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The main purpose of this paper is to study monotone variational inclusion

problems in a reflexive real Banach space. We propose a Halpern-type algorithm and
prove that the sequence generated by it converges strongly to a common solution of

a finite family of monotone vairiational inclusion problems in a reflexive real Banach

space. We then apply our results to solve a finite family of variational inequality problems
and convex feasibility problem.

Keywords: Monotone variational inclusion problem, maximal monotone mappings, Breg-

man inverse strongly monotone mappings, resolvent operators, anti-resolvent operators,
Bregman firmly nonexpansive mapping.

MSC2000 Mathematics Subject Classification: 47H09, 47H10, 49J20

1. Introduction

Let C be a nonempty closed and convex subset of a real Banach space X and X∗ be the
dual space of X. A point x ∈ C is called a fixed point of T if Tx = x. We say that x is an
asymptotic fixed point of T if C contains a sequence {xn} which converges weakly to x and
lim
n→∞

||xn − Txn|| = 0. Throughout this paper, we shall denote the set of fixed points and

asymptotic fixed points of T by F (T ) and F̂ (T ) respectively. We shall also denote by 0∗,
the zero element of the dual space X∗ (see [41]).
The theory of monotone mappings is one of the most important areas of research in nonlinear
and convex analysis due to the role it plays in optimization theory, variational inequalities,
semi group theory, evolution equations, among others (see [6, 20, 23, 25, 26, 27, 28, 40, 41,
52]). An important problem in this area of research is the following Monotone Inclusion
Problem (MIP), also known as the null point problem:

Find x ∈ X such that 0∗ ∈ Bx, (1.1)

where B : X → 2X
∗

is a monotone mapping. The solution set of Problem (1.1) is denoted
by B−1(0∗). Problem (1.1) describes the equilibrium or stable state of an evolution system
governed by the monotone mapping, which is very important in ecology, physics, economics,
among others (see [7, 18, 20, 37, 50] and the references therein). Also, many optimization
(and other related mathematical) problems can be modeled as Problem (1.1). Thus, MIP
is of central importance in the theory of monotone mappings.
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A popular method for solving Problem (1.1), known as the Proximal Point Algorithm (PPA)
was introduced in Hilbert spaces by Martinet [34] and was later developed by Rockafeller
[44], Bruck and Reich [12], see also [5]. These authors prove that the PPA which generates
a sequence:

xn+1 = JBλ xn, (1.2)

where JBλ = (I + λB)−1 is the resolvent operator of the maximal monotone mapping B,
converges weakly to a solution of (1.1). Since then, many authors have also studied the MIP
in Hilbert spaces (see [29, 36] and the references therein). The study of Problem (1.1) was
extended to real Banach spaces. For instance, Butnariu and Resmerita [14] studied Problem
(1.1) in a reflexive real Banach space when B is an inverse-monotone mapping from X to
X∗ (see [14, Section 5]). Later, Riech and Sabach [41] introduced the following algorithm
for approximating a finite family of MIPs:

x0 ∈ X;

yin = Resfλi
nBi

(xn + ein);

Cin = {z ∈ X : Df (z, yin) ≤ Df (z, xn + ein)};
Cn := ∩Ni=1C

i
n;

Qn = {z ∈ X : 〈∇f(x0)−∇f(xn), z − xn〉 ≤ 0};
xn+1 = P fCn+1

(x0), n ≥ 0,

(1.3)

where Resfλi
nBi

is the resolvent associated with the maximal monotone mappings Bi, i =

1, 2, . . . , N and P fCn+1
is the Bregman projection of X onto Cn+1 (we shall define these terms

in the next section). By using the technique of Bregman distance, they obtained a strong
convergence result for Algorithm (1.3).
A very important generalization of Problem (1.1) is the following Monotone Variational
Inclusion Problem (MVIP): Find x ∈ X such that

0∗ ∈ A(x) +B(x), (1.4)

where A : X → X∗ is a single-valued monotone mapping and B : X → 2X
∗

is a multivalued
monotone mapping. The solution set of Problem (1.4) is denoted by (A+B)−1(0∗). MVIP
is generally known to be an important tool for solving problems arising from mechanics,
optimization, nonlinear programming, machine learning, linear inverse problems, economics,
finance, applied sciences, among others (see for example [1, 2, 21, 22, 24, 48, 49, 51] and the
references therein).
The classical method for solving MVIP (1.4) is the following forward-backward splitting
method (which is more general than the PPA) introduced by Lions and Mercier [31] (and
independently by Passty [38]):{

x1 ∈ X,
xn+1 = JBλ (I − λA)xn, n ≥ 1,

(1.5)

where λ > 0. This method has been used by many authors to solve Problem (1.4) in real
Hilbert spaces when B and A are monotone mappings (see [1, 2, 45, 22, 21]). The study of
MVIP has recently been extended from the framework of Hilbert spaces to general Banach
spaces. For example, Lopez et. al. [32] introduced and studied an Halpern-type forward-
backward splitting method for approximating solutions of MVIP in a uniformly convex and
q-uniformly smooth Banach spaces when B : X → 2X and A : X → X are m-accretive and
inverse strongly accretive mappings respectively. Inspired by the results of Lopez et. al. [32],
Cholamjiak [19], proposed and studied a viscosity-type forward-backward splitting method
for approximating solutions of MVIP in a uniformly convex and q-uniformly smooth Banach
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spaces when B : X → 2X and A : X → X are m-accretive and inverse strongly accretive
mappings respectively. Also, Wei and Duan [53] extended the results of Lopez et. al. [32]
from uniformly convex and q-uniformly smooth Banach spaces to uniformly smooth and
uniformly convex Banach spaces. Furthermore, Shehu and Cai [47] extended the results of
Cholamjiak [19] from uniformly convex and q-uniformly smooth Banach spaces to uniformly
smooth and uniformly convex Banach spaces.
It is worth mentioning that in the works of Lopez et. al. [32], Cholamjiak [19], Wei and
Duan [53], Shehu and Cai [47], and other related works in this direction, B and A are
assumed to be accretive mappings from X to X. Therefore, their results cannot be used to
solve Problem (1.4) where B and A are required to be monotone mappings from X to X∗

(which is a more general problem).
Motivated by this, we generalize the results of Lopez et. al. [32], Cholamjiak [19], Wei and
Duan [53], Shehu and Cai [47] from uniformly smooth and uniformly convex Banach spaces
to the framework of reflexive Banach spaces. We prove that the sequence generated by our
proposed algorithm converges strongly to a common solution of a finite family of MVIP (1.4)
when B and A are monotone mappings from X to X∗. Furthermore, we applied our results
to solve a finite family of variational inequality problems and convex feasibility problem.
Our results also generalize the results of Riech and Sabach [41] from solving Problem (1.1)
to solving Problem (1.4).

2. Preliminaries

Let X be a reflexive real Banach space and C be a nonempty, closed and convex subset of
X. Let f : X → (−∞,+∞] be a function. Then, the domain of f is defined as

domf := {x ∈ X : f(x) < +∞}.
The function f : X → (−∞,+∞] is called convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀x, y ∈ X, λ ∈ (0, 1).

f is called proper, if domf 6= ∅. The function f : domf ⊆ X → (−∞,∞] is said to be lower
semicontinuous at a point x ∈ domf if

f(x) ≤ lim inf
n→∞

f(xn), (2.1)

for each sequence {xn} in domf such that lim
n→∞

xn = x. f is said to be lower semicontinuous

on domf if it is lower semicontinuous at any point in domf . Throughout this paper, f :
X → (−∞,+∞] is a proper convex and lower semicontinuous function.

Definition 2.1. (see [11, 15]). The bifunction Df : domf × int(domf) → [0,+∞), which
is defined by

Df (x, y) := f(x)− f(y)− 〈∇f(y), x− y〉, (2.2)

is called the Bregman distance.

It is generally known that the Bregman distance does not satisfy the properties of a metric,
however, it has an important property, called the three point identity. That is, for any
x ∈ domf and y, z ∈ int domf ,

Df (x, y) +Df (y, z)−Df (x, z) = 〈∇f(z)−∇f(y), x− y〉. (2.3)

The Fenchel conjugate of f is the function f∗ : X∗ → (−∞,∞], defined by

f∗(x∗) = sup{〈x∗, x〉 − f(x) : x ∈ X}.
Let x ∈ int dom f , then for any y ∈ X, we define the right-hand derivative of f at x by

f ′(x, y) := lim
t→0+

f(x+ ty)− f(x)

t
. (2.4)
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The function f is said to be Gâteaux differentiable at x if the limit in (2.4) exists as t→ 0
for each y ∈ X. In this case, the gradient of f at x is the linear function ∇f(x), which is
defined by 〈∇f(x), y〉 := f ′(x, y) for all y ∈ X. f is called Gâteaux differentiable if it is
Gâteaux differentiable for any x ∈ int domf . If the limit in (2.4) is attained uniformly for
any y ∈ X with ||y|| = 1, we say that f is Fréchet differentiable at x. Whenever, the limit
in (2.4) is attained uniformly for any x ∈ C and for any y ∈ X with ||y|| = 1, then we say
that the function f is uniformly Fréchet differentiable on subset C of X. The function f is
called Legendre if the following two conditions hold:
(i) f is Gâteaux differentiable, int domf 6= ∅ and dom∇f = int(domf);
(ii) f∗ is Gâteaux differentiable and int domf∗ 6= ∅ and dom∇f∗ = int(domf∗).
It has been shown that ∇f = (∇f∗)−1 in reflexive Banach spaces (see [9, 30]). Thus
combining this fact with conditions (i) and (ii) above, we have that
ran ∇f = dom ∇f∗ = int dom f∗ and ran∇f∗ = dom ∇f = int domf .
We also know that f is Legendre if and only if f∗ is Legendre (see [8, Corollary 5.5]) and
that the functions f and f∗ are Gâteaux differentiable and strictly convex in the interior of
their respective domains. The function f is called totally convex at a point x ∈ int(domf)
if its modulus of total convexity at x, that is, vf : int(domf)× [0,+∞)→ [0,+∞], defined
by

vf (x, t) := inf{Df (y, x) : y ∈ domf, ||y − x|| = t}, (2.5)

is positive whenever t > 0 (see [10, 13, 14]). f is said to be totally convex whenever it is
totally convex on every point x ∈ int(domf). In addition, the function f is called totally
convex on bounded sets if vf (C, t) is positive for any nonempty bounded subset C of X and
for any t > 0, where the modulus of totally convexity of the function f on the set C is the
function vf : int(domf)× [0,+∞)→ [0,+∞] defined by

vf (C, t) := inf{vf (x, t)|x ∈ C ∩ domf}.
We know that the function f is totally convex on bounded subsets if and only if f is uniformly
convex on bounded subsets (see [14, Theorem 2.10]).

Definition 2.2. (see [14]). The function f : X → R is called sequentially consistent, if
for any sequences {xn} and {yn} in int(domf) and domf respectively, such that {xn} is
bounded and

lim
n→∞

Df (yn, xn) = 0 =⇒ lim
n→∞

||yn − xn|| = 0.

Lemma 2.1. [13]. The function f : X → R is totally convex on bounded sets if and only if
it is sequentially consistent.

Definition 2.3. [41] Let B : X → 2X
∗

be a multivalued mapping. Then B is called mono-
tone, if for any x, y ∈ domB, we have

〈u− v, x− y〉 ≥ 0 ∀u ∈ Bx and v ∈ By. (2.6)

B is called maximal monotone, if B is monotone and the graph of B is not properly contained
in the graph of any other monotone mapping.

Let B : X → 2X
∗

be a multivalued mapping. Then the resolvent associated with B and λ

for any λ > 0, is the operator ResfλB : X → 2X defined by

ResfλB = (∇f + λB)−1 ◦ ∇f. (2.7)

Lemma 2.2. (see [41]). Let B : X → 2X
∗

be a maximal monotone mapping such that
B−1(0∗) 6= ∅. Then

Df

(
u,ResfλB(x)

)
+Df

(
ResfλB(x), x

)
≤ Df (u, x), (2.8)
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for all λ > 0, u ∈ B−1(0∗) and x ∈ X. Furthermore, B−1(0∗) = F (ResfλB) and ResfλB is
singlevalued.

Definition 2.4. Let C be a nonempty closed and convex subset of a reflexive Banach space
X. Then the mapping A : X → 2X

∗
is called Bregman Inverse Strongly Monotone (BISM)

on the set C, if

C ∩ (domf) ∩ (int domf) 6= ∅ (2.9)

and for any x, y ∈ C ∩ int(domf), u ∈ Ax and v ∈ Ay, we have

〈u− v,∇f∗(∇f(x)− u)−∇f∗(∇f(y)− v)〉 ≥ 0. (2.10)

Remark 2.1. The BISM class of mappings is more general than the class of firmly nonex-
pansive operators in Hilbert spaces (see [30]).

The anti-resolvent Afλ : X → 2X associated with a mapping A : X → 2X
∗

and λ > 0 is
defined by

Afλ := ∇f∗ ◦ (∇f − λA). (2.11)

Lemma 2.3. [30] Let f : X → (−∞,+∞] be a Legendre function and let A : X → 2X
∗

be
a BISM mapping such that A−1(0∗) 6= ∅. Then for any λ > 0, we have the following:

(i) A−1(0∗) = F (Afλ) and Afλ is singlevalued.

(ii) For any u ∈ A−1(0∗) and x ∈(domAfλ), we have

Df (u,Afx) +Df (Afx, x) ≤ Df (u, x).

Remark 2.2. It follows easily from (2.7) and (2.11) that

(A+B)−1(0∗) = F (ResfλB ◦A
f
λ), (2.12)

where A and B are singlevalued and multivalued mappings respectively. If in addition, A
and B are BISM and maximal monotone mappings respectively, then it follows from Lemma

2.2 and Lemma 2.3 that the composition ResfλB ◦A
f
λ is also singlevalued for any λ > 0.

Let C be a nonempty closed and convex subset of int(domf) and T be a mapping on C.
The mapping T is called
(i) Bregman Firmly Nonexpansive (BFNE) if

〈∇f(Tx)−∇f(Ty), Tx− Ty〉 ≤ 〈∇f(x)−∇f(y), Tx− Ty〉,∀x, y ∈ C, (2.13)

(ii) Quasi-Bregman Firmly Nonexpansive (QBFNE) if F (T ) 6= ∅ and

〈∇f(x)−∇f(Tx), Tx− y〉 ≥ 0 ∀x ∈ C, y ∈ F (T ), (2.14)

(ii) Quasi-Bregman Nonexpansive (QBNE) if F (T ) 6= ∅ and

Df (y, Tx) ≤ Df (y, x) ∀x ∈ C, y ∈ F (T ),

(iii) Bregman Strongly Nonexpansive (BSNE) with F̂ (T ) 6= ∅ if

Df (y, Tx) ≤ Df (y, x) ∀x ∈ C, y ∈ F̂ (T )

and for any bounded sequence {xn}n≥1 ⊂ C,

lim
n→∞

(Df (y, xn)−Df (y, Txn)) = 0

implies

lim
n→∞

Df (Txn, xn) = 0.

Remark 2.3. (see [30]). It is known that if T is BFNE and f : X → R is a Legendre
function which is bounded, uniformly Fréchet differentiable and totally convex on bounded
subsets of X, then F (T ) = F̂ (T ) and F (T ) is closed and convex.
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Remark 2.4. (see [30][40]).
(i) It is easy to see from the definition of Bregman distance that (2.13) and

Df (Tx, Ty) +Df (Ty, Tx) +Df (Tx, x) +Df (Ty, y) ≤ Df (Tx, y) +Df (Ty, x)

are equivalent.
(ii) Also, it is not difficult to see that (2.14) and Df (y, Tx) + Df (Tx, x) ≤ Df (y, x) are

equivalent.
(iii) We can easily see that if F (T ) 6= ∅, then BFNE ⊂ QBFNE ⊂ QBNE. If in addition,

F̂ (T ) = F (T ) 6= ∅, then QBFNE ⊂ BSNE.

Lemma 2.4. ([30]): Assume that f : X → R is a Legendre function which is uniformly
Fréchet differentiable and bounded on bounded subset of X. Let {Ti : 1 ≤ i ≤ N} be BSNE

operators which satisfy F̂ (Ti) = F (Ti) for each 1 ≤ i ≤ N and let T := TNTN−1 . . . T1. If

∩{F (Ti) : 1 ≤ i ≤ N}

is nonempty, then T is also BSNE with F (T ) = F̂ (T ).

Definition 2.5. [11] Let X be a reflexive real Banach space and C be a nonempty closed
and convex subset of X. A Bregman projection of x ∈ int(domf) onto C ⊂ int(domf) is the

unique vector P fC(x) ∈ C satisfying

Df

(
P fC(x), x

)
= inf{Df (y, x) : y ∈ C}. (2.15)

Lemma 2.5. [14] Let C be a nonempty closed and convex subset of X and x ∈ X. Let
f : X → R be a Gáteaux differentiable and totally convex function. Then,

(i) z = P fC(x) if and only if 〈∇f(x)−∇f(z), y − z〉 ≤ 0, ∀y ∈ C.

(ii) Df (y, P fC(x)) +Df (P fC(x), x) ≤ Df (y, x) ∀y ∈ C.

Lemma 2.6. [42]. If f : X → R is uniformly Fréchet differentiable and bounded on bounded
subsets of X, then ∇f is uniformly continuous on bounded subsets of X from the strong
topology of X to the strong topology of X∗.

Lemma 2.7. [39] Let f : X → (−∞,+∞] be a proper, convex and lower semicontinuous
function, then f∗ : X → (−∞,+∞] is a proper convex weak∗ lower semicontinuous function.
Thus, for all z ∈ X, we have

Df

(
z,∇f∗

(
N∑
i=1

ti∇f(xi)

))
≤

N∑
i=1

tiDf (z, xi), (2.16)

where {xi} ⊆ X and {ti} ⊂ (0, 1) with
N∑
i=1

ti = 1.

Lemma 2.8. [35] Let f : X → R be a Gâteaux differentiable function on int(domf) such
that ∇f∗ is bounded on bounded subset of domf∗. Let x∗ ∈ X and {xn} ⊂ int(X). If
{Df (x, xn)} is bounded, so is the sequence {xn}.

Let f : X → R be a Legendre and Gâteaux differentiable function. Then, the function
Vf : X ×X∗ → [0,+∞) associated with f is defined by (see [4, 15, 46])

Vf (x, x∗) = f(x)− 〈x, x∗〉+ f∗(x∗), ∀x ∈ X, x∗ ∈ X∗. (2.17)

The function Vf is nonnegative and

Vf (x, x∗) = Df (x,∇f(x∗)), ∀x ∈ X, x∗ ∈ X∗. (2.18)

Furthermore (see [43]), Vf satisfies

Vf (x, x∗) + 〈y∗,∇f∗(x∗)− x〉 ≤ Vf (x, x∗ + y∗), ∀x ∈ X,x∗, y∗ ∈ X∗. (2.19)
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Lemma 2.9. [54]. Let {an} be a sequence of non-negative real numbers satisfying

an+1 ≤ (1− αn)an + αnδn + γn, n ≥ 0,

where {αn}, {δn} and {γn} satisfy the following conditions:
(i) {αn} ⊂ [0, 1], Σ∞n=0αn =∞,
(ii) lim supn→∞ δn ≤ 0,
(iii) γn ≥ 0(n ≥ 0), Σ∞n=0γn <∞.
Then lim

n→∞
an = 0.

Lemma 2.10. [33]. Let {an} be a sequence of real numbers such that there exists a sub-
sequence {nj} of {n} such that anj < anj+1 ∀j ∈ N. Then there exists a nondecreasing
sequence {mk} ⊂ N such that mk → ∞ when the following properties are satisfied by all
(sufficiently large) numbers k ∈ N:

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{i ≤ k : ai < ai+1}.

3. Main Results

Lemma 3.1. Let X be a reflexive real Banach space and f : X → R be a Legendre function
which is uniformly Fréchet differentiable and bounded on bounded subset of X. Let Ti, i =
1, 2, . . . , N be QBFNE on X and FN = TN ◦ TN−1 ◦ · · · ◦ T1. Assume that ∩Ni=1F (Ti) 6= ∅,
then F (FN ) = ∩Ni=1F (Ti).

Proof. Clearly, ∩Ni=1F (Ti) ⊆ F (FN ). Thus, we will only have to show that F (FN ) ⊆
∩Ni=1F (Ti). Since ∩Ni=1F (Ti) 6= ∅, we have that F (FN ) 6= ∅. Thus, for any x ∈ F (FN )
and y ∈ ∩Ni=1F (Ti) 6= ∅, we have that

Df (y, x) = Df (y, FNx). (3.1)

Since Ti is QBFNE for each i = 1, 2, . . . , N , we obtain from Remark 2.4 (ii), (iii) and (3.1)
that

Df (TN (FN−1x), FN−1x) ≤ Df (y, FN−1x)−Df (y, TN (FN−1x))

≤ Df (y, FN−2x)−Df (y, TN (FN−1x))

≤ Df (y, x)−Df (y, TN (FN−1x))

≤ Df (y, FNx)−Df (y, FNx) = 0,

which implies that

FNx = FN−1x. (3.2)

Note that FN−1 = TN−1 ◦ TN−2 ◦ · · · ◦ T1. Thus, by similar argument, we can show that

FN−1x = FN−2x. (3.3)

By repeating the same process, we obtain

FNx = FN−1x = FN−2x = FN−3x = · · · = F2x = F1x = x. (3.4)

From (3.4), we obtain

x = T1x. (3.5)

From (3.4) and (3.5), we obtain

x = F2x = T2(T1x) = T2x. (3.6)

As in (3.5)-(3.6), we can show that

x = T1x = T2x = · · · = TN−1x = TNx. (3.7)

Thus, we obtain that F (FN ) ⊆ ∩Ni=1F (Ti). �
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Lemma 3.2. Let X be a reflexive real Banach space and f : X → R be a Legendre function
which is uniformly Fréchet differentiable and bounded on bounded subset of X. Let B : X →
2X

∗
be a maximal monotone mapping and T be a QBFNE mapping on X. Suppose that

F (ResfλB) ∩ (T ) 6= ∅, then ResfλB ◦ T is also a QBFNE mapping.

Proof. From (2.3), we obtain for all x ∈ X, y ∈ F (ResfλB) ∩ (T ) ⊆ F (ResfλB ◦ T ) and λ > 0
that

Df (y,ResfλB(Tx))

+ Df (ResfλB(Tx), x)−Df (y, x)

= 〈∇f(x)−∇f(ResfλB(Tx)), y − ResfλB(Tx)〉

= −λ〈0∗ − 1

λ

(
∇f(x)−∇f(ResfλB(Tx))

)
,

y − ResfλB(Tx)〉. (3.8)

Now, since y ∈ F (ResfλB), it follows from Lemma 2.2 that 0∗ ∈ By. Also, from (2.7), we

obtain that 1
λ

(
∇f(x)−∇f

(
ResfλB(Tx)

))
∈ B

(
ResfλB(Tx)

)
. Using these facts in (3.8),

we obtain by the monotonicity of B that

Df (y, (ResfλB(Tx)) +Df ((ResfλB(Tx), x)−Df (y, x) ≤ 0,

which implies by Remark 2.4 (ii) that ResfλB ◦ T is QBFNE. �

Proposition 3.1. If f : X → R is a Legendre function which is bounded, uniformly Fréchet
differentiable and totally convex on bounded subsets of X, and A−1(0∗)∩B−1(0∗) 6= ∅, then
(A+B)−1(0∗) is closed and convex.

Indeed, since ResfλB and Afλ are BFNE mappings (see [41] and [30] respectively), we have

from Remark 2.3 that F (ResfλB) and F (Afλ) are closed and convex. Also, by Remark 2.4

(iii), we have that ResfλB and Afλ are QBFNE mappings. Thus, by Remark 2.2 and Lemma

3.1, we have that (A+B)−1(0∗) = F (ResfλB ◦A
f
λ) = F (ResfλB)∩F (Afλ) is closed and convex.

Remark 3.1. Set T iλ = ResfλBi
◦Afiλ, where i = 1, 2, . . . , N and λ > 0. If

(
∩Ni=1F (ResfλBi

)
)
∩(

∩Ni=1F (Afiλ)
)

is nonempty for each i = 1, 2, . . . , N , then by Lemma 3.2, we obtain that T iλ
is QBFNE for each i = 1, 2, . . . , N . Thus, by Lemma 3.1, we obtain that

F (TNλ ◦ TN−1
λ ◦ · · · ◦ T 1

λ) = ∩Ni=1F (T iλ). (3.9)

Theorem 3.1. Let X be a reflexive real Banach space and X∗ be its dual space. For
i = 1, 2, . . . , N , let Ai : X → X∗ be a finite family of BISM mappings and Bi : X → 2X

∗
be a

finite family of maximal monotone mappings such that
(
∩Ni=1A

−1(0∗)
)
∩
(
∩Ni=1B

−1(0∗)
)
6= ∅.

Let f : X → R be a strongly coercive Legendre function which is bounded, uniformly Fréchet
differentiable and totally convex on bounded subsets of X. Let u, x1 ∈ X be arbitrary and
the sequence {xn} be generated by

yn = TNλ ◦ T
N−1
λ ◦ · · · ◦ T 1

λxn,

wn = ∇f∗
(

βn

1−αn
∇f(xn) + γn

1−αn
∇f(yn)

)
,

xn+1 = ∇f∗ (αn∇f(u) + (1− αn)∇f(wn)) , n ≥ 1,

(3.10)

where T iλ = ResfλBi
◦ Afiλ, i = 1, 2, . . . , N , λ > 0, {αn}, {βn} and {γn} are sequences in

(0, 1) such that lim
n→∞

αn = 0, αn + βn + γn = 1 and 0 < a < βn, γn < b < 1. Then {xn}

converges strongly to z = P fΓu, where Γ := ∩Ni=1(Ai +Bi)
−1(0∗).
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Proof. Since
(
∩Ni=1A

−1(0∗)
)
∩
(
∩Ni=1B

−1(0∗)
)
6= ∅, it follows from Lemma 2.2, Lemma 2.3,

Remark 2.2 and Lemma 3.1 that Γ 6= ∅. Also, by Proposition 3.1, Γ is closed and convex

subset of X. Now, let z = P fΓu ⊂ Γ, then by Lemma 2.7, we obtain that

Df (z, xn+1) ≤ αnDf (z, u) + (1− αn)Df (z, wn)

≤ αnDf (z, u) + βnDf (z, xn) + γnDf (z, yn)

...

≤ αnDf (z, u) + (1− αn)Df (z, xn)

≤ max{Df (z, u), Df (z, xn)}
...

≤ max{Df (z, u), Df (z, x1)}, n ≥ 1.

Thus, {Df (z, xn)} is bounded. It follows from Lemma 2.8 that {xn} is bounded. Conse-
quently, {wn} and {yn} are also bounded.
Now, from (2.19), we obtain that

Df (z, xn+1) = Df (z,∇f∗(αn∇f(u) + (1− αn)∇f(wn)))

= Vf (z, αn∇f(u) + (1− αn)∇f(wn))

≤ Vf (z, αn∇f(u) + (1− αn)∇f(wn)− αn(∇f(u)−∇f(z))

+〈αn(∇f(u)−∇f(z)),∇f∗(αn∇f(u)

+(1− αn)∇f(wn))− z〉
= Vf (z, αn∇f(z) + (1− αn)∇f(wn))

+αn〈∇f(u)−∇f(z), xn+1 − z〉
= Df (z,∇f∗(αn∇f(z) + (1− αn)∇f(wn))

+αn〈∇f(u)−∇f(z), xn+1 − z〉
≤ (1− αn)Df (z, wn) + αn〈∇f(u)−∇f(z), xn+1 − z〉
≤ (1− αn)Df (z, xn) + αn〈∇f(u)−∇f(z), xn+1 − z〉. (3.11)

Again, from (3.10), we obtain that

Df (wn, xn+1) ≤ αnDf (wn, u)→ 0, as n→∞, (3.12)

which implies by Lemma 2.1 that

lim
n→∞

||wn − xn+1|| = 0. (3.13)

Thus, by Lemma 2.6, we have

lim
n→∞

||∇f(wn)−∇f(xn+1)|| = 0. (3.14)

Also, since f is uniformly Fréchet differentiable on bounded subsets of X, we have that f is
uniformly continuous on bounded subsets of X. Thus, we obtain from (3.13) that

lim
n→∞

||f(wn)− f(xn+1)|| = 0. (3.15)

We now consider two cases for the remaining part of our proof:
Case 1: Suppose that there exists n0 ∈ N such that {Df (z, xn)} is monotone decreasing
for all n ≥ n0. Then, we get that {Df (z, xn)} is convergent and hence

lim
n→∞

(Df (z, xn)−Df (z, xn+1)) = 0. (3.16)
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From (3.10) and (3.11), we obtain that

Df (z, xn+1) ≤ (1− αn)Df (z, wn) + αn〈∇f(u)−∇f(z), xn+1 − z〉

≤ (1− αn)

[
βn

(1− αn)
Df (z, xn) +

γn
(1− αn)

Df (z, yn)

]
+αn〈∇f(u)−∇f(z), xn+1 − z〉,

which implies that

Df (z, xn)−Df (z, xn+1) ≥ (1− βn)Df (z, xn)− γnDf (z, yn)

−αn〈∇f(u)−∇f(z), xn+1 − z〉
= (1− βn) (Df (z, xn)−Df (z, yn))

−αn [〈∇f(u)−∇f(z), xn+1 − z〉+Df (z, yn)] ,

which further implies that

(1− βn) (Df (z, xn)−Df (z, yn)) ≤ Df (z, xn)−Df (z, xn+1)

+αn [〈∇f(u)−∇f(z), xn+1 − z〉+Df (z, yn)] .

Thus, by the condition on αn and βn, and by (3.16), we obtain that

lim
n→∞

(
Df (z, xn)−Df (z, TNλ ◦ TN−1

λ ◦ · · · ◦ T 1
λxn)

)
= lim
n→∞

(Df (z, xn)−Df (z, yn)) = 0. (3.17)

Now, since f is a Legendre function which is bounded and uniformly Fréchet differentiable on

bounded subsets of X, we have for each i = 1, 2, . . . , N that ResfλBi
and Afiλ are both BSNE

satisfying F (ResfλBi
) = F̂ (ResfλBi

) and F (Afiλ) = F̂ (Afiλ) respectively (see [40, Lemma

1.3.2]). Thus, it follows from Lemma 2.4 that T iλ = ResfλBi
◦ Afiλ is also BSNE with

F (T iλ) = F̂ (T iλ), for each i = 1, 2, 3, . . . , N . Again, since T iλ is BSNE mapping for each i =

1, 2, 3 . . . , N , then by similar argument, we obtain that the composition TNλ ◦T
N−1
λ ◦ · · · ◦T 1

λ

is also a BSNE mapping with F (TNλ ◦ T
N−1
λ ◦ · · · ◦ T 1

λ) = F̂ (TNλ ◦ T
N−1
λ ◦ · · · ◦ T 1

λ). Thus, it
follows from (3.17) that

lim
n→∞

Df (xn, T
N
λ ◦ TN−1

λ ◦ · · · ◦ T 1
λxn) = lim

n→∞
Df (xn, yn) = 0, (3.18)

which implies from Lemma 2.1 that

lim
n→∞

||xn − TNλ ◦ TN−1
λ ◦ · · · ◦ T 1

λxn|| = lim
n→∞

||xn − yn|| = 0. (3.19)

From (3.10) and (3.18), we obtain that

Df (xn, wn) ≤ γn
(1− αn)

Df (xn, yn)→ 0, as n→∞,

which implies from Lemma 2.1 that

lim
n→∞

||xn − wn|| = 0. (3.20)

From (3.13) and (3.20), we obtain that

lim
n→∞

||xn − xn+1|| = 0. (3.21)

Since X is reflexive and {xn} is bounded, there exists a subsequence {xnk
} of {xn} such

that {xnk
} weakly converges to v ∈ X, and

lim sup
n→∞

〈∇f(u)−∇f(z), xn − z〉 = lim
k→∞

〈∇f(u)−∇f(z), xnk
− z〉. (3.22)

Thus, by (3.19), we obtain that v ∈ F̂ (TNλ ◦ T
N−1
λ ◦ · · · ◦ T 1

λ) = F (TNλ ◦ T
N−1
λ ◦ · · · ◦ T 1

λ),

which implies by (3.9) and Remark 2.2 that v ∈ ∩Ni=1F (T iλ) = ∩Ni=1F (ResfλBi
◦Afiλ) = Γ.
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We now show that {xn} converges strongly to z = P fΓu.
From (3.21), (3.22) and Lemma 2.5 (i), we obtain that

lim sup
n→∞

〈∇f(u)−∇f(z), xn+1 − z〉 = lim sup
n→∞

〈∇f(u)−∇f(z), xn − z〉

= 〈∇f(u)−∇f(z), v − z〉 ≤ 0.

Using this, and applying Lemma 2.9 in (3.11), we obtain that Df (z, xn) → 0, as n → ∞.

Thus, by Lemma 2.1, we obtain that {xn} converges strongly to z = P fΓu.
Case 2: Suppose that {Df (z, xn)} is not monotone decreasing sequence. Then, there exists
a subsequence {Df (z, xni)} of {Df (z, xn)} such that Df (z, xni) < Df (z, xni+1) for all i ∈ N.
Thus, by Lemma 2.10, there exists a nondecreasing sequence {mk} ⊂ N such that mk →∞

Df (z, xmk
) ≤ Df (z, xmk+1) and Df (z, xk) ≤ Df (z, xmk+1) ∀k ∈ N.

Thus, we have

0 ≤ lim
k→∞

(Df (z, xmk+1)−Df (z, xmk
))

≤ lim sup
n→∞

(Df (z, xn+1)−Df (z, xn))

≤ lim sup
n→∞

(αnDf (z, u) + (1− αn)Df (z, xn)−Df (z, xn))

≤ lim sup
n→∞

αn (Df (z, u)−Df (z, xn)) = 0,

which implies that

lim
k→∞

(Df (z, xmk+1)−Df (z, xmk
)) = 0. (3.23)

Following the same line of argument as in Case 1, we can verify that

lim sup
k→∞

〈∇f(u)−∇f(z), xmk+1 − z〉 ≤ 0. (3.24)

Also from (3.11), we have

Df (z, xmk+1) ≤ (1− αmk
)Df (z, xmk

) + αmk
〈∇f(u)−∇f(z), xmk+1 − z〉.

Since Df (z, xmk
) ≤ Df (z, xmk+1), we have

Df (z, xmk
) ≤ 〈∇f(u)−∇f(z), xmk+1 − z〉,

which implies from (3.24) that

lim
k→∞

Df (z, xmk
) = 0. (3.25)

Since Df (z, xk) ≤ Df (z, xmk+1), we obtain from (3.25) and (3.23)
that lim

k→∞
Df (z, xk) = 0. Thus, from Case 1 and Case 2, we conclude that {xn} converges

to z. �

By setting N = 1 in Theorem 3.1, we obtain the following new result.

Corollary 3.1. Let X be a reflexive real Banach space and X∗ be its dual space. Let
A : X → X∗ be a BISM mapping and B : X → 2X

∗
be a maximal monotone mapping such

that A−1(0∗) ∩B−1(0∗) 6= ∅. Let f : X → R be a strongly coercive Legendre function which
is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of X. Let
u, x1 ∈ X be arbitrary and the sequence {xn} be generated by

yn = ResfλB ◦A
f
λxn,

wn = ∇f∗
(

βn

1−αn
∇f(xn) + γn

1−αn
∇f(yn)

)
,

xn+1 = ∇f∗ (αn∇f(u) + (1− αn)∇f(wn)) , n ≥ 1,

(3.26)
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where λ > 0, {αn}, {βn} and {γn} are sequences in (0, 1) such that lim
n→∞

αn = 0, αn +βn +

γn = 1 and 0 < a < βn, γn < b < 1. Then {xn} converges strongly to z = P fΓu, where
Γ := (A+B)−1(0∗).

By setting A ≡ 0, we obtain the following result.

Corollary 3.2. Let X be a reflexive real Banach space and X∗ be its dual space. For
i = 1, 2, . . . , N , let Bi : X → 2X

∗
be a finite family of maximal monotone mappings such

that
(
∩Ni=1B

−1(0∗)
)
6= ∅. Let f : X → R be a strongly coercive Legendre function which is

bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of X. Let
u, x1 ∈ X be arbitrary and the sequence {xn} be generated by

yn = TNλ ◦ T
N−1
λ ◦ · · · ◦ T 1

λxn,

wn = ∇f∗
(

βn

1−αn
∇f(xn) + γn

1−αn
∇f(yn)

)
,

xn+1 = ∇f∗ (αn∇f(u) + (1− αn)∇f(wn)) , n ≥ 1,

(3.27)

where T iλ = ResfλBi
, i = 1, 2, . . . , N , λ > 0, {αn}, {βn} and {γn} are sequences in (0, 1)

such that lim
n→∞

αn = 0, αn + βn + γn = 1 and 0 < a < βn, γn < b < 1. Then {xn} converges

strongly to z = P fΓu, where Γ := ∩Ni=1B
−1
i (0∗).

Also, by setting B ≡ 0, we obtain the following corollary.

Corollary 3.3. Let X be a reflexive real Banach space and X∗ be its dual space. For i =
1, 2, . . . , N , let Ai : X → X∗ be a finite family of BISM mappings such that

(
∩Ni=1A

−1(0∗)
)
6=

∅. Let f : X → R be a strongly coercive Legendre function which is bounded, uniformly
Fréchet differentiable and totally convex on bounded subsets of X. Let u, x1 ∈ X be arbi-
trary and the sequence {xn} be generated by

yn = TNλ ◦ T
N−1
λ ◦ · · · ◦ T 1

λxn,

wn = ∇f∗
(

βn

1−αn
∇f(xn) + γn

1−αn
∇f(yn)

)
,

xn+1 = ∇f∗ (αn∇f(u) + (1− αn)∇f(wn)) , n ≥ 1,

(3.28)

where T iλ = Afiλ, i = 1, 2, . . . , N , λ > 0, {αn}, {βn} and {γn} are sequences in (0, 1) such
that lim

n→∞
αn = 0, αn + βn + γn = 1 and 0 < a < βn, γn < b < 1. Then {xn} converges

strongly to z = P fΓu, where Γ := ∩Ni=1(Ai)
−1(0∗).

4. Application to variational inequality and convex feasibility problems

In this section, we apply our results to solve a finite family of variational inequality problems
and convex feasibility problem. Throughout this section, we assume that C is a nonempty
closed and convex subset of a reflexive real Banach space X and X∗ is the dual space of X.
Recall that the subdifferential ∂g : X → 2X

∗
of g, defined by

∂g(x) =

{
{x∗ ∈ X∗ : g(z)− g(x) ≥ 〈x∗, z − x〉, ∀z ∈ X}, if x ∈ domg,

∅, otherwise
(4.1)

is a maximal monotone mapping whenever g : X → (−∞,∞] is a proper convex and lower
semicontinuous function.
Furthermore, the indicator function δC : X → R defined by

δC(x) =

{
0, if x ∈ C,
+∞, otherwise

(4.2)
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is a proper convex and lower semicontinuous function. Thus, the subdifferential of δC , given
as

∂δC(x) =

{
{x∗ ∈ X∗ : 〈x∗, z − x〉 ≤ 0 ∀z ∈ C} if x ∈ C,
∅, otherwise

(4.3)

is a maximal monotone mapping.
Let A : X → X∗ be a BISM mapping. The Variational Inequality Problem (VIP) is to find
x ∈ C such that

〈Ax, y − x〉 ≥ 0 ∀y ∈ C. (4.4)

The solution set of VIP (4.4) is denoted by V IP (A,C). If f : X → (−∞,+∞] is a Legendre
and totally convex function which satisfies the range condition ran (∇f − A) ⊂ ran (∇f)
(see [30, Proposition 12]), then

V IP (A,C) = F (P fC ◦A
f
λ). (4.5)

Now, observe that

w = Resfλ∂δC (x) ⇐⇒ w =
(
(∇f + λ∂δC)−1 ◦ ∇f

)
(x)

⇐⇒ 1

λ
((∇f(x)−∇f(w)) ∈ ∂δC(w)

⇐⇒ 〈∇f(x)−∇f(w), z − w〉 ≤ 0 ∀y ∈ C ⇐⇒ w = P fC(x).

Thus, it follows that

(A+ ∂δC)−1(0∗) = F (Resfλ∂δC ◦A
f
λ) = F (P fC ◦A

f
λ) = V IP (A,C).

Therefore, by setting Bi = ∂δCi
in Theorem 3.1, we apply Theorem 3.1 to approximate a

common solution of a finite family of VIPs.

Theorem 4.1. Let X be a reflexive real Banach space and X∗ be its dual space. For
i = 1, 2, . . . , N , let Ai : X → X∗ be a finite family of BISM mappings and ∂δCi

be as defined
in (4.3) such that

(
∩Ni=1A

−1(0∗)
)
∩
(
∩Ni=1∂δ

−1
Ci

(0∗)
)
6= ∅. Let f : X → R be a strongly coer-

cive Legendre function which is bounded, uniformly Fréchet differentiable and totally convex
on bounded subsets of X. Let u, x1 ∈ X be arbitrary and the sequence {xn} be generated by

yn = TNλ ◦ T
N−1
λ ◦ · · · ◦ T 1

λxn,

wn = ∇f∗
(

βn

1−αn
∇f(xn) + γn

1−αn
∇f(yn)

)
,

xn+1 = ∇f∗ (αn∇f(u) + (1− αn)∇f(wn)) , n ≥ 1,

(4.6)

where T iλ = Resfλ∂δCi
◦ Afiλ, i = 1, 2, . . . , N , λ > 0, {αn}, {βn} and {γn} are sequences in

(0, 1) such that lim
n→∞

αn = 0, αn + βn + γn = 1 and 0 < a < βn, γn < b < 1. Then {xn}

converges strongly to z = P fΓu, where Γ := ∩Ni=1(Ai + ∂δCi)
−1(0∗).

The Convex Feasibility Problem (CFP) is defined as:

Find x ∈ C such that x ∈ ∩Ni=1Ci, (4.7)

where Ci, i = 1, 2, . . . , N is a finite family of nonempty closed and convex subsets of C such
that ∩Ni=1Ci 6= ∅. Now, observe that

(∂δCi
)−1(0∗) = F (Resfλ∂δCi

) = F (P fCi
) = Ci, i = 1, 2, . . . , N,

which implies that ∩Ni=1∂δ
−1
Ci

(0∗) = ∩Ni=1Ci. Thus, by setting A ≡ 0 in Theorem 4.1, we
obtain the following corollary for approximating a solution of the CFP (4.7).
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Corollary 4.1. Let X be a reflexive real Banach space and X∗ be its dual space. For
i = 1, 2, . . . , N , let ∂δCi be as defined in (4.3) such that

(
∩Ni=1∂δ

−1
Ci

(0∗)
)
6= ∅. Let f : X → R

be a strongly coercive Legendre function which is bounded, uniformly Fréchet differentiable
and totally convex on bounded subsets of X. Let u, x1 ∈ X be arbitrary and the sequence
{xn} be generated by


yn = TNλ ◦ T

N−1
λ ◦ · · · ◦ T 1

λxn,

wn = ∇f∗
(

βn

1−αn
∇f(xn) + γn

1−αn
∇f(yn)

)
,

xn+1 = ∇f∗ (αn∇f(u) + (1− αn)∇f(wn)) , n ≥ 1,

(4.8)

where T iλ = Resfλ∂δCi
, i = 1, 2, . . . , N , λ > 0, {αn}, {βn} and {γn} are sequences in (0, 1)

such that lim
n→∞

αn = 0, αn + βn + γn = 1 and 0 < a < βn, γn < b < 1. Then {xn} converges

strongly to z = P fΓu, where Γ := ∩Ni=1(∂δCi
)−1(0∗).
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