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Abstract

The aim of this paper is to introduce the notion of (α, β)-cyclic admis-
sible mapping and modified generalized F -contraction mapping in the
framework of metric-like spaces. Fixed point theorems for modified gen-
eralized F -contraction mapping in complete metric-like spaces are estab-
lished. Furthermore, we present examples to support our main results,
using this examples, we establish that our main results is a generalization
of the fixed point result of Karapinar et al. [Fixed points of conditionally
F -contractions in complete metric-like spaces, Fixed Point Theory and
Appl. 2015] and a host of others in the literature. As an application, we
apply our result to find the existence of solution of second order differ-
ential equations. Finally, we correct an anomaly detected in the work of
Karapinar et al.[17]. Our results improve and extend corresponding re-
sults in the literature.

Mathematics Subject Classification: 47H09, 47H10, 49J20, 49J40
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1 Introduction

For the past three to four decades, the theory of fixed point has played an
important role in nonlinear functional analysis and known to be very useful
in establishing the existence and uniqueness theorems for nonlinear differential
and integral equations. In fact, the theory of fixed point has been applied to
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solve many real life problems, for instance; equilibrium problems, variational
inequalities, and optimization problems. Banach [7] in 1922 proved the well cel-
ebrated Banach contraction principle in the frame work of metric spaces. The
importance of the Banach contraction principle cannot be over emphasized in
the study of fixed point theory and its applications. Due to its importance and
fruitful applications, researchers in this area generalize the concept by consid-
ering classes of nonlinear mappings and spaces which are more general than
contraction mappings and metric spaces, respectively (see [1, 16, 24] and the
references therein). For example, Suzuki [25] introduced a class of mappings
satisfying condition (C) which is also known as Suzuki-type generalized non-
expansive mapping and he proved some fixed point theorems for this class of
mappings.

Definition 1.1. Let (X, d) be a metric space. A mapping T : X → X is said
to satisfy condition (C) if for all x, y ∈ X,

1
2
d(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ d(x, y).

Theorem 1.2. Let (X, d) be a compact metric space and T : X → X be a
mapping satisfying condition (C) for all x, y ∈ X. Then T has a unique fixed
point.

In 2012, Wardowski [27] introduced the notion of F -contractions. This class of
mappings is defined as follows:

Definition 1.3. Let (X, d) be a metric space. A mapping T : X → X is said
to be an F -contraction if there exists τ > 0 such that for all x, y ∈ X;

d(Tx, Ty) > 0 ⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)), (1)

where F : R+ → R is a mapping satisfying the following conditions:
(F1) F is strictly increasing;
(F2) for all sequences {αn} ⊆ R+, limn→∞ αn = 0 if and only if limn→∞ F (αn) =
−∞;
(F3) there exists k ∈ (0, 1) such that limα→0+ αkF (α) = 0.

He also established the following result:

Theorem 1.4. Let (X, d) be a complete metric space and T : X → X be an
F -contraction. Then T has a unique fixed point x∗ ∈ X and for each x0 ∈ X,
the sequence {Tnx0} converges to x∗.

Remark 1.5. [27] If we suppose that F (t) = ln t, an F -contraction mapping
becomes the Banach contraction mapping.

In [19], Piri et al. used the continuity condition instead of condition (F3) and
proved the following result:
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Theorem 1.6. Let X be a complete metric space and T : X → X be a selfmap
of X. Assume that there exists τ > 0 such that for all x, y ∈ X with Tx 6= Ty,

1
2
d(x, Tx) ≤ d(x, y) ⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)),

where F : R+ → R is continuous strictly increasing and inf F = −∞. Then
T has a unique fixed point z ∈ X, and for every x ∈ X, the sequence {Tnx}
converges to z.

Secelean in [22] proved the following lemma.

Lemma 1.7. [22] Let F : R+ → R be an increasing mapping and {αn} be a
sequence of positive integers. Then the following assertion hold:

1. if limn→∞ F (αn) = −∞ then limn→∞αn = 0;

2. if inf F = −∞ and limn→∞αn = 0 then limn→∞ F (αn) = −∞.

Furthermore, the authors in [22] replaced the condition F2 in the definition of
F -contraction with the following condition.
(F∗) inf F = −∞
or, also by
(F∗∗) there exists a sequence {αn} of positive real numbers such that limn→∞F (αn) =
−∞.
We denote by F the family of all functions F : R+ → R which satisfy conditions
(F

′

1) F is strictly increasing,
(F

′

2) inf F = −∞,
or, also by,
(F

′

3) there exists a sequence {αn} of positive real numbers such that limn→∞ F (αn) =
−∞,
(F

′

4) F is continuous on (0,∞). Samet et al. [23] introduced the notion of
α-admissible mapping and obtain some fixed point results for this class of map-
pings.

Definition 1.8. [23] Let α : X ×X → [0,∞) be a function. We say that a self
mapping T : X → X is α-admissible if for all x, y ∈ X,

α(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1.

Definition 1.9. [16] Let T : X → X and α : X × X → [0,∞) be mappings.
We say that T is a triangular α-admissible if

1. T is α-admissible and

2. α(x, y) ≥ 1 and α(y, z) ≥ 1 ⇒ α(x, z) ≥ 1 for all x, y, z ∈ X.

Theorem 1.10. [23] Let (X, d) be a complete metric space and T : X → X be
an α-admissible mapping. Suppose that the following conditions hold:
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1. for all x, y ∈ X, we have α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)), where ψ : [0,∞) →
[0,∞) is a nondecreasing function such that

∑∞
n=1ψ

n(t) < ∞ for all t > 0;

2. there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

3. either T is continuous or for any sequence {xn} in X with α(xn, xn+1) ≥ 1
for all n ≥ 0 and xn → x as n→ ∞, then α(xn, x) ≥ 1.

Then T has a fixed point.

In 2016, Chandok et al. [12] introduced another class of mappings, called the
TAC-contractive and established some fixed point results in the frame work of
complete metric spaces.

Definition 1.11. Let T : X → X be a mapping and let α, β : X → R+ be two
functions. Then T is called a cyclic (α, β)-admissible mapping, if

1. α(x) ≥ 1 for some x ∈ X implies that β(Tx) ≥ 1,

2. β(x) ≥ 1 for some x ∈ X implies that α(Tx) ≥ 1.

Definition 1.12. Let (X, d) be a metric space and let α, β : X → [0,∞) be two
mappings. We say that T is a TAC-contractive mapping, if for all x, y ∈ X,

α(x)β(y) ≥ 1 ⇒ ψ(d(Tx, Ty)) ≤ f(ψ(d(x, y)), φ(d(x, y))),

where ψ is a continuous and nondecreasing function with ψ(t) = 0 if and only
if t = 0, φ is continuous with limn→∞ φ(tn) = 0 ⇒ limn→∞ tn = 0 and f :
[0,∞)2 → R is continuous, f(a, t) ≤ a and f(a, t) = a ⇒ a = 0 or t = 0 for all
s, t ∈ [0,∞).

Theorem 1.13. Let (X, d) be a complete metric space and let T : X → X
be a cyclic (α, β)-admissible mapping. Suppose that T is a TAC contraction
mapping. Assume that there exists x0 ∈ X such that α(x0) ≥ 1, β(x0) ≥ 1 and
either of the following conditions hold:

1. T is continuous,

2. if for any sequence {xn} in X with β(xn) ≥ 1, for all n ≥ 0 and xn → x
as n→ ∞, then β(x) ≥ 1.

In addition, if α(x) ≥ 1 and β(y) ≥ 1 for all x, y ∈ F (T ) (where F (T ) denotes
the set of fixed points of T ), then T has a unique fixed point.

Question. Is it possible to generalize the concept of α-admissible mapping
using the concept of cyclic (α, β)-admissible mapping?

One of the interesting generalization of metric space and partial metric space
is the concept of metric-like space introduced by Amini-Harandi in [5]. He
proved some fixed point theorems and gave σ-completeness in this frame work.
Thereafter, several papers have been published on the fixed point theory of
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various classes of single-valued and multi-valued operators in the frame work
of metric-like spaces (see[2, 3, 4, 6] and the references therein). In particular
Karapinar et al. [17] introduced the notion of conditionally F -contraction and
studied the fixed point theorem of such mappings in the frame work of metric-
like spaces.

Definition 1.14. [17] Let (X,σ) be a metric-like space. A mapping T : X → X
is said to be a conditionally F -contraction of type (A) if there exist F ∈ F and
τ > 0 such that, for all x, y ∈ X with

σ(Tx, Ty) > 0,
1
2
σ(x, Tx) < σ(x, y) ⇒ τ + F (σ(Tx, Ty)) ≤ F (MT (x, y)),

where

MT (x, y) = max
{
σ(x, y), σ(x, Tx), σ(y, Ty),

σ(x, Ty) + σ(y, Tx)
4

}
.

Definition 1.15. [17] Let (X,σ) be a metric-like space. A mapping T : X → X
is said to be a conditionally F -contraction of type (B) if there exist F ∈ F and
τ > 0 such that, for all x, y ∈ X with

σ(Tx, Ty) > 0,
1
2
σ(x, Tx) < σ(x, y) ⇒

τ + F (σ(Tx, Ty)) ≤ F (max{σ(x, y), σ(x, Tx), σ(y, Ty)}).

Theorem 1.16. [17] Let (X,σ) be a complete metric-like space. If T is a
conditionally F -contraction of type (A), then T has a fixed point x∗ ∈ X.

Theorem 1.17. [17] Let (X,σ) be a complete metric-like space. If T is a
conditionally F -contraction of type (B), then T has a fixed point x∗ ∈ X.

Claim. We claim that Definition 1.14 and Definition 1.15 are the same, then
we conclude that Theorem 1.16 and Theorem 1.17 are just repetition.
Inspired by the work of Wardowski [27], Piri et al. [19], Samet et al. [23] and
Chandok et al. [12], Karapinar et al. [17], we provide and affirmative answer
to the question raised by introducing the concept of (α, β)-cyclic admissible
mapping, we also introduce the concept of modified generalized F -contraction
mappings in the frame work of metric-like spaces. In addition, we establish
the existence and uniqueness theorems of fixed points for modified generalized
F -contraction in this frame work, present some examples to support our main
results, apply our fixed point result to establish the existence of solution of
second order differential equation. Finally, we establish that the above claim is
true using analytical approach with an example to validate our claim.

2 Preliminaries

In this section, we recall some results and definitions for our main results.
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Definition 2.1. [18] Let X be a nonempty set and p : X × X → [0,∞] be a
function satisfying the following conditions, for all x, y, z ∈ X,

1. p(x, x) = p(y, y) = p(x, y) if and only if x = y,

2. p(x, x) ≤ p(x, y),

3. p(x, y) = p(y, x),

4. p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).

Then p is said to be a partial metric on X and the pair (X, p) is called a partial
metric space.

An example of a partial metric space is the pair (X, p), where X = [0,∞)
and p(x, y) = max{x, y} for all x, y ∈ X. One of the main properties of the
metric-like spaces that generalizes metric spaces is the non-zero self distance
properties.

Definition 2.2. [5] Let X be a nonempty set. A function σ : X ×X → [0,∞]
is said to be a metric-like on X if for all x, y, z ∈ X, the following conditions
hold:

1. σ(x, y) = 0 ⇒ x = y,

2. σ(x, y) = σ(y, x),

3. σ(x, y) ≤ σ(x, z) + σ(z, y).

Then the pair (X,σ) is called a metric-like space.

It is well-known that every metric space is a partial metric space and each partial
metric space is a metric-like space, but the converse may not be true.

Example 2.3. [5] Let X = {0, 1} and σ : X ×X → [0,∞] is defined by

σ(x, y) =

{
2 if x = y = 0
1 otherwise.

Then (X,σ) is a metric-like space, but it is neither a metric space nor a partial
metric space, since σ(0, 0) > σ(0, 1).

Example 2.4. Let X = {1, 2, 3} and σ : X ×X → [0,∞] is defined by

σ(1, 1) = 0, σ(1, 2) = σ(2, 1) =
11
13
, σ(1, 3) = σ(3, 1) =

9
13

σ(2, 2) =
12
13
, σ(2, 3) = σ(3, 2) =

10
13
, σ(3, 3) = 1

Then (X,σ) is a metric-like space, but it is neither a metric space nor a partial
metric space, since σ(2, 2) > σ(1, 2).
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Definition 2.5. [5] Let (X,σ) be a metric-like space. Then:

1. A sequence {xn} in X converges to x ∈ X if limn→∞ σ(xn, x) = σ(x, x).

2. A sequence {xn} in X is called Cauchy in X if limn,m→∞ σ(xn, xm) exists
and is finite.

3. A metric-like space X is said to be complete if and only every Cauchy
sequence {xn} in X converges to x ∈ X so that

lim
n,m→∞

σ(xn, xm) = lim
n→∞

σ(xn, x) = σ(x, x).

4. A mapping T : X → X is σ-continuous if for any sequence {xn} in X
such that

lim
n→∞

σ(xn, x) = σ(x, x),

we have
lim

n→∞
σ(Txn, Tx) = σ(Tx, Tx),

Lemma 2.6. [15] Let (X,σ) be a metric-like space. Then:

1. if σ(x, y) = 0 then σ(x, x) = σ(y, y) = 0,

2. if {xn} is a sequence such that limn→∞ σ(xn, xn+1) = 0, then

lim
n→∞

σ(xn, xn) = lim
n→∞

σ(xn+1, xn+1) = 0.

Lemma 2.7. [5] If {xn} is a sequence in a metric-like space (X,σ) such that
xn → x and xn → y, then x = y.

3 Main Result

In this section, we introduce the concept of (α, β)-cyclic admissible mapping,
modified generalized F -contraction mapping in the frame work of metric-like
spaces and prove the existence and uniqueness theorems of fixed points for
modified generalized F -contraction mappings in the frame work of complete
metric-like space.

Definition 3.1. Let X be a nonempty set, T : X → X be a mapping and α, β :
X × X → R+ be two functions. We say that T is an (α, β)-cyclic admissible
mapping, if for all x, y ∈ X

1. α(x, y) ≥ 1 ⇒ β(Tx, Ty) ≥ 1,

2. β(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1.

Remark 3.2. Clearly, if β(x, y) = α(x, y), we obtain Definition 1.8.
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Definition 3.3. Let (X,σ) be a metric-like space, α, β : X×X → [0,∞) be two
functions and T be a self map on X. The mapping T is said to be a modified
generalized F -contraction mapping, if there exists F ∈ F and τ > 0 such that
for all x, y ∈ X,

α(x, Tx)β(y, Ty) ≥ 1 ⇒ τ + F (σ(Tx, Ty)) ≤ F (ψ(M (x, y))) (2)

with σ(Tx, Ty) > 0, where M (x, y) = max{σ(x, y), σ(x, Tx), σ(y, Ty)}, ψ :
[0,∞) → [0,∞), such that

1. ψ is monotonic increasing, i.e., t1 ≤ t2 ⇒ ψ(t1) ≤ ψ(t2).

2. ψ is continuous and ψ(t) < t for each t > 0, and that ψ(0) = 0.

Example 3.4. Let X = [0,∞) and σ : X ×X → [0,∞) be defined as σ(x, y) =
max{x, y} for all x, y ∈ X. It is clear that (X,σ) is a metric-like space. We
defined T : X → X by

Tx =

{
x
7

if x ∈ [0, 1]
8x if x ∈ (1,∞),

α, β : X ×X → [0,∞) by

α(x, y) =

{
1 if x, y ∈ [0, 1]
0 if x, y ∈ (1,∞),

β(x, y) =

{
2 if x, y ∈ [0, 1]
0 if x, y ∈ (1,∞),

ψ : [0,∞) → [0,∞), defined by ψ(t) = t
2 and F (t) = −1

t + t. Then T is a
modified generalized F -contraction but not a conditionally F -contraction of type
(A) and type (B) as defined by Karapnar et al.[16].

Proof. It is easy to see that for any x, y ∈ [0, 1], we have that α(x, Tx) = 1 and
β(y, Ty) = 2 as such we have that α(x, Tx)β(y, Ty) > 1. Since α(x, Tx)β(y, Ty) >
1 if x, y ∈ [0, 1]. For other cases, it is easy to see that α(x, Tx)β(y, Ty) = 0
as such, we need to show that τ + F (σ(Tx, Ty)) ≤ F (ψ(M (x, y))) for any
x, y ∈ [0, 1]. Let x, y ∈ [0, 1] and without loss of generality we suppose that
x ≤ y. Note that

M (x, y) = max{σ(x, y), σ(x, Tx), σ(y, Ty)}

= max{σ(x, y), σ(x,
x

7
), σ(y,

y

7
)}

= max{y, x, y} = y.
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Observe that, for τ = 1, we obtain

τ + F (σ(Tx, Ty)) = 1 + F (σ(
x

7
,
y

7
))

= 1 + F (max{
x

7
,
y

7
}) = 1 + F (

y

7
)

= 1 +
y

7
− 7
y

and

F (ψ(M (x, y))) = F (ψ(y)) = F (
y

2
) =

y

2
−

2
y
.

Thus, for any x, y ∈ (0, 1], we have that

τ + F (σ(Tx, Ty)) ≤ F (ψ(M (x, y))).

Hence, T is a modified generalized F contraction.
However to show T is not a conditionally F -contraction of type (A) and type
(B) as defined by Karapnar et al.[16]. Suppose x = 0 and y = 2. We have that
Note that

MT (x, y) = max
{
σ(x, y), σ(x, Tx), σ(y, Ty),

σ(x, Ty) + σ(y, Tx)
4

}
= 16

and

max{σ(x, y), σ(x, Tx), σ(y, Ty)} = 16.

Now observe that

σ(Tx, Ty) = σ(0, 16) = 16 > 0 and
1
2
σ(x, Tx) =

1
2
σ(0, 0) = 0 < 2

= max{0, 2} = σ(x, y)

but

τ + F (d(Tx, Ty)) = 1 + F (σ(0, 16)) = 1 + 16−
1
16

= 17−
1
16

> 16 − 1
16

= F (MT (x, y)).

Also, we have

τ + F (d(Tx, Ty)) = 1 + F (σ(0, 16)) = 1 + 16 −
1
16

= 17 −
1
16

> 16 −
1
16

= F (max{σ(x, y), σ(x, Tx, σ(y, Ty)}).
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Lemma 3.5. Let X be a nonempty set and T : X → X be an (α, β)-cyclic
admissible mapping. Suppose that there exists x0 ∈ X such that α(x0, Tx0) ≥ 1
and β(x0, Tx0) ≥ 1. Define the sequence xn+1 = Txn, then α(xm, xm+1) ≥ 1
implies that β(xn, xn+1) ≥ 1 and β(xm, xm+1) ≥ 1 implies that α(xn, xn+1) ≥ 1,
for all n,m ∈ N ∪ {0} with m < n.

Proof. Using the fact that T is an (α, β)-cyclic admissible mapping and our
hypothesis, we have that there exists x0 ∈ X such that

α(x0, Tx0) = α(x0, x1) ≥ 1 ⇒ β(Tx0, Tx1) = β(x1, x2) ≥ 1

and

β(x1, x2) ≥ 1 ⇒ α(Tx1, Tx2) = α(x2, x3) ≥ 1.

Continuing this way, we obtain that

α(x2n, x2n+1) ≥ 1 and β(x2n+1, x2n+2) ≥ 1, ∀n ∈ N.

Using similar approach, we obtain

β(x2n, x2n+1) ≥ 1 and α(x2n+1, x2n+2) ≥ 1, ∀n ∈ N.

In similar sense, we obtain the same result for all m ∈ N. That is

α(x2m, x2m+1) ≥ 1 and β(x2m+1, x2m+2) ≥ 1

and

β(x2m, x2m+1) ≥ 1 and α(x2m+1, x2m+2) ≥ 1, ∀m ∈ N.

In addition, since

α(xm, xm+1) ≥ 1 ⇒ β(xm+1, xm+2) ≥ 1 ⇒ α(xm+2, xm+3) ≥ 1 · · ·

with m < n, we deduce that

α(xm, xm+1) ≥ 1 ⇒ β(xn, xn+1) ≥ 1.

Using similar approach, we have that

β(xm , xm+1) ≥ 1 ⇒ α(xn, xn+1) ≥ 1.

Lemma 3.6. Suppose that (X,σ) is a metric-like space and {xn} is a sequence
in X such that limn→∞ σ(xn, xn+1) = 0 If {xn} is not a Cauchy sequence then
there exists an ε > 0 and sequences of positive integers {xmk} and {xnk} with
nk > mk ≥ k such that σ(xmk , xnk) ≥ ε, σ(xmk−1 , xnk) < ε and
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1. limk→∞ σ(xmk , xnk) = ε,

2. limk→∞ σ(xmk+1 , xnk) = ε,

3. limk→∞ σ(xmk−1 , xnk) = ε,

4. limk→∞ σ(xmk−1 , xnk+1) = ε,

5. limk→∞ σ(xmk+1 , xnk+1) = ε.

Proof. If {xn} is not a Cauchy sequence then there exists an ε > 0 and sequences
of positive integers {xmk} and {xnk} with nk > mk ≥ k such that σ(xmk , xnk) ≥
ε. We choose mk, the least positive integer satisfying σ(xmk , xnk) ≥ ε. We then
obtain that mk > nk > k with

σ(xmk , xnk) ≥ ε and σ(xmk−1 , xnk) ≤ ε. (3)

We now establish (1). Using triangular inequality and (3), we have that

ε ≤ σ(xmk , xnk) ≤ σ(xmk , xmk−1) + σ(xmk−1 , xnk).

Taking limk→∞ and using our hypothesis that limn→∞ σ(xn, xn+1) = 0, we have
that

ε ≤ lim
k→∞

σ(xmk , xnk) ≤ ε

and by Sandwich theorem, we obtain

lim
k→∞

σ(xmk , xnk) = ε.

Hence (1) holds.
(2). Now observe that

σ(xmk , xnk) ≤ σ(xmk , xmk+1) + σ(xmk+1 , xnk),

using our hypothesis and taking the lim infk→∞, we have that

ε ≤ lim inf
k→∞

σ(xmk+1 , xnk). (4)

Also, we have that

σ(xmk+1 , xnk) ≤ σ(xmk+1 , xmk) + σ(xmk , xnk),

using our hypothesis and taking the lim supk→∞, we have that

lim sup
k→∞

σ(xmk+1 , xnk) ≤ ε. (5)

From (4) and (5), we obtain

lim
k→∞

σ(xmk+1 , xnk) = ε.
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Hence (2) holds.
(3). Since σ(xmk−1 , xnk) < ε, we have that

lim sup
k→∞

σ(xmk−1 , xnk) ≤ ε. (6)

Also, we have that

σ(xmk , xnk) ≤ σ(xmk , xmk−1 ) + σ(xmk−1 , xnk),

using our hypothesis and taking the lim infk→∞, we have that

ε ≤ lim inf
k→∞

σ(xmk−1 , xnk). (7)

From (6) and (7), we obtain

lim
k→∞

σ(xmk−1 , xnk) = ε.

Hence (3) holds.
(4). Now observe that

σ(xmk , xnk) ≤ σ(xmk , xmk−1 ) + σ(xmk−1 , xnk+1) + σ(xnk+1 , xnk),

using our hypothesis and taking the lim infk→∞, we have that

ε ≤ lim inf
k→∞

σ(xmk−1 , xnk+1). (8)

Also, we have that

σ(xmk−1 , xnk+1) ≤ σ(xmk−1 , xnk) + σ(xnk , xnk+1),

using our hypothesis and taking the lim supk→∞, we have that

lim sup
k→∞

σ(xmk−1 , xnk+1) ≤ ε. (9)

From (8) and (9), we obtain

lim
k→∞

σ(xmk−1 , xnk+1) = ε.

Hence (4) holds.
(5).Using similar argument as (2), (3) and (4), it is easy to see that (5) holds.

Lemma 3.7. Let (X,σ) be a metric-like space. Suppose that {xn} be a sequence
in X such that limn→∞ xn = x. Then all x, y ∈ X, we have that

lim
n→∞

σ(xn, y) = σ(x, y).
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Proof. For all x, y ∈ X, using triangular inequality we obtain

σ(xn, y) − σ(x, y) ≤ σ(xn, x), (10)

we also have that

σ(x, y) − σ(xn, y) ≤ σ(x, xn) (11)

From (10) and (11), we obtain

|σ(xn, y) − σ(x, y)| ≤ σ(xn, x),

taking limit as n→ ∞ and using the Sandwich theorem, we obtain the desired
result

lim
n→∞

σ(xn, y) = σ(x, y).

Theorem 3.8. Let (X,σ) be a complete metric-like space and T : X → X be a
modified generalized F -contraction mapping. Suppose the following conditions
hold:

1. T is a (α, β)-cyclic admissible mapping,

2. there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1,

3. T is σ-continuous.

Then T has a fixed point.

Proof. We define a sequence {xn} by xn+1 = Txn for all n ∈ N ∪ {0}. If we
suppose that xn+1 = xn, we obtain the desired result. Now, suppose that
xn+1 6= xn for all n ∈ N ∪ {0}. Since T is a (α, β)-cyclic admissible mapping
and α(x0, x1) ≥ 1, we have β(Tx0, Tx1) = β(x1, x2) ≥ 1 and this implies that
α(x2, x3) = α(Tx1, Tx2) ≥ 1, continuing the process, we have

α(x2k, x2k+1) ≥ 1 and β(x2k+1, x2k+2) ≥ 1 ∀ k ∈ N ∪ {0}. (12)

Using similar argument, we have that

β(x2k, x2k+1) ≥ 1 and α(x2k+1, x2k+2) ≥ 1 ∀ k ∈ N ∪ {0}. (13)

It follows from (12) and (13) that α(xn, xn+1) ≥ 1 and β(xn, xn+1) ≥ 1 for all
n ∈ N ∪ {0}. Since α(xn, xn+1)β(xn+1, xn+2) ≥ 1, we obtain from (2)

τ + F (σ(xn+1, xn+2)) = τ + F (σ(Txn, Txn+1))
≤ F (ψ(M (xn, xn+1)))
≤ F (ψmax{σ(xn, xn+1, σ(xn, xn+1), σ(xn+1, xn+2)})))

(14)

= F (ψmax{σ(xn, xn+1), σ(xn+1, xn+2)})))
< F (max{σ(xn, xn+1), σ(xn+1, xn+2)}).
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If max{σ(xn, xn+1), σ(xn+1, xn+2)} = σ(xn+1, xn+2), we have (14) becomes

τ + F (σ(xn+1, xn+2)) < F (σ(xn+1, xn+2)),

which is a contradiction since τ > 0. Thus max{σ(xn, xn+1), σ(xn+1, xn+2)}) =
σ(xn, xn+1), that is σ(xn, xn+1) > σ(xn+1, xn+2), which implies that (14) be-
comes

F (σ(xn+1, xn+2)) < F (σ(xn, xn+1)) − τ.

Using similar approach, it is easy to see that

F (σ(xn, xn+1)) < F (σ(xn−1, xn)) − τ.

Thus by induction, we obtain

F (σ(xn, xn+1)) < F (σ(x0, x1)) − nτ, ∀ n ∈ N ∪ {0}. (15)

Since F ∈ F , taking limit as n → ∞ in (15), we have

lim
n→∞

F (σ(xn, xn+1)) = −∞. (16)

It follows from (F
′

3) and Lemma 1.7 that

lim
n→∞

σ(xn, xn+1) = 0. (17)

In what follows, we now show that {xn} is a Cauchy sequence. Suppose that
{xn} is not a Cauchy sequence, then by Lemma 3.6, there exists an ε > 0
and sequences of positive integers {xnk} and {xmk} with nk > mk ≥ k such
that σ(xmk , xnk) ≥ ε. For each k > 0, corresponding to mk, we can choose nk

to be the smallest positive integer such that σ(xmk , xnk) ≥ ε, σ(xmk , xnk−1) <
ε and (1) − (5) of Lemma 3.6 hold. Since, α(x0, Tx0) ≥ 1, β(x0, Tx0) ≥ 1
and T is (α, β)-cyclic admissible mapping, from Lemma 3.5, we obtain that
α(xmk , xmk+1 )β(xnk , xnk+1) ≥ 1. Hence for all k ≥ n0, using Lemma 3.6, (F

′

4),
(17) and the properties of ψ we have

τ + F (σ(xmk+1 , xnk+1)) ≤ τ + F (σ(Txmk , Txnk))
≤ F (ψ(M (xmk , xnk))) (18)
≤ F (ψ(maxσ(xmk , xnk), σ(xmk , xmk+1), σ(xnk , xnk+1)))
= F (ψ(max{ε, 0, 0}))
< F (ε). (19)

That is
τ + F (ε) ≤ F (ε)

which is a contradiction. As such, we have that

lim
n,m→∞

σ(xn, xm) = 0.
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We therefore have that {xn} is Cauchy. Since (X,σ) is complete, it follows that
there exists x ∈ X such that limn→∞ xn = x. From Lemma 3.7, it is easy to see
that

lim
n→∞

σ(xn, xm) = σ(x, xm) and lim
m→∞

σ(x, xm) = σ(x, x).

As such, we obtain that

σ(x, x) = lim
n→∞

σ(xn, x)

= lim
m→∞

[ lim
n→∞

σ(xn, xm)] (20)

= lim
n,m→∞

σ(xn, xm) = 0.

Using Lemma 3.7 and the σ-continuity of T, we have that

lim
n→∞

σ(xn+1, Tx) = σ(x, Tx) (21)

and

lim
n→∞

σ(xn+1, Tx) = lim
n→∞

σ(Txn, Tx) = σ(Tx, Tx). (22)

Comparing (21) and (22), and applying Lemma 2.7, we obtain

σ(Tx, Tx) = σ(x, Tx).

Using the fact that T is σ-continuous, we obtain from (20) that

lim
n→∞

σ(Txn, Tx) = lim
n→∞

σ(xn+1, Tx) = σ(x, Tx) = 0.

Thus, we have that x = Tx.

Theorem 3.9. Let (X, d) be a complete metric-like space and T : X → X be a
modified generalized F -contraction mapping. Suppose the following conditions
hold:

1. T is a (α, β)-cyclic admissible mapping,

2. there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1,

3. if for any sequence {xn} in X such that xn → x as n → ∞, then
β(x, Tx) ≥ 1 and α(x, Tx) ≥ 1.

Then T has a fixed point.

Proof. We define a sequence {xn} by xn+1 = Txn for all n ∈ N∪{0}. In Theorem
3.8, we have establish that {xn} is Cauchy and since (X,σ) is complete, it follows
that there exists x ∈ X such that limn→∞ xn = x. Now suppose hypothesis (3)
holds. We now establish that T has a fixed point. Since α(xn, xn+1) ≥ 1 and
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β(x, Tx) ≥ 1, we have that α(xn, xn+1)β(x, Tx) ≥ 1. Using Lemma 3.6, (F
′

4),
(17) and the properties of ψ, we obtain from (2)

lim
n→∞

[τ + F (σ(xn+1, Tx))] = τ + lim
n→∞

F (σ(Txn, Tx))

≤ F (ψ( lim
n→∞

M (xn, x)))

≤ F (ψ(σ(x, Tx)))
< F (σ(x, Tx)).

Thus, we have that

τ + F (σ(x, Tx)) < F (σ(x, Tx))

which is a contradiction, then, we have x = Tx.

Theorem 3.10. Suppose that the hypothesis of Theorem 3.9 holds and in ad-
dition suppose α(x, Tx) ≥ 1 and β(y, Ty) ≥ 1 for all x, y ∈ F (T ), where F (T )
is the set of fixed point of T. Then T has a unique fixed point.

Proof. Let x, y ∈ F (T ), that is Tx = x and Ty = y such that x 6= y. Since,
α(x, Tx) ≥ 1 and β(y, Ty) ≥ 1, we have α(x, Tx)β(y, Ty) ≥ 1, we obtain that

F (σ(x, y)) = F (σ(Tx, Ty)) < τ + F (σ(Tx, Ty))
≤ F (ψ(M (x, y))) ≤ F (ψ(σ(x, y)))
< F (σ(x, y)),

which implies that
F (σ(x, y)) < F (σ(x, y)).

Clearly, we get a contradiction, thus, T has a unique fixed point.

Corollary 3.11. Let (X, d) be a complete metric-like space and T : X → X be
a mapping satisfying the following inequality

α(x, Tx)β(y, Ty) ≥ 1 ⇒ τ + F (σ(Tx, Ty)) ≤ F (ψ(σ(x, y))),

for all x, y ∈ X. Suppose the following conditions hold:

1. T is a (α, β)-cyclic admissible mapping,

2. there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1,

3. T is d continuous,

4. if for any sequence {xn} in X such that xn → x as n → ∞, then
β(x, Tx) ≥ 1 and α(x, Tx) ≥ 1.

Then T has a fixed point.
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Corollary 3.12. Let (X, d) be a complete metric-like space and T : X → X be
a mapping satisfying the following inequality

σ(Tx, Ty) > 0 ⇒τ + F (σ(Tx, Ty)) ≤ F (ψ(σ(x, y)))

for all x, y ∈ X. Then T has a fixed point.

Corollary 3.13. Let (X, d) be a complete metric-like space and T : X → X be
a mapping satisfying the following inequality

α(x, Tx)β(y, Ty) ≥ 1 ⇒ τ + F (σ(Tx, Ty)) ≤ F (σ(x, y)),

for all x, y ∈ X. Suppose the following conditions hold:

1. T is a (α, β)-cyclic admissible mapping,

2. there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1,

3. T is d continuous,

4. if for any sequence {xn} in X such that xn → x as n → ∞, then
β(x, Tx) ≥ 1 and α(x, Tx) ≥ 1.

Then T has a fixed point.

Corollary 3.14. Let (X, d) be a complete metric-like space and T : X → X be
a mapping satisfying the following inequality

σ(Tx, Ty) > 0 ⇒τ + F (σ(Tx, Ty)) ≤ F (σ(x, y))

for all x, y ∈ X. Then T has a fixed point.

Using Remark 3.2, we have next result. Let (X, d) be a complete metric-like
space and T : X → X be a mapping satisfying the following inequality

α(x, y) ≥ 1 ⇒ τ + F (σ(Tx, Ty)) ≤ F (ψ(σ(x, y))),

for all x, y ∈ X. Suppose the following conditions hold:

1. T is a α-admissible mapping,

2. there exists x0 ∈ X such that α(x0, Tx0) ≥ 1,

3. T is d continuous,

4. if for any sequence {xn} inX such that xn → x as n→ ∞, then α(x, Tx) ≥
1.

Then T has a fixed point.
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4 Slip-up in a recent paper

In this section, we provide an affirmative answer to our claim by showing an-
alytically and with examples that conditionally F -contraction type (A) is the
same as conditionally F -contraction type (B).

Definition 4.1. [17] Let (X,σ) be a metric-like space. A mapping T : X → X
is said to be a conditionally F -contraction of type (A) if there exist F ∈ F and
τ > 0 such that, for all x, y ∈ X with

σ(Tx, Ty) > 0,
1
2
σ(x, Tx) < σ(x, y) ⇒ τ + F (σ(Tx, Ty)) ≤ F (MT (x, y)),

where

MT (x, y) = max
{
σ(x, y), σ(x, Tx), σ(y, Ty),

σ(x, Ty) + σ(y, Tx)
4

}
.

Definition 4.2. [17] Let (X,σ) be a metric-like space. A mapping T : X → X
is said to be a conditionally F -contraction of type (B) if there exist F ∈ F and
τ > 0 such that, for all x, y ∈ X with

σ(Tx, Ty) > 0,
1
2
σ(x, Tx) < σ(x, y) ⇒ τ + F (σ(Tx, Ty))

≤ F (max{σ(x, y), σ(x, Tx), σ(y, Ty)}).

Theorem 4.3. Let (X,σ) be a metric-like space. Let T be a conditionally F -
contraction of type (A) mapping as defined in (4.1) and T1 be a conditionally
F -contraction of type (B) mapping as defined in (4.2). Then T = T1.

Proof. To establish that T = T1, we just need to show that

max{σ(x, y), σ(x, Tx), σ(y, Ty)}

= max
{
σ(x, y), σ(x, Tx), σ(y, Ty),

σ(x, Ty) + σ(y, Tx)
4

}
.

To achieve this, we just need to show that

σ(x, Ty) + σ(y, Tx)
4

≤ max{σ(x, y), σ(x, Tx), σ(y, Ty)}.

To do this, we have to show that

1. σ(x,Ty)+σ(y,Tx)
4

≤ σ(x, y),

2. σ(x,Ty)+σ(y,Tx)
4 ≤ σ(x, Tx),

3. σ(x,Ty)+σ(y,Tx)
4 ≤ σ(y, Ty).
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(1). Suppose that max{σ(x, y), σ(x, Tx), σ(y, Ty)} = σ(x, y), that is

σ(x, Tx) ≤ σ(x, y) and σ(y, Ty) ≤ σ(x, y).

Using triangular inequality, observe that

σ(x, Ty) + σ(y, Tx)
4

≤ 2σ(x, Ty) + σ(y, Ty) + σ(x, Tx)
4

≤ 2σ(x, Ty) + σ(x, y) + σ(x, y)
4

= σ(x, y).

(2). Suppose that max{σ(x, y), σ(x, Tx), σ(y, Ty)} = σ(x, Tx), that is

σ(x, y) ≤ σ(x, Tx) and σ(y, Ty) ≤ σ(x, Tx).

Using triangular inequality, observe that

σ(x, Ty) + σ(y, Tx)
4

≤ 2σ(x, Ty) + σ(y, Ty) + σ(x, Tx)
4

≤ 2σ(x, Tx) + σ(x, Tx) + σ(x, Tx)
4

= σ(x, Tx).

(3). Using similar approach, it is easy to see that (3) holds.

Example 4.4. Let X = {0, 1, 2} and σ : X ×X → [0,∞] be a mapping defined
by

σ(0, 0) = σ(1, 1) = 0, σ(0, 1) = σ(0, 2) = σ(1, 0) = σ(2, 0) = 1,
σ(1, 2) = σ(2, 1) = σ(2, 2) = 2.

It is easy to see that σ is a metric-like space, but not a metric space. Let
T : X → X be defined by

T0 = T1 = 0 and T2 = 1.

We will show that

σ(x, Ty) + σ(y, Tx)
4

≤ max{σ(x, y), σ(x, Tx), σ(y, Ty)}

Proof. Case 1. If x = y, it is easy to see that σ(x,Ty)+σ(y,Tx)
4

≤ max{σ(x, y), σ(x, Tx), σ(y, Ty)}
Case 2. If x = 0 and y 6= 0, we consider the following sub-cases
Case 2a. If x = 0 and y = 1, we obtain that

σ(x, Ty) + σ(y, Tx)
4

=
1
4

σ(x, y) = 1, σ(x, Tx) = 0 and σ(y, Ty) = 1.
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Clearly, we have that σ(x,Ty)+σ(y,Tx)
4 = 1

4 < 1 = max{σ(x, y), σ(x, Tx), σ(y, Ty)}.
Case 2b. If x = 0 and y = 2, we obtain that

σ(x, Ty) + σ(y, Tx)
4

=
1
2

σ(x, y) = 1, σ(x, Tx) = 0 and σ(y, Ty) = 2.

Clearly, we have that σ(x,Ty)+σ(y,Tx)
4

= 1
2
< 2 = max{σ(x, y), σ(x, Tx), σ(y, Ty)}.

Since σ(x, y) = σ(y, x) the results also holds for y = 0 and x 6= 0.

Remark 4.5. It is clear that Definition 4.1 and Definition 4.2 are the same.
Then, we conclude that Theorem 2.2 and Theorem 2.5 of [17] are just repetition.

5 Application

In this section, we apply our fixed point theory result to the boundary value
problem for the second order differential equations.

5.1 Application to second order differential equations

In this section, we give an application on the existence of solution for the fol-
lowing second order differential equation of the form

x′′(t) = −f(t, x(t)), t ∈ I (23)
x(0) = x(1) = 0,

where I = [0, 1], f : I × R → R is a continuous function. Consider the space
C(I) of continuous function defined on I. It is well-known that C(I) with the
metric-like

σ(x, y) = ‖x− y‖∞ + ‖x‖∞ + ‖y‖∞ ∀ x, y ∈ C(I),

where
‖u‖∞ = max

t∈[0,1]
|u(t)| ∀ u ∈ C(I).

Since dσ(x, y) = 2σ(x, y)−σ(x, x)−σ(y, y) = 2‖x−y‖∞, σ is also a partial metric
on C(I). Hence, (C(I), σ) is a complete since the metric space (C(I), ‖ · ‖∞)
is complete. It is also well-known that the problem (23) is equivalent to the
integral equation

x(t) =
∫ 1

0

G(t, s)f(s, x(s))ds, (24)

for t ∈ I, where G is the Green function defined by

G(t, s) =

{
(1 − t)s if 0 ≤ s ≤ t ≤ 1,
(1 − s)t if 0 ≤ t ≤ s ≤ 1.

If x ∈ C2(I), then x ∈ C(I) is also solution of (23) if and only if it is a solution
(24).
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Theorem 5.1. Let X = C(I) and T : X → X be the operator given by

Tx(t) =
∫ 1

0

G(t, s)f(s, x(s))ds

for all x ∈ X and t ∈ I = [0, 1]. Furthermore, suppose the following conditions
hold:

1. there exists functions ϕ, φ : I → [0,∞), α, β : X ×X → [0,∞) such that
α(x, y) ≥ 1 ⇒ β(Tx, Ty) ≥ 1 and β(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1 for all
x, y ∈ X, we have

|f(s, u) − f(s, v)| ≤ 8ϕ(s)|u− v|, |f(s, u)| ≤ φ(s)|u|

for some s ∈ I and u, v ∈ R.

2. sups∈I τ (s) = K1 <
1
10

and sups∈I φ(s) = K2 <
1
10

3. there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1;

4. for any sequence {xn} in X such that xn → x as n→ ∞, then β(x, Tx) ≥
1.

Then the second order differential equation (23) has a solution.

Proof. We define

α(x, y) =

{
2 if x � y

0 otherwise

β(x, y) =

{
1 if x � y

0 otherwise

and ψ(t) = t
3 . We define x, y ∈ X, x � y if and only if x(t) ≤ y(t) for all

t ∈ [0, 1]. It is clear that if x � y, we have that α(x, Tx)β(y, Ty) > 1. Thus, we
have that

|Ty(t) − Tx(t)| ≤
∫ 1

0

G(t, s)|f(s, y(s)) − f(s, x(s))|ds

≤
∫ 1

0

G(t, s)ϕ(s)|y(s) − x(s)|ds (25)

= 8K1‖y − x‖∞ sup
t∈[0,1]

∫ 1

0

G(t, s)ds

= 8K1‖x− y‖∞ sup
t∈[0,1]

∫ 1

0

G(t, s)ds.
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It is well-known that for each t ∈ I, we have
∫ 1

0
G(t, s)ds = t(1−t)

2 as such, we
obtain that

supt∈[0,1]

∫ 1

0

G(t, s)ds =
1
8
.

We have (25) becomes.

‖Tx− Ty‖∞ ≤ K1‖x− y‖∞ (26)

It is also easy to see that

‖Tx‖∞ ≤ K2‖x‖∞ (27)

and

‖Ty‖∞ ≤ K2‖y‖∞. (28)

Let e−τ = 3(K1 + 2K2) < 1. Using (26), (27) and (28), we get

σ(Tx, Ty) = ‖Tx− Ty‖∞ + ‖Tx‖∞ + ‖Ty‖∞
≤ K1‖x− y‖∞ +K2‖x‖∞ +K2‖y‖∞
≤ (K1 + 2K2)(‖x− y‖∞ + ‖x‖∞ + ‖y‖∞)

=
e−τ

3
σ(x, y)

= e−τψ(σ(x, y)).

Taking the function F (t) = ln(t), we obtain

τ + F (σ(Tx, Ty)) ≤ F (ψ(σ(x, y))).

Clearly, all the conditions in Corollary 3.11 are satisfied, and so T has a fixed
point. Thus the second order differential equation (23) has a solution.
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