Theory of Automated

Timetabling First International Conference. Edinburgh, U.K.: Springer-Verlag Berlin

Heidelberg.

Colorni, A. M. (1991). Genetic Algorithms and highly constrained problems:The time-table

case,. Parallel Problem Solving from Journal of Enhanced Research in Management

& Nature, 496, 55-59.

Christiansen, L. (2021, January 6). The 6 Main Types of Information Systems. Retrieved from

Altametrics: https://altametrics.com/en/information-systems/information-system-

types.html

Farah Adibah Adnan, S. A. (2018). Genetic Algorithm Method in Examination Timetabling

Problem: A Survey. Regional Conference on Science, Technology and Social Sciences

(pp. 901-907). Perlis, Malaysia: Springer Nature Singapore Pte Ltd.

Gagliordi, N. (2014, august 21). Retrieved from "US universities at greater risk for security

breaches than retail and healthcare: BitSight | ZDNet".

H. M. Sani, M. M. (2016). Solving Timetabling problems using Genetic Algorithm

Technique. International Journal of Computer Applications, volume 134.

https://towardsdatascience.com/the-inspiration-of-an-ant-colony-optimization-f377568ea03f
https://towardsdatascience.com/the-inspiration-of-an-ant-colony-optimization-f377568ea03f

60

Hamed Babaei, J. K. (2015). A survey of approaches for university course timetabling

problem. In J. K. Hamed Babaei, Computers & Industrial Engineering, (pp. 43-59).

Hojjat Adeli, A. K. (2003). Construction Scheduling, Cost Optimization and Management.

Jackson, P. (1998). Introduction To Expert Systems (3 ed.). Addison Wesley.

Jessup, L. M., & Valacich, J. S. (2008). Information Systems Today. Pearson Publishing.

Khan Arman, K. S. (2015). Review of Generation of timetable using genetic algorithm

implemented in java. 137-141.

Monmarché Nicolas, G. F. (2010). Artificial ants. Wiley ISTE.

O‟Hara, M., Watson, R., & Cavan, B. (1999). "Managing the three levels of change".

Information Systems Management.

Pham, D. A. (2015). A comparative study of the bees algorithm as a tool for function

optimisation. Cogent Engineering, 2(1), 1091540.

Pham DT, G. A. (2005). The Bees Algorithm. Technical note.

61

Appendix

import pandas as pd

import numpy as np

import copy

print("libraries imported!")

 TO LOAD DATA

student_file = pd.read_csv('stNames.csv', header=None)

student_file.reset_index(drop=True, inplace=True)

course_file = pd.read_csv('courses.csv', header=None)

student_course_file = pd.read_csv('studentCourses.csv')

teacher_file = pd.read_csv('invigilator.csv', header=None)

Classrooms_Array = ["BIGLT", "LT1", "LT2"]

Courses_Array = list(course_file[0])

Instructors_Array = list(teacher_file[0])

Students_Array = list(student_file[0])

student_courses = []

for idx, student in enumerate(Students_Array):

 for index, row in student_course_file.iterrows():

 if row["Name"] == student:

 student_course_file.at[index, "Name"]=idx

62

Days_Array = [

 'Monday',

 'Tuesday',

 'Wednesday',

 'Thursday',

 'Friday',

]

num_of_days_in_week = 5

start_times = [9, 12, 15] # i.e 9am - 12pm, 12pm - 3pm, 3pm - 6pm in 24hrs format

Days_ID_Array = [0,1,2,3,4,]

def change_fundamentals():

 next_day = Days_Array[(Days_ID_Array[-1] + 1)%num_of_days_in_week]

 Days_ID_Array.append(Days_ID_Array[-1] + 1)

 Days_Array.append(next_day)

POPULATION MODEL

class Gene:

 def __init__(

 self,course=None,

 instructor=None,

63

 students=None,

 day=None,

 start_time=None,

 end_time=None,

 classroom_name=None,

):

 if course is None:

 course = Courses_Array[np.random.randint(0, len(Courses_Array))]

 if instructor is None:

 instructor = np.random.randint(0, len(Instructors_Array))

 if students is None:

 std_list = []

 for i in range(1, 10):

 L = np.random.randint(1, len(Students_Array))

 std_list.append(L)

 students = np.array(std_list)

64

 if day is None:

 day = Days_ID_Array[np.random.randint(0, len(Days_ID_Array))]

 if start_time is None:

 start_time = start_times[np.random.randint(0,3)]

 if end_time is None:

 end_time = start_time + 3

 if classroom_name is None:

 classroom_name = Classrooms_Array[np.random.randint(0, len(Classrooms_Array))]

 self.course = course

 self.instructor = instructor

 self.students = students

 self.day = day

 self.start_time = start_time

 self.end_time = end_time

 self.classroom_name = classroom_name

65

 def __str__(self):

 student_names = []

 for student in self.students:

 student_names.append(Students_Array[int(student)])

 temp_day_name = Days_Array[self.day]

 instructor_name = Instructors_Array[self.instructor]

 return ("{}\t{}\t{}\t{}\t{}\t{}\t{}\t.".format(

 self.classroom_name,

 temp_day_name,

 self.start_time,

 self.end_time,

 self.course,

 instructor_name,

 student_names

)

)

class Chromosome:

66

 def __init__(self,

 genes=None,

 fitness_value=None,

):

 if genes is None:

 genes = []

 for i in range(0, np.random.randint(10, 31)):

 genes.append(Gene())

 if fitness_value is None:

 fitness_value = 0

 self.genes = np.array(genes)

 self.fitness_value = fitness_value

 def __getitem__(self, index):

 return self.genes[index]

67

class Population:

 def __init__(self,

 chromosomes=None

):

 if chromosomes is None:

 chromosomes = []

 for i in range(1, 8):

 chromosomes.append(Chromosome())

 self.chromosomes = np.array(chromosomes)

 def __getitem__(self, index):

 return self.chromosomes[index]

68

SELECTION

def roulette_wheel_selection(population):

 maximum_val = sum(chromosome.fitness_value for chromosome in population)

 pick = np.random.uniform(0, maximum_val)

 current = 0

 mom = None

 dad = None

 for chromosome in population:

 current += chromosome.fitness_value

 if current > pick:

 mom = chromosome

 break

 # reinititlize values

 pick = np.random.uniform(0, maximum_val)

 current = 0

 for chromosome in population:

 current += chromosome.fitness_value

 if current > pick:

 dad = chromosome

 break

69

 # if mom and dad have no chromosome value randomly select

 if mom is None:

 mom = population[np.random.randint(0, len(population.chromosomes))]

 if dad is None:

 dad = population[np.random.randint(0, len(population.chromosomes))]

 return mom, dad

def elitism(population):

 max_index_1 = 0

 max_index_2 = 0

 max_fitness1 = 0

 max_fitness2 = 0

 for idx, individual in enumerate(population.chromosomes):

 if individual.fitness_value > max_fitness2:

 if individual.fitness_value > max_fitness1:

 max_fitness2 = max_fitness1

 max_index_2 = max_index_1

 max_fitness1 = individual.fitness_value

 max_index_1 = idx

 elif individual.fitness_value > max_fitness2:

70

 max_fitness2 = individual.fitness_value

 max_index_2 = idx

 return population[max_index_1], population[max_index_2]

def select_best_mom_and_dad(population):

 coin = np.random.randint(0, 2)

 if coin: # if coin value is set to 1 i.e True

 return roulette_wheel_selection(population) # use

 return elitism(population)

CROSSOVER

def binary_crossover(husband, wife):

 length = len(husband.genes) // 2

 children = []

 son = husband.genes[:length] + wife.genes[length:]

 children.append(son)

 daughter = wife.genes[:length] + husband.genes[length:]

 children.append(daughter)

 return children

TODO: remove binary_crossover

def randomized_fixed_point_crossover(mom, dad):

 pass_loop = True

71

 new_pop = []

 while pass_loop:

 try:

 random_fixed_point = np.random.randint(1, len(mom.genes))

 son = np.concatenate((mom.genes[:random_fixed_point],

dad.genes[random_fixed_point:]))

 daughter = np.concatenate((dad.genes[:random_fixed_point],

mom.genes[random_fixed_point:]))

 new_pop.append(son)

 new_pop.append(daughter)

 pass_loop = False

 except Exception as e:

 print("Error! ", str(e))

 pass_loop = True

 return new_pop

#implementation of crossover

def crossover(mom, dad, population):

 new_chromosomes = []

 for i in range(0, np.random.randint(2,9)):

72

 children = randomized_fixed_point_crossover(mom, dad)

 for child in children:

 new_chromosomes.append(Chromosome(genes=child))

 return Population(chromosomes=new_chromosomes)

CONSTRAINTS

def hard_test_invigilator(chromosome):

 wrong_value = 0

 wrong_genes = []

 points = 0

 for gene_1 in chromosome:

 for gene_2 in chromosome:

 if gene_2 == gene_1:

 continue

 if gene_2.day == gene_1.day:

 if abs(gene_2.start_time - gene_1.start_time) < 3:

 if gene_2.classroom_name == gene_1.classroom_name:

 if gene_2.instructor == gene_1.instructor:

73

 continue

 else:

 points += 10

 return points

def hard_test_valid_paper_duration(chromosome):

 points = 0

 for gene_p in chromosome:

 if (gene_p.end_time - gene_p.start_time) != 3 or gene_p.start_time == 14:

 continue

 else:

 points += 10

 return points

def hard_test_no_exam_on_weekends(chromosome):

 # for chromosome in chromosomes:

 points = 0

74

 for gene_p in chromosome:

 if (gene_p.day in ["Saturday", "Sunday"]):

 continue

 else:

 points += 10

 return points

Possible generic constraints

def hard_test_student_one_exam_at_a_time(chromosome):

 """At a given time, student can only give one exam"""

 # Note: Also test the current gene from which the student is selected, because the same

student might be repeated in a single class

 points = 0

 i = j = 0

 while i < len(chromosome.genes):

 for student in chromosome.genes[i].students:

 for genes in chromosome:

75

 if genes == chromosome.genes[i]:

 continue

 if genes.start_time == chromosome.genes[i].start_time and genes.day ==

chromosome.genes[i].day:

 if student in genes.students:

 continue

 else:

 points += 10

 i += 1

 return points

def hard_test_one_exam_per_course(chromosome):

 """First hard constraint: Every course must have an exam"""

 courses_marked = []

 points = 0

 for genes in chromosome:

 if genes.course not in courses_marked:

 courses_marked.append(genes.course)

76

 points += 10

 return points

def hard_test_one_exam_per_classroom(chromosome):

 """At a given time, a classroom can only have one exam ongoing"""

 for genes_1 in chromosome:

 for genes_2 in chromosome:

 if genes_1 == genes_2:

 continue

 if genes_2.classroom_name == genes_1.classroom_name:

 if genes_1.start_time < genes_2.start_time or genes_2.start_time <

genes_1.start_time:

 return False

 return True

def hard_test_students_taking_correct_exam(chromosome):

 """Students must be taking the exam of the course they're registered for"""

 points = 0

77

 for genes in chromosome:

 for student in genes.students:

 mask = student_course_file["Name"] == student

 student_courses = student_course_file[mask]["CourseCode"]

 if genes.course in student_courses:

 points += 10

 return points

def soft_test_consecutive_exams(chromosome):

 points = 0

 for genes in chromosome:

 for student in genes.students:

 first_paper_time = genes.start_time

 for gene_1 in chromosome: # for the rest of the genes in the chromosome

 if gene_1 == genes:

 continue

 if student in gene_1.students: # if the student is present in other gene

 if gene_1.start_time != first_paper_time + 3: # if the gene start_time != first

paper +3 hrs

 points += 5

 return points

78

def soft_test_manna_water(chromosome):

 points = 0

 for genes in chromosome:

 if genes.day == 'Wednesday':

 if 10 <= genes.start_time and genes.start_time <= 15:

 continue

 else:

 points += 8

 return points

FITNESS OF CHROMOSOME

def set_fitness(chromosome_p):

 constraints_passed = 0

 fields_to_mutate = []

 # Right now, checking only hard constraints

 for constraint in HARD_CONSTRAINTS:

 constraints_passed += constraint["func"](chromosome_p)

 if constraints_passed < 1000:

 if constraint["fields"] not in fields_to_mutate: fields_to_mutate += constraint["fields"]

 # Set fitness value of individual chromosome

 chromosome_p.fitness_value = constraints_passed

79

 return constraints_passed, fields_to_mutate

MUTATION

def modify_gene(gene, fields):

 # Two different approaches:

 # 1. Only mutate those values which were found to violate the constraints e.g time was not

right so mutate time only

 # -> will require a list of all constraints not met by the chromosome

 # 2. Mutate the entire gene completely

 # For now, let's try a combination of both.

 # Our model is partially self-aware.

 # So what we can do is that flip a coin.

 # If heads, then return a completely new gene.

 # If tails, apply some self-awareness.

 coin = np.random.randint(0, 2)

 # First make a completely random new Gene

 new_gene = Gene()

80

 # If heads...

 if coin:

 return new_gene

 # Else if tails...

 # Modify the existing fields of the selected gene

 else:

 for field in fields:

 setattr(gene, field, getattr(new_gene, field))

 return gene

def modify_chromosome(chromosome, random_index):

 # if heads, delete a gene

 # if tails, regenerate the entire chromosome

 coin = np.random.randint(0, 2)

 if coin:

 np.delete(chromosome.genes, random_index)

81

 else:

 chromosome = Chromosome()

 return chromosome

def mutate(chromosome, fields_to_mutate):

 random_index = np.random.randint(0, len(chromosome.genes))

 coin = np.random.randint(0, 2)

 # if heads, modify a gene

 if coin:

 chromosome.genes[random_index] = modify_gene(chromosome.genes[random_index],

fields_to_mutate)

 # if tails, modify the chromosome itself

 else:

 chromosome = modify_chromosome(chromosome, random_index)

 return chromosome

 new_pop = initialize_population()

82

 for chromosome in new_pop:

 chromosome.fitness_value = np.random.randint(0, 21)

 mom, dad = select_best_mom_and_dad(new_pop)

 fields_to_mutate = []

 fitness_value, temp_fields = set_fitness(mom)

 if temp_fields not in fields_to_mutate:

 fields_to_mutate.append(temp_fields)

 else:

 fields_to_mutate.append([])

 print(fields_to_mutate)

 random_index = np.random.randint(0, len(mom.genes))

 previous_constraint, fields_to_mutate = set_fitness(mom)

 print('Constraints met before mutation: ', previous_constraint)

 for i in range(0, 200):

 mom = mutate(mom, fields_to_mutate)

 new_constraint, fields_to_mutate = set_fitness(mom)

 for gene in mom:

 print(gene)

83

 print('Constraints met after mutation: ', new_constraint)

EVALUATION

min_soft_constraints = 3

def evaluate(candidate, useless):

 if useless is None:

 useless = copy.deepcopy(candidate)

 elif candidate.fitness_value > useless.fitness_value:

 useless = copy.deepcopy(candidate)

 return useless

def print_mom_and_dad(mom, dad):

 print("Mom genes:")

 for gene in mom:

 print(gene)

 print("Mom Fitness Value: ", mom.fitness_value)

 print("\n")

 print("Dad genes:")

 for gene in dad:

 print(gene)

 print("Dad Fitness Value: ", dad.fitness_value)

84

data = {}

monday_courses = []

tuesday_courses = []

wednesday_courses = []

thursday_courses = []

friday_courses = []

def GeneticAlgorithm():

 max_generations = np.random.randint(40, 201)

 mutation_probability = np.random.randint(0, 21)

 gen_check = np.random.randint(10, max_generations // 4)

 rand_val = np.random.randint(0, 6)

 threshold = np.random.randint(rand_val, gen_check // 2)

 print("======================== HYPERPARAMETERS

==========================")

 print("Max generations\t\t:", max_generations)

 print("Mutation Probability\t:", mutation_probability)

 print("Gen Check\t\t:", gen_check)

 print("rand_val\t\t:", rand_val)

 print("threshold\t\t:", threshold)

85

 print("\n\n")

 print("Initializing population...")

 new_generation = initialize_population()

 solution_counter = 0

 prev_best_solution = None

 best_solution = None

 print("Setting fitness of each chromosome...")

 for chromosome in new_generation:

 set_fitness(chromosome)

 print("Selecting best mom and dad...")

 mom, dad = select_best_mom_and_dad(new_generation)

 print("\n\n")

 for i in range(0, max_generations):

 children = crossover(mom, dad, new_generation)

86

 new_chromosomes = []

 fields_to_mutate = []

 for idx, chromosome in enumerate(children):

 fitness_value, temp_fields = set_fitness(chromosome)

 fields_to_mutate.append(temp_fields)

 if np.random.randint(0, 101) < mutation_probability:

 mutate(chromosome, fields_to_mutate[idx])

 fitness_value_changed, fields_to_mutate[idx] = set_fitness(chromosome)

 fitness_value = fitness_value_changed

 new_chromosomes.append(chromosome)

 next_gen = Population(chromosomes=new_chromosomes)

 mom, dad = select_best_mom_and_dad(next_gen)

 best_solution = evaluate(mom, best_solution)

 ### print Every 100th generation results

87

 if i % gen_check == 0:

 print('\nCurrent generation..: {}'.format(i))

 print('Current Mom fitness value:', mom.fitness_value)

 print('Current Dad fitness value:', dad.fitness_value)

 print('Best solution so far: {}'.format(best_solution.fitness_value))

 if prev_best_solution is None:

 prev_best_solution = best_solution

 if best_solution.fitness_value > prev_best_solution.fitness_value:

 solution_counter = 0

 elif best_solution.fitness_value == prev_best_solution.fitness_value:

 solution_counter += 1

 if solution_counter > threshold:

 # change_fundamentals()

 new_generation = initialize_population()

 np.append(new_generation.chromosomes, mom)

 np.append(new_generation.chromosomes, prev_best_solution)

88

 solution_counter = 0

 elif solution_counter > rand_val:

 dad = best_solution

 else:

 prev_best_solution = best_solution

 # -------------------------------- END GA LOOP

 print("\n\n")

 print("\n\n=================================------------

======================================")

 print("Our best solution is:")

 for gene in best_solution:

 print(gene)

 if Days_Array[gene.day] == "Monday":

 monday_courses.append(gene.course)

 elif Days_Array[gene.day] == "Tuesday":

 tuesday_courses.append(gene.course)

 elif Days_Array[gene.day] == "Wednesday":

 wednesday_courses.append(gene.course)

89

 elif Days_Array[gene.day] == "Thursday":

 thursday_courses.append(gene.course)

 else:

 friday_courses.append(gene.course)

 print("\n\n")

 print("\nFitness value is: ", best_solution.fitness_value)

