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Abstract

In this paper, we introduce an inertial-type algorithm for approximating a common
solution of split generalized mixed vector equilibrium and fixed point problems. In
the framework of real Hilbert spaces, we state and prove a strong convergence
theorem for obtaining a common solution of split generalized mixed vector equi-
librium problem and fixed point of a finite family of nonexpansive mappings.
Furthermore, we give some consequences of our main result and also report some
numerical illustrations to display the performance of our method. The result
obtained in this paper unifies and generalizes other corresponding results in the
literature.
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1 Introduction

The Vector Equilibrium Problem (VEP) is an important aspect of vector
optimization problem that unifies other mathematical problems such as vector
variational inequality problem, vector saddle point problem, complementarity
problem, as well as fixed point problem etc. Let X, Y be two Hausdorff topological
spaces, P be a proper, closed and convex cone of Y with intP # () and F : X x X —
Y be a bifunction. A Strong Vector Equilibrium Problem (SVEP) is defined as : find
x € X such that
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F(x,y) e P, VyeX,

and the Weak Vector Equilibrium Problem (WVEP) is defined as find x € X such
that

F(x,y) € —imtP, VYyeX.

If P = R in the above, then the VEP reduces to the classical Equilibrium Problem
(EP) introduced by Blum and Oettli [7]. The EP consists of finding x € X such that

F(x,y)>0, VyeX. (1)

Peng and Yao [31] studied a generalized version of (1) called the Generalized
Mixed Equilibrium Problem (GMEP). They formulated the GMEP as follows: find
X € X such that

F(x,y) + ®(y) — @(x) + (Tx,y —x) >0, Vy€X, (2)

where F'is a bifunction, ® is a mapping and 7 is a nonlinear mapping. Following
Peng and Yao [31], Shan et al. [35] in 2012 introduced the Generalized Mixed
Vector Equilibrium Problem (GMVEP) as follows: Let C be a nonempty, closed and
convex subset of a Hilbert space, F be a bifunction, ® : X — RU {400} be a
function and 7 : X — H be a nonlinear mapping. The GMVEP is formulated as: find
x € X such that

F(x,y) + ®(y) = ®(x) + e(Tx,y —x) € C, Vy€P, (3)
where e € intP. They denoted the solution set of (3) by
GMVEP(F,®):={x € F(x,y) + ®(y) — ®(x) + ¢(Tx,y —x) € C}, VyeX.

Furthermore, they considered an auxiliary problem for the GMVEP and proved the
existence and uniqueness of the solution for the auxiliary problem. Also, they
introduced an iterative method for finding a common element of the set of fixed
points of a nonexpansive mapping, the set of solutions of GMVEP and the solution
set of a variational inequality problem.

The following remark highlights some particular cases of (3).

Remark 1.1

i) If®=0,T=0ande=1, then (3) reduces to the classical EP (1).
(i) IfY=R,P=10,00)and e = 1, then (3) reduces to the generalized mixed
equilibrium problem (2).
@iii) If ® =0 and T = 0, then (3) reduces to the classical VEP.

The vector equilibrium problem and its other variant generalizations have been
studied extensively in  both  Hilbert and Banach spaces (see
[3,7, 11, 15, 17-20, 26-28, 33] and other references therein).
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Censor and Elfving [8] introduced the concept of Split Feasibility Problem (SFP)
in finite dimensional Hilbert spaces. Let H; and H, be two Hilbert spaces, C and Q
be nonempty, closed and convex subsets of H; and H, respectively. Let A : H; —
H, be a bounded linear operator. The SFP is formulated as

Find x* € C such that Ax* € Q.

The SFP have notable real life applications in diverse areas such as signal pro-
cessing, medical image reconstruction, intensity modulated radiation therapy, sensor
network, antenna design, immaterial science, computerized tomography, data
denoising and data compression (see [4—6, 9, 10] and other references therein). Due
to this advantage, SFP for other optimization problems have also been developed
and studied by numerous researchers. In 2013, Kazmi and Rizvi [21] introduced the
Split Equilibrium Problem (SEP). Let C C H;, Q C H, be nonempty, closed and
convex sets and A : Hy — H; be a bounded linear operator. Let F; : C x C — H|
and F, : O x Q — H; be two bifunctions. Then, the SEP is to find x* € C such that

Fi(x*,x)>0, ¥xeC (4)
and y = Ax* € Q solves

F(y",y) >0, VyeQ. (5)

Furthermore, they proposed the following viscosity iterative method for approxi-
mating the solutions of SEP and fixed point problem of nonexpansive semigroup in
real Hilbert spaces:

Uy = K[ (x, + 0A* (K> — I)Ax,),

X1 = 0 )f (%n) + Buxn + [(1 = B,)I — 0 B] Sl/ T(s)unds, ©)
nJo

where r, € (0,00), fis a contraction with y € (0, 1), B is a strongly positive linear
bounded self-adjoint operator on H; with constant # > 0 such that 0 <z < % <y+ %,
{s.} is a positive real sequence diverging to +00, d € (0, %), L is being the spectral
radius of the operator A*A and {«,}, {f,} are sequences in (0,1),K}" and K[> are
resolvent mappings of F; and F, respectively. They established that the iterative
method converges strongly under some mild assumptions.

In the same vein, Yao et al. [39] studied another modified viscosity iterative
method for finding a common element of the sets of solutions of mixed equilibrium
problem, nonexpansive mappings and variational inclusion problems. Precisely,
they proposed the following iterative method:

1
F(Mmy) + (I)(yn) - (D(un) +r_ <y — Up, Uy — (-xn - VA.X,,)> 207

n

Xn+l = OC,I(M + '))f(xn)) + ﬁnxn + [(1 - ﬁn)l - OC,,(I + luB)]W”KRa;L(Z” - I’BZ"),
()

where {o,},{f,} €[0,1] and W, is a system of nonexpansive mappings. They
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obtained the convergence results of the proposed sequences under some mild
conditions. Also, Withayarat et al. [38] introduced and studied an iterative method
for finding a common element in the solution sets of mixed equilibrium problem,
variational inclusion and fixed point problem of nonexpansive mappings. They
proposed the following iterative method:

1
F(umy) + (D(yn) - (D(un) +— <y — Up, Uy — (-xn - rA-xn)> 2 07

I'n

in = KR,sz (un - SZBun)a

Yn = KR,sl (Zn - leZn)7

Xnrl = an(” + Vf(xn)) + ﬁnxn + [(1 - ﬁn)l - OC,,(I + NB)]WnKR,sl (Zn - VDZn)a
(8)

where {o,},{,} € [0, 1], B and D are inverse strongly monotone mappings, W, is
an infinite family of nonexpansive mappings and Kr, and Kg,, are resolvent
mappings. They obtained the convergence results of the proposed sequences under
some mild conditions.

Motivated by the works of Censor and Elfving [8], and Kazmi and Rizvi [21],
Kazmi et al. [19] extended the notion of split inverse problems to the framework of
vector optimization problems in real Hilbert spaces. In particular, the authors [19]
introduced and studied the following Split Generalized Vector Equilibrium
Problems (SGVEP):

Let F{1: CxC — Y and F, : Q X Q — Y be nonlinear bifunctions, let ® : C —
Y and ¥ : Q — Y be nonlinear mappings, then the SGVEP is to find x* € C such
that

Fi(x*,x) + ®(x) — ®(x*) € P, VxeC, 9)
and such that y* = Ax* € Q solves
By +Yh) Y0 epr, Vyeo. (10)

Furthermore, the authors established the existence and uniqueness of solutions to
SGVEP (9) and (10).

Remark 1.2 Observe that if ® =¥ = 0 in (9) and (10) then the SGVEP becomes
the Split Vector Equilibrium Problem (SVEP). If in addition P = [0,c0) in SVEP
then it reduces to the classical SEP (4) and (5).

On the other hand, it is well known that incorporating inertial term in iterative
methods speeds up the rate of convergence of the iterative methods. The inertial-
type iterative method was first introduced by Polyak [32]. Consequently, a host of
researchers have employed the inertial term to accelerate variant of iterative
methods (see [1, 2, 14, 22, 23, 30] and other references therein).

Inspired by the works of Kazmi and Rizvi [21], Shan et al. [35], Rouhani et al.
[34], Yao et al. [39] and Withayarat et al. [38], we present an inertial-type iterative
method for approximating a common solution of a split generalized vector mixed
equilibrium problem and fixed point problems of a finite family of nonexpansive
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mappings in real Hilbert spaces. Furthermore, we prove a strong convergence
theorem of the proposed method in the framework of real Hilbert space. In addition,
we also report some numerical illustrations to display the performance of our
method. Our result extends and complements some results in the literature.

2 Preliminaries

We state some known and useful results which will be needed in the proof of our
main result. In the sequel, we denote strong and weak convergence by " —” and
" " respectively.

Lemma 2.1 [12] Let H, be a real Hilbert space and C be a nonempty, closed and
convex subset of H,. The following inequalities hold:

@ (=P =[xl = I =20 =y,5), Vxy€H,

Q) [P+ ylP <[l + 2 +y,y), Vxy€H,

i) Jloor + (L= olI* = allel® + (1= )|l — ol = a)llx = yIf", Vae
[0,1] Vx,y € H;.

The nearest projection P¢ from H; to C assign to each x € Hj, the unique point
Pcx satisfying the property

— Pex|| = min ||x — y|.
b= Pexl] = min x|

The following is a very useful property of the nearest point mapping:
(x — Pcx,Pcx—y)>0, VyecC.

Let T: C — C be a mapping. We denote the set of all fixed points of 7 by Fix(T),
that is, Fix(T) = {x € C : x = Tx}. The mapping 7 is said to be:

(i) acontraction, if T : C — C is called A-contraction, if there exists a constant
7.€ (0,1) such that

75— Tyl < Alx—yll, ¥y ec,

(i) nonexpansive, if
ITx = Tyl| <llx—yll, Vx,yeC.

It is well known that the metric projection P¢ is nonexpansive.
(iii))  S-inverse strongly monotone, if there exists a constant § > 0 such that

<AX*Ay,X*y>ZﬁHAX*Ay||27 Vx,yEC.

If f =1, then A is firmly nonexpansive.

An operator B is strongly positive, if there exists a constant u > 0 with the property
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(Bx,x) > ul|x||*, Vx € H.

Lemma 2.2 [29] Assume B is a strong positive linear bounded operator on a real

Hilbert space H, with a coefficient u>0 and 0<p<||B||"". Then
lT = pBl| <1~ pu.

Definition 2.3 A mapping 7 : H; — H, is said to be an averaged mapping, if and
only if it can be written as the average of the identity / and a nonexpansive mapping;
that is,

T =(1— o)l +as, (11)

where o is a number (0, 1) and S : H; — H, is nonexpansive. More precisely, when

(11) holds, we say that T is a-averaged. Thus firmly nonexpansive mappings (in

particular projections) are %—average maps.

Lemma 2.4 [6, 13] Let the operators S,T,G : H — H; be given.

(i) I T=(l-a)S+aG for some o € (0,1) and if S is averaged and G is
nonexpansive, then § is averaged.
(i) T is firmly nonexpansive, if and only if the complement I — T is firmly
nonexpansive.
(i) If T=(1—a)l+aG for some o € (0,1), S is firmly nonexpansive and
G is nonexpansive, then T is averaged.

Definition 2.5 Let C be a nonempty, closed and convex subset of a Hilbert space
Hy.LetT;:C— H,;,i=0,1,2,...,N be a finite family of nonexpansive mappings.
Then, we define the mapping W, : C — CVx € C as follows:

Uyo=1

Uni = 21 T1Unp + (1 = 2 1)1

Un,2 = )v;172T2Un.,1 + (1 - )vn,Z)I

Unn-1 = Iyn—1Tn-1Upn—2 + (1 — yn-1)]
Wn = UnN = ;vn,NTN Un,Nfl + (1 - ;vn,N)L

where Ay, s, ..., Ay are real number such that 0 <4, <1 for all n> 1.
Remark 2.6 [39] W, mapping is nonexpansive.

Lemma 2.7 [36] Let C be a nonempty, closed and convex subset of a real Hilbert
space Hj. Let {Tn}i;/:1 be a finite family of nonexpansive mapping T, : Hi — H,
such that NN_ Fix(T,) # 0. Let J1,%2,....,Ay be real numbers such that
0< /i, <b<1 forall n € N. Then the following statements hold:

(i) for all x € H and k € N, then the limit lim,_, U, xx exists,
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(i) Fix(W) =, Fix(T,), where Wx=lim,_ . W,x = Jl_glo U,nx for all
x € C,

(iii)  for any bounded sequence {x,} in Hy, lim,_ ||Wx, — W,x,|| = 0.

Lemma 2.8 [36] Let {x,} and {z,} be bounded sequences in a Banach space E and
{B,} be a sequence [0, 1] such that 0< liminf, . f, < limsup,_ . f,<l.
Suppose that x,1 = B,x, + (1 — B,)zn, for all n >0 and limsup,,_, . (||zs+1 — za|| —
[|X0+1 — xa]|) 0. Then lim,_, ||z, — x4|| = 0.

Lemma 2.9 [24, 25] Let {a,} be a sequence of non-negative real numbers
satisfying

anJrlS(l _an)an+5na nZOa

where {a,} and {J,} satisfy the following conditions:
@  A{an} C0,1],> oy = 00,
n=0

o0
(i) limsup2 <0 or 3 |6,|<oc.
n—oo n=0

Then lim a, = 0.

n—oo

Definition 2.10 [28, 37] Let X and Y be two Hausdorff topological spaces, E be a
nonempty convex subset of X and P be a proper, closed and convex cone of Y with
int P # (). Let O be the zero point of ¥, U(0) be the neighborhood set of 0, U(xp)
be the neighborhood set of xyp and & : E — Y be a mapping:

1. If for any V € U(0) in ¥, there exists U € U(x) such that
h(x) € h(xo) +V+P, VxeUNE,

then & is called upper P-continuous on xy. If & is upper P-continuous for all
x € E, then h is called upper P-continuous on E.
2. If for any V € U(0) in ¥, there exists U € U(x) such that

h(x) € h(xg) +V—P, Vxe UNE,

then £ is called lower P-continuous on xg. If 4 is lower P-continuous for all
x € E, then h is called lower P-continuous on E.
3. If for any x,y € E and « € [0, 1], the mapping £ satisfies

h(x) € h(ox + (1 — a)y) + P or h(y) € h(ox + (1 — a)y) + P,

then 4 is called proper P-quasi-convex.
4. If for any x;,x; € E and « € [0, 1], the mapping / satisfies

oh(x1) + (1 — o)h(xp) € h(ox; + (1 — a)xy) + P,

then 4 is called P-convex.
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Lemma 2.11 [16] Let X and Y be two Hausdorff topological spaces, E be a
nonempty, compact and convex subset of X and P is a proper, closed and convex
cone of Y with int P # (). Assume that F:EXE —Y are ®:E — Y are two
vector mappings. Suppose that F and ® satisfy

(i) F(x,x)e P ,Vx€E,
(ii) @ is upper P -continuous on E,
(iii)  F(-,y) is lower P -continuous, Vy € E,
(iv)  F(x,-) + ®(-) is proper P -quasi-convex, Vx € E. Then there exists a point
x € X satisfying
F(x,y) € P\ {0},Vx € E

where

F(x,y) = F(x,y) + ©(y) — ®(x), Vx,y € E.

To solve the generalized mixed equilibrium problem, the following assumptions
are required.

Let F: XXX — Y and ®: X — Y be two mappings. For any z € H;, define a
mapping F : X x X — Y as follows

e
Fz(x7y) = F()C,y) + (D(y) - (I)()C) +;<y — XX = Z>7
where 7 is a positive number in R and e € P. Then F,, F, ® satisfy the following

conditions

(Al) foralx € X, F(x,x) =0,

(A2) F is monotone, that is F(x,y) + F(y,x) € —P,Vx,y € X,
(A3) F(x, .) is continuous, Yy € X,

(A4) F(x,.) is weakly continuous and P-convex, that is

OCF(xvyl) + (1 - a)F(X,yZ) € F()C,O(yl + (1 —OC)yz) +P,VX,)’17)’2 €X7

(A5) F,(.,y) is lower continuous, Yy € X and H;,
(A6) @ is P-convex and weakly continuous,
(A7)  F,(x,.) is proper P-quasi-convex, Vx € X and z € H;.

Lemma 2.12 [35] Let F and @ satisfy assumptions (A1)-(A7). Define the mapping
K, : Hf — X as follows

KrF ={F(x,y) + ®(y) — O(x) +§<y —x,x —z) € PVy € X}.
Then

1. K,F(Z) 7é @,VZ € Hy,
2. KF is singlevalued,
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3. K7 is firmly nonexpansive, that is
F F_12 F F
Ky 21 — Ky 2| |” < (K; 21 — K[ 22,21 — 22), V21,22 € Hy,

4. Fix(KF) = GMVEP(F,®),
5. GMVEP(F,®) is closed and convex.

Following the ideas in [19, 35], we introduce the split generalized vector mixed
equilibrium problem (SGMVEP) as follows:

Let H; and H, be two Hilbert spaces, C and O be nonempty, closed and convex
subsets of H and H, respectively. Let A : H] — H, be a bounded linear operator.
LetF;:CxC— Yand F, : Q X Q — Y be nonlinear bifunctions, let ®; : C — Y,
WY,:Q0—Y, L,:X—H and L, :Y — H, be nonlinear mappings, then the
SGMVERP is to find x* € C such that

Fi(x,x*) + @1 (x") — @1 (x) + e{Lix,x* —x) € C, Vx" € P, (12)
and such that y* = Ax* € Q solves

Fa(y,y") + W2 (y") — Wa(y) +ellay,y" —y) €Q, Vy" €P. (13)

We denote the solution set of SGMVEP (12) and (13) by SGMVEP(F,®;, ¥, F>,
O,, LIIZ) = {x* S GMVEP(Fl,(Dl, lP,) tAx* € GMVEP(Fz, O,, LIJZ)} It follows
from [8] (see also [19, 35]) that the SGMVEP ((12) and (13)) are well-defined and
the solution set SGVMEP(F,®;, ¥, F,,®,,¥,) is closed and convex.

Remark 2.13 If ® =¥ =0 in (12) and (13), we obtain the vector split variational
inequality problem as introduced by Giannessi [15]. The SGVMERP is related to the
Split Mixed Vector Variational Inequality Problem (SMVVIP) if F| = F, = 0,e =
1 such that ®; and ¥, are bifunctions. See [34] for details on the SMVVIP.

3 Main results

Theorem 3.1 Let C and Q be nonempty, compact, convex subset of real Hilbert
spaces Hy and H, respectively. Assume that P and D are closed, convex cones of
real Hausdorff topological spaces Y and Z with e and d fixed points in P and D
respectively. Let A : H — H, be a bounded linear operator with adjoint A* and
T;: C — C be a finite family of nonexpansive mappings, i = 1,2,...,N. Let F; :
CXC—oY, F,:0xQ—Z,® :C— Y and O, : Q — Z be functions satisfying
assumptions (A1)-(A7). Let ¥, : C — H, and ¥, : Q — H; be f§; and f3, inverse
strongly monotone mappings respectively. Let f be a contraction of H, into itself
with coefficient A € (0,1) and B be a strongly positive linear bounded operator
defined as in Lemma 22. Assume that T =n}, Fix(T;)N
SGMVEP(F,,®, ¥, F,,®,,¥,) # (). Let the sequences {w,}, {y,} and {x,} be
generated iteratively by u, xo,x; € H; and
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Wy = Xp + Hn(xn - xnfl)
yu =KW (I = EA*(I = K*)A)w, (14)
X1 = o (U + 3f (X)) + Bpxn + [(1 = B)I — (I + nB) Wy,

(1+'1>u

where {o,} and {f,} are two real sequences in [0, 1], r,s>0,y< and

{0,} C [0,0] with 0 € [0, 1) satisfying the following conditions:

(Cl) lima, =0,and Y o, = oo,
n—00 n=1

(C2) 0< liminfﬁ < lim infﬁ <1

(C3) Z |41 — An] <00, and Z O 0 — Xx4-1]] <00.

n=1

Then the sequence {xn} converges strongly to a point
x* = Pr(u+yf(x*) —nBx*) € T.

Proof First, we show that A*(I — KI?)A is %—inverse strongly monotone. From

Lemma 2.12(3) and the fact that [ —Kf 2 is firmly nonexpansive (see Lemma
2.4(ii)), we have

[|A*(1 — K[*)Ax — A* (1 - K2)Ay|]? = ||A* IfKYFZ)Axfy)H
= (A" (I = K?)A(x =), A" (I - K*)A(x — y))
= (I - K>)Alx —y), AA( —KP)A(x )

<L = KP)ACe =), (1= K)A(x =)
=L[|(1 - kP)A -]

SL{(I = KP)A(x =), A(x —y))
:L<(x—y,A*(I—Kf2)A(x—y)>

=L{(x—y,A"(I - Kfz)Ax—A*(I— Kfz)Ay>, Vx,y € H.

This implies that A*(I — Kf2)A is | inverse strongly monotone. Since ¢ € (0,1), it
follows that I — (A*(I — K f A is nonexpanswe. We divide the rest of the proof into
5 steps.
Step 1 We show that {x,} is bounded. Let p € T, then we have p = K*'p and
p = (I — EA*(I — K)A)p. By nonexpansivity of I — EA*(I — K?)A, it implies that
[lyn = pll = [|K (I = EA™(1 = K2)A)w, — K[ (I = EA™(1 = K2)A)p|
<0 = &A™ (1 = K2)A)w, — (I = EA™(1 = K2)A)p||
<|lwa = pll (15)
= [[xa + 0n (%0 — x5-1) — pl|
< [len = pl + Ol — xn1l.

From (14), (15) and Remark 2.6, we have
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[0t =PIl = [t (e + 3 (%)) + Bpxn + [(1 = B — o (I + 1B)| Wy, — pl|
= [|otwtt + o (2f (xa)) — (I +1B)p) + By (xu —p) + (1 = B,)(Wayn — p)
— oy (I +nB)(Wuyn — )|l
= [lowe + 0 (2f (xu)) — L+ 1B)p) + Bu(xn — p) + [(1 = B) — o (I + nB)|(Wayn — p)|
<ot [u]| + o[ (2 () — (L +nB)P)|| + Byllxn — Pl + (1 = B,) — 0(1 + m) [[Wayw — pl|
<og|ull + 2| Pxa — pll + allpf (p) — (T +0nB)p)|| + Bullxa — pl|
+ (1= B,) — ou(l +n)yn — pl|
<ot [ul| + oyl xn = pl| + ol [0f (p) = (T +nB)p)|| + Byllxn — pl|
+ (1= B,) = o1 +n) [|Pen = pl| + Oa]ew = x01[]
= alul] + oy il — pll + ol [2f (p) — (L +nB)p)|| + B, 1% — pl|
+ (1= B,) — ou(l+n)lln — pll + 0,(1 = B,) — (1 + np) |10 — xa—1]]
<1 = ow(1 +np = y2) | Pew = pl| + owllul] + el [0f (p) — (I + nB)p)|
= 0,0 (1 4+ ) |30 — Xt || + Onlln — x01]|
= (1= o (14 e = 92))|[xa = I + e [lluel[ + |12 (p) = (I + nB)p)|
= 0,(1 + i) llxy — xua|| + M],

(16)

where M > 0 is a constant such that

0
2y — xai|| <M, Yn>1.
o

n

This implies that
sl = (1= (14 np = p2)|Jxa = pl + o [[lul| + [[2F () — (I + 1nB)p)|
- (0)1(1 +7’:u))|‘x" 7xn71H +M:|

lleel[ + 1l () — (1 +nB)p)|| = (02 (1 + 1)) |13 — X +M}
o, (1 +np—y2)

< max{ [, - .

i+ 1 ) = (4 nB)p) | = (0u(1+ ni0)) 10 — Xual| + M
< maxq [lxo = pll; :

o, (1 +np—y2)
(17)
Therefore {x,} is bounded, and consequently, {w,} and {y,} are also bounded.

Step 2 We show that lim ||x,4; — x,|| = 0. Define x,11 = f,x, + (1 — B,)Vu,

then v, = xi“ﬁ‘:/}"x“ .

n
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_ Xny2 — ﬁn+1xn+l Xn1 — BpXn
Vntl = Vn = -
1- /))n+] 1- B"
St (A 9 () + Bt + (1= B ) = it (14 1B Wt 1nst = Buornn
1- ﬁn+1
_ o‘n(u + Vf(xn)) + ﬁnxn + [(1 - :Bn)[ - O‘n(l + WB)]W”y” — ﬂ”x”
1- ﬁn

=1 f"/?,lm (4 9 (i)

gt af () +
(l - ﬁ)l)l - OCn(1+ HB)}Wnyn
l_ﬁn

< T [ 2 ) = (0 B Wi

2 [l ) — 0+ )W

+ ||Wn+1yn+l - WrH»lynH + HWVH»lyn - WnynH

= 1?7;;“ {(”Jr“/f(xnﬂ)) - (1+nB)}Wn+1yn+1}

o [ ) = U+ B W

Fyust = Yall + 1 Wai 19 — Woyal|-

(1 = B ) — w1 (I 4+ 1B) W1y
1- ﬁn+1

(18)
We obtain from (18) that

Vet = vall = biwer = 5all € T2 [ 1)) = (4 1B)Was 1 |
1 ﬁn+1
g [ o) = (0 nB) W

+ ||yn+1 _ynH + HWnJrl)’n - WnYnH - Hxn+1 _xn||~
(19)

From (14) and nonexpansivity of K/t and (I — ¢A*(I — K'), we obtain that
Inss ol = K1~ EA° 1~ KE) AN~ KPS (1~ 4°(1— K|

S ||Wn+l - WnH
(20)
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= |1 + Onr (Gn 1 — %) = X0 — 05(x0 — x01)||

<t = Xal| + Onsr |1 = Xal| + On|[xXn—1 — x|

= ||xn+1 _xn” + 0n+1||xn+1 _an + 0n||xn _xnle

gt = Xl 4 Onsr[[Xn1 — Xal| + Onl|xn — X0t ]| + Opit]|X0—1 — Xp—2]|

n+1

S erhLl _xn” + Zoi”xi _xi71||-
i=1

(21

It follows from Definition 2.5 and Remark 2.6 that

Was13n = Wodall = 112t NINUnpin—1n + (1 = Zpin)¥n — ZanINUnv—1Yn + (1 = 2 n)al|

<A NTNUnsi v—1Yn — 2 NINUnv— 19l + [2nin — Zan || [all
<A NTNUnsi v—1Yn — Znd NIN U v—1 9|

F 2 NINUn 190 = 2 NTNUn N 19nl| + 2ns1n = Zn vl [Vall
< it W Unptv—13n — Unv—iynl| + [2nsin — 2| | Tv Unv—1al|

+ [t 18 = Za | [[nl]
< At [ Unsiv—1Yn — Unn—1Ynl| + [Pns1n — Znn|Ma,

(22)

where M, is a constant such that M; > max{sup, - | ||y||,sup, > [|[TvUnn—1Ynl|}-
From (22), we have

NUns1iv=19n — Unv—1ynll = 1 2ns1 No1 TN 1 Unst v—2Yn + (1 = 2t v—1)Yn

— a1 Tn—1 Upn—2n + (1 = Aun—1)¥nl|

<At N1 Tn-1Ungin-2Yn — Znn—1Tn-1Upn—2Vn||
+ s tv—1 = Zan—1]l[yall

S nrv-1TN-1Unrin—2Yn = Znrin—1Tv-1Upn—2Val|
+ |2t N1 Tn—1 Unn—2Yn — ZnN—1 TN—1Unn—2Yn]]
+ i1 = Zan—1ll[yall

St Nt Uns1 v—2Yn — Unn—2Ynl| + nsiv—1 = dnn—1 |1 Tv Unn—2yal|
F 1 Anrrv—1 = Zan—tl||yall

< i v || Unsi n—2Yn — Unn—2Yu|| + |21 n—1 — Ann—1|M2,

(23)
where M, is a constant such that M, > max{sup ||y.||, sup ||Tn—1Upn—2¥u||}
n>1 n>1

Following same argument in (22) and (23), we obtain
N—1
HUnJrl,Nfl)Gz - n,NflynH S Z |)Vn+1,i - )"I‘L,ilM37 (24)
i—1

where M3 is a constant such that M» > max{sup ||y,||, sup ||T;U;i—1yn||}-
n>1 n>1

Substituting (24) into (22), we have
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N-1

I AN = AN My + Apsi v E [Ans1i — Ani| M3
p

HWn-&-]yn - VVnynH S

= (25)

< Z |Ans1i — AnilMa,

i=1

where My is a constant such that My > max{M;, Ms}. Substituting (21) and (25) in
(19), we have

s = vall = b1 =3 l| € 7225 [ (4 2 (o)) = (4 1B) Wiy
1 ﬁn+l
(143 (50)) = (1 + 1B) [ Wy

n+1

[t =l ) Oil i — xia |
i=1

12

Oln
1- ﬁn

N—1
+ Z |/’Ln+1,i - /’Ln,i‘M4 - ||xn+1 - -xn||-
i=1

By conditions (C1), (C2) and (C3), we obtain that

lim sup(|[vas1 — val| = [[xas1 — [[xa]]) <0.

n—oo

Hence, by Lemma 2.8, we have that

lim ||v, — x,|| = 0.
n—oo
But
. _ Xn+1 — ﬂn-xn o
Y}LH;HVn Xnl| = -8, Xn
_ Xnt1 — Xn
1 - ﬁn
Therefore
lim ||x,41 — x,|| = 0. (26)
n—oo

Step 3 We show that lim,_. |[Aw, — KP2Aw,|| = 0 and lim, . ||x, — ya|| = 0.
From (14), we have
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st = pIIP = [owm (e + 2 (50)) + Bun + [(1 = BT — eta(I + 1B)|Woyw — plI*
= ot (u 4 9f (%) — (L + 1B)p) + B, (%0 — p)
+ (1= B,)(Woyu — p) — oI + nB)(Woyn — p)|I?
= [l (e + 3 (xa) = (T +1B)p) + By(¥u — p) + B (X2 — Wayn)

+ (Wayn = ) — (I + 1B)(Woy, — p)|I*
= |lota (s + 3 (x) — (I +0B)p) + B, (xa — ) + B, (%0 — Wayn)
+ (I = ou(I + nB)(Wayn — p)II°
= low (1 + 2 (x) — (I +1B)P) + Bt = Way) + (I = (I + nB)(Woy — p)II
< = o (I + nB)(Wayn — p) + Bu(xa — Wayn)II?
+ 204, ((u + 9f (xu) — (I + 1B)p), Xn+1 — D)
< 116 = 30+ nB) i — pll + Bulbss — W]
+ 204, ((u + 3f (xu) — (I + 1B)p), Xns1 — P)
< (11 = 2al0 - 0B) e = pl1 + Bl ~ W]
+ 20| (e + pf (x0) — (I + nB)p) ||| %01 — Pl
< (1= ou (T + np)*|lyw — pII” +2(1 = o (T + 1)y

= PlIBallxn — Wayal| +ﬂi”xn - W,,y,,H2
+ 20, [ (e + pf () — (T +0B)p) || [xas1 — |-

Since (1 — a,(I + nu) <1, it implies that
(|1 _pHZHyn _pH2 +2(1 —a,(I + 7’:“)2”))71 = PlIBullxa = Wayal| + ﬁi”xn - WnynH2 (27)
+ 20| (u + 2f (xa) = (I + nB)p)|l[[%ns1 — Pl
Again from (14) and Lemma 2.12(3), we have
* 2 1 2
[[Yn *pH2 = HK::I (1* A ([7 Kf )A)Wn *KerH
< |[wn — p — AT (1 = K72) Aw, |
< ||WV! _pH2 - 26<Wn _va*(I - KFZ)AWn> + 52’
= <||wa — pII* — 2&{Aw, — Ap, (I — K'>)Aw,) + &

AT (1= KP)Aw, ||
A" (1 — K'2) Aw, |-
(28)

If we simplify the second term in (28), we have

(A A, (1= K)o = (A Kty (A — KA} + (Ko, — Ap, (Ao~ K)o
= HAw,, — KSFZAW,,HZ + (K" Aw, — Ap,Aw — K" Aw,)
= HAwn - Kszwn”z.
(29)

Hence, (28) becomes
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Iy = PII” < llwa = pI* = 2¢]|Aw, — KEAw,[|* + E||A* (I = KT2)Aw,||*
<[lwa = pI? = 2¢][Awn — KA, | + E11AIP[[Aw, — K> Aws ||
< [hwn = pl* = £ = ENAIP)||Awn — K Aw, |,
(30)
Substituting (30) in (27), we have

. 2
et — oI < [l — I — &2 — 2P| [Aws — KT v,

+2(1 — o5, (1 + ’7:“)2”)’" _pHﬂonn - WnynH

+ Ballxn = Woyal* + 20| (u + 2 () — (I + nB)p)||| i1 — -

This implies

£2 — EIAIP)||Awn — KD Aw, |[* < [lwn — pI?
+2(1 = o (I + n)*[lyn = plIB| 6w — Wayall
+ Ballxn = Wayal* + 20| (u + 2 () — (I + nB)p)||| i1 — pl]
— [t _PH2 (31)
<|wn = Xar1 (|lwn = Pl + [[%as1 — PII)
+ 21 = o (I + n0)*|lyn = PlIBuI1Xn — Woyall
+ Bl = Wyl + 200 (e + 2 (x2)
= (I +nB)p)||[[xns1 — Pl

Now, we write x,11 = o, (1 + pf (%) — (I + EB)W,yn) + B, (xn — Woyn) + Wy,
Then

||xn - Wnyn” < ||xn _xn+l|| + ||xn+1 - WnYnH
<ew = X1 || + ol |t + 3 () = (14 EBYWyynl| + By |60 — Wy

||u + yf(xn> - <I+ fB)WnynH'

Op

l_ﬁn

From (26) and condition (C1) we obtain that

[1n = X +

1
<
_1_ﬁn

nlinolo ||xn - WnynH =0. (32)
Also,

Wi = Xna || <1 Wa = %l |+ 160 — X |
16040 =301l 4 [0 = ]

Sen”xn *xnflu + ||xn *xn+l||-

Observe from condition (C3) that
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Tim [Jw, — x| = 0. (33)

Then, from (26) and (33), we obtain that

Lim [lw, — x4 || = 0. (34)

Thus by (34), (32) and condition (C1), we obtain that
lim ||Aw, — K[*Aw,|| = 0. (35)

Again,
‘i 2
1 = pII” = | [KF wa = EA™ (1 = K2)Aw, — K p
<(KI' (I = EA*(I = KI*)A)w, — K['p, (I — EA*(I — K[*)A)w, — p)
— <KrF' (I—¢A*(I— KSF2 A)w, — p, (w, — EA*(I — KSFZ)Awn) -p)
= <yn —PsWyp —Pp — EAY(I — Kfz)AWn>

1 "
(1 = PP+ 1w = pIP = [l = wall* + €A*(1 = K)Aw, ||

—~

<

N — N

< [Hyn _p”2 + [[wn _pH2 - (Hyn - WnH2 +2&(yn — wa, A(I — Kfz)AWn>

+ EllA% (= KP)Aw )]

This implies
[[Yn —p||2 <|lwa —p||2 =y = WnH2 + 28wy — yn, AT (I = KSFZ)AWn>' (36)
Substituting (36) in (27), we have

a1 = pI> < llwn = pII* = [[yn — wal?
+ 2E(wy — Yo, AT (I — K)Aw,)
+2(1 = an (I + 1) [lyn = PlIBul 10 = Wyl + Ballxn — Wyl
+ 200 || (u + 2f (xu) = (I + nB)p)|[[ X1 — pI.

This implies that

2
[ = wal | < [ = a1 1 ([[wa =PIl + (2011 = pl)
+28(Wn — v, AT (1 — K[ ) Awy)
+ 2(1 - an(l+ 77:“)2||yn _p”ﬂonn - Wnyn” + ﬁi”xn - WnynH2
+ 200 (u + 9 (xn) — (I 4+ 1B)p)|||[xns1 — pl|-

Therefore, from (35), (32), (34) and condition (C1), we obtain that

lim ||yn - WnH =0. (37)
n—oo
Also,
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[y = Waynll < [lyn — wall + [wn = xal[ + [lx0 — Wayall.
Thus, from (32), (33) and (37), we obtain
Tim [[y, — Woy,|| = 0. (38)
From Lemma 2.7 and (38), we have
Wy = yull <[IWyn = Wodnl| + [[Wayn = yal| = 0, as n — 00 (39)
Finally, from (32) and (38), we obtain
len = yull < [1xn = Woynll + [[Wayn — yall — 0, as n — oo. (40)

Step 4 We show that limsup,_, . (u+y/(p) — ([ +nB)p,x, —p) = lim (u +

k—o00
W (p) = (L +nB)p, xn, — ).
Since {x,} is bounded, there exists a subsequence {x,, } of {x,} which converges
weakly to x*. Then by (40), we get thaty,, — x*. Thus, by (39), we get thatx* € F(W).
Now, we show that x* € GVMEP(F,¥;,®,C). Since y, = K/ (I — EA*(I —
K)A)w,, we have by Lemma 2.12 that there exists y € C such that

Fi(y,yn) +e(¥1(wWn),y = yu) + @1 (y) — P1(vn) +§<y*yn,yn —wy) €P. (41)

By the monotonicity of Fi, it follows that
e

0.€ Fi(y3) = {@10) = @1 3) {1 (). 3 =)

<y_Yn7yn - Wn>} +P.

Now, let y, = (1 — t)x* + 1y for all # € (0, 1]. Since y € X and x* € X, we obtain
that y; € X. Then by (41), we have

(1 (3), Y = ) € F1(yi, ym) = (©1(ve) — @i(yn,)) + e(¥1(31), 0 — Y,

- €<‘P1(Wnk)aYr - ynk>
e

7;<yt = Y Yy *Wn,(> +P,VyeX

= F1(y, yn) + e{(P100) = ¥1(wn ), 30 — )
- ((Dl () = (Dl(y”k))

e
- ;<yt _ynkaynk - Wnk> +P
This implies that
e(Y1(3), vt = yu) = F1(e, n) + e(¥1 (1)
- l{J] (yﬂk)7yl _y"k> +e<‘*/|(yﬂk) - lyl(“)"k)ﬂyl _y"k>

e
_;<yl = Yy Y — Wnk> - ((Dl(yt) - (Dl(ynk)) +P.

Using the properties of Fi,'¥; and the fact that ||y, — wy]| — 0, ||¥1(¥n) —

Y (w,,)|| — 0 and w — 0 as k — oo, we have
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e(‘I’] (Yz)a)’t _X*> € F (YraX*) + (I)l(x*) - @, (Yz) +P. (42)
Using conditions (A1), (A4) and (A6), we get

tF1(ye,y) + (1 = 0)F1 (31, x") + 1@ (y) + (1 — )Py (x*) — Dy (yy)
€ Fi1(ye,y1) + @1(y;) — @i (y)) + P =P,
which gives rise to
—t[F1(y5,y) + @i (y) = @1 (3)] — (1 = 1) [F1 (3, x") + @1 (x) — @1 (y,)] € —P.

Using this and (42), we have

—t[F1(y,y) + ©1(y) — @1 (0)] € (1 — 1) [F1(ys, x*) + @y (x*) — @y (v,)] — P
€ (1 —=0)e(¥i(y),y —x") =P
and
—t[F1(y,y) + @1(y) — @1 (yr)] — t(1 = 1)e(¥1 (1), 30 — x*) € —P.
Therefore, it follows that
Fi(y,y) + @1(y) = @1(yr) + (1 = )e(¥1(y1),y —x7) € P.
Letting t — 0, we get
Fi(x",y) + @1(y) = @1 (x") + e(¥1(x7),y —x") € P,

and so, x* € GVMEP € (F,¥,®y,C).

Since A is a bounded linear operator, we have that x,, — x* implies that Ax,, —
Ax*. Tt follows from (35) and (33) that KSF 2Aw,, — Ax" as k — oo. By definition of
K2 Aw,,, we get by Lemma 2.12 that there exists a point y € H, such that

Fy (KPAw,,y) 4+ (P2 (K2Aw,),y — Awy ) + ©a(y) — D2 (Awy,)
n g (y — KPAw, K" Aw, — Aw,) € ¥y € H.

Since F is upper semicontinuous, following the same argument as above, we have
by (35) that

Fr(Ax",y) + @y(y) — @2 (Ax") + e{¥>(AX"),y — AX") € D,Vy € H,.

This implies that Ax* € GVMEP(F,, W, ®,,Q). Therefore x* € SGVMEP and
hence x* € T.
Since p = Pr(u+ yf(p) — nBp), then we have

lim sup(u + (of = (I +nB))p, x, = p) = lim (u + (of — (I +1B))p, xn, = p)-
= (u+ (f = (I +nB))p,x" —p) <0.
Step 5 We show that {x,} converges strongly to p. Observe from (14) and Lemma
2.1 that
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st =PI = o (e + 9 () — (I +1B)p) + B, (xa — p)
+ [(1 = BT = (I +1B)] (Way, — p)|I*
<|1Bu(xa — p) + [(1 = B — oI +nB) ]| (Ways — p)II’
+ 20, (u + 3 (%) — (I +1B)p, %41 — )
< [Bullxa = pll
(1= BT = (T + 1B) Wy — P[] + 200 (3 (50) = 2 () X1 — )
+ 204, (u + 9 (p) — (I +4B)p, Xus1 — p)
< [Bulln = pIl + [1(1 = BT = (I + nB) Wy — p)I]
+ 20,9 A(Xp — P, X1 — D)
+ 204, (u +3f (p) — (I +1B)p, Xns1 — p)
< [Bulln — pll + 11(1 = B = (7 + 1BY Woys — p)II]
+ 204,92 (%0 = Py Xny1 — P)
+ 20, (u + f (p) — (I + 1B)p, Xpy1 — p)
< [Bullw = Pl + (1= B,) = (1 + 52) Wy — p]?
+ 20,92 = pll| s — pl|
+ 20, (u + 3f (p) — (I + 1B)p, X1 — )
< [Bulln = pll + (1 = B,) = o (1 + ) wn — pll]®
+ 20,92 | = pll| 51 — pl|
+ 204, (u + 3 (p) — (I +4B)p, Xus1 — p)
< [Bullva = pll + (1 = B,) = (1 + 1) (|l — ]
+ 0, — x])]
+ Al = pIP + [lar1 — pII’]
+ 20, (u + 31 (p) — (I +1B)p; Xnt1 — p)
< [(1 - “n(l + ny))||x,, _PH
+0,(1 = B, — (1 + 140)) ||t — 5t |I]°
+ oy ]|l — plI?
+ a1 = pIP] + 20 (u + 2 () — (I + 1B)p, Xu11 — p)
< (1= (1 + 10| = pll + Oullt — %t 1] + 22 [ — pl?
+ (ot —pl[*]
+ 20, (u + 3 (p) — (I +1B)p, Xps1 — p)
< (1 — 0, (1 4+ np)?[|x, — plI?
+20,(1 — o (14 1)) 0w — P25y — Xu1) + O]y — 2,4
+ O‘ny)vmxn _PH2 + ||xn+1 _sz}
+ 204, (u + 3 (p) — (I +4B)p, Xus1 — p)
< (1 — o (1 4+ )2 [xn — plI?
+20,(1 = o (14 1)) | xn = {50 = xuc1 [ + 02t — x|
+aya |l = pIP + [larr — pII’]
+ 204, (u + 3 (p) — (I +1B)p, Xus1 — p).

This implies that
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(1 =y ) nsr = pI” < (1 = o0 (1 +np2))* |50 — pl?
+ 20, (1 — oo (1 + n))|1xn = pll|Ja — xu1]]
+ Oﬁuxn _xnleZ + 02| |xn _pH2
+ 200, (u +9f (p) = (I + 1B)p; Xus1 — p)
1—a, (1 +yp)

D S U _ 2
R [lx, = pl|
20,(1 — 0, (1 + 5p0)) 0: >
+ T IIXn*PIIHXn*xnle+17am||xn X
P 20,

I — pII” + T (u+f(p) — (I +nB)p,Xui1 — p)

1 —apph
<1 _wuxn —plP
1 — o, pd
(o (1 + 77).“)2 2 20,(1 — o, (1 + ’7”))
LI, — gl 2D, — sy = 5]
2
20,
ozl — x|+ 214t P) = U+ nB)p s —p)
n n
<1-— 2(“7!(1 +1’],U,)A* ’))/1) Hxn 7p||2 +2(‘xn(1 + '7/“‘) B V’I)
- 1 — oA 1 — oA
(1 + 1)) 0,(1 — o, (1 +
Coll ¥ m)” gy el o) e

20, (1 4+ 1) — y2

2

+ 6}1
20,(1 +m)p — 72

o (1 +m)p — 74
1
(1 +m)p — 2

2(o, (1 +nu) —y4)

% — x| + (u+9f(p) — (I + nB)p, Xn1 — p)

2(ou (14 ) — 92) 2 o (1 + 1)
=1-——————|x,—p|"+

L= 1= oyl 2(1+n)u— 74
0n(1 — o (1 + np)) - e
an(1+ﬂ)M_V;L Hxn pHH-xn xn71||+2%1(1+7])ﬂ—“/),||xn )Cn,1||
1
e (u+ 9f (p) — (I + nB)p, Xpi1 —
= (1= 6,)[[xa = pII* + Gurcn,
where Mg = sup, - 1{| %, = pI[}, o, = 2224 and
K, = Otn(l-l-ﬂ)z;ﬂ ; Qn(l—fxn(l-l-’?ﬂ))”x —p|||\x _x 1||
n 2(1—‘,—11)#—7;}, O‘n(l‘f'ﬂ),ll—“/l n n e
0? 5
—|——” X — X
20('1(1+’7)ﬂ_'))}~|| n n l||
1

o= W ) = - aBpxi = p)

Therefore, by Lemma 2.9, we conclude that the sequence {x, } converges strongly to
the point p € I'. This completes the proof. [
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Next, we give some consequences of our main result.
If ¥, =¥, = 0, we obtain the following result:

Corollary 3.2 Let C and Q be nonempty, compact, convex subset of real Hilbert
spaces Hy and H, respectively. Assume that P and D are closed, convex cones of
real Hausdorff topological spaces Y and Z with e and d fixed points in P and D
respectively. Let A : H — H, be a bounded linear operator with adjoint A* and
T; — C be a finite family of nonexpansive mappings, i = 1,2,...,N. Let Fy:
CXC—oY, F,:0xQ—Z,® :C— Y and O, : Q — Z be functions satisfying
assumptions (A1)-(A7). Let f be a contraction of H; into itself with coefficient
A € (0,1) and B be a strongly positive linear bounded operator. Assume that I' =
MY, Fix(T;) N SGMVEP(F\,®;, F»,®,) # 0. Let the sequences {w,}, {y,} and
{x,} be generated iteratively by u,xp,x; € H; and

Wy =Xy + Hn(xn - xnfl)
ya = K (1 — EA* (I — KF2)A)w, (43)
X1 = 0 (1 + Vf(xn)) + Buxn + [(1 - ﬁn)l - O‘n(l + "B)]Wn%u

where {o,} and {f,} are two real sequences in [0, 1], r,s>0,y< m and

{0,} C [0,0] with 0 € [0, 1) satisfying the following conditions:

o0
(Cl) lima, =0,and Y o, = oo,

n—oQ I’l:1

(C2) O<liminff, < liminf f§, <1

(C3) > |1 — Al <00, and > 0,]]x, — x4—1]] < 0.
n=1

n=1

Then the sequence {xn} converges strongly to a point
x* = Pr(u+yf(x*) —nBx*) € T.

If y = 0 in Algorithm 14, we obtain the following result:

Corollary 3.3 Let C and Q be nonempty, compact, convex subset of real Hilbert
spaces Hy and H, respectively. Assume that P and D are closed, convex cones of
real Hausdorff topological spaces Y and Z with e and d fixed points in P and D
respectively. Let A : H — H, be a bounded linear operator with adjoint A* and
T; — C be a finite family of nonexpansive mappings, i =1,2,....N. Let F;:
CXC—oY, F,:0xQ—Z,® :C— Y and ®, : Q — Z be functions satisfying
assumptions (A1)-(A7). Let ¥; : C — Hy and ¥, : Q — H, be f§; and f3, inverse
strongly monotone mappings respectively and B be a strongly positive linear
bounded operator defined as in Lemma 2.2. Assume that I' =Y Fix(7;) N
SGMVEP(F,,®, ¥, F,,®,,¥,) # (). Let the sequences {w,}, {y,} and {x,} be
generated iteratively by u, xo,x; € H; and
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Wy =X + gn(xn _xnfl)
yu = KNI = EA*(I = K{*)A)w, (44)
X1 = Ot + B + [(1 = B)I — oy (I + nB)|Wyyn,

where {o,} and {f,} are two real sequences in [0, 1], r,s > 0 and {0,} C [0, 0]
with 0 € [0, 1) satisfying the following conditions:

(€ lima, =0, and 3 a, = oo,
n—oQ n:l

(C2) O<liminff, < liminf 5, <1

(C3) > |1 — Al <00, and > 0,]]x, — x4—1]] <o0.

n=1 n=1

Then the sequence {x,} converges strongly to a point x* = Pr(u — nBx*) € T.

For approximating a common solution of split generalized mixed equilibrium and
fixed point of finite family of nonexpansive mappings in real Hilbert spaces. We set
Y=Z=R,P=D=10,00) and e = 1, in Theorem 3.1. We state the following
theorem and omit the proof.

Theorem 3.4 Let C and Q be nonempty, convex subset of real Hilbert spaces H;
and H, respectively. Let A : Hi — Hj be a bounded linear operator with adjoint A*
and T; — C be a finite family of nonexpansive mappings, i = 1,2,...,N. Let F :
CXC—-R F:0x0Q0—R,®,:C— Rand ®, : Q — R be functions satisfying
assumptions (A1)-(A7). Let ¥, : C — H, and ¥, : Q — H; be 5, and f3, inverse
strongly monotone mappings respectively. Let f be a contraction of H, into itself
with coefficient 1 € (0,1) and B be a strongly positive linear bounded operator
defined as in Lemma 22. Assume that T =nY, Fix(T;)N
SGMVEP(F,,®, ¥, F,,®,,¥,) # (). Let the sequences {w,}, {y,} and {x,} be
generated iteratively by u, xo,x; € H; and

Wy = X, + Hn(xn - xnfl)
Yn = KNI = EA™(I = K[*)A)w, (45)
Xn41 = O(n(u + Vf(xn)) + ﬁnxn + [(1 - ﬁn)l - O(n(l + ’IB)]WnYm
where {o,} and {f,} are two real sequences in [0, 1], r,s>0,y< M and
{0,} C [0,0] with 0 € [0, 1) satisfying the following conditions:

(Cl) lim o, =0, and »_ o, = o,

n—00 n=1

(C2) O<liminff, < liminf 5, <1

(C3) Z Mn+l - /ln|<ooa and Z 9n||xn —x,,_]||<OO.
n=1

n=1

Then the sequence {xn} converges strongly to a point
x*=Pr(u+yf(x*) —nBx*) €T.
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4 Numerical example

In this section, we give some numerical illustrations to support Theorem (3.4).

Example 4.1 let H = H, = C = Q = {, be the space of all square summable
sequences of scalars, i.e

o0
b= {x: (x1,%2, .., %;,...) and Z|x,~|2<oo},
=1

when an inner product (-,-) : £, X {; — R defined by (x,y) = >_ x;y;, where x =
i=1

{xit2,y={vi}2, €6 and || || : & — R defined by ||x[|, = (3 |xi| ) , where
=

x = {x;}{%| € . Let the mapping A : £, — {, be defined by Ax = (%,2,...,%..))
for all x = {x;};°, € {5, then Ay = (%,%2,...,%...) for all y={y;}{°, € l. Let

5750
Fl,ngfz sz — R be defined by

Fl(x7y) = _x2 +y27vx = {xi}ioihy = {yl};ﬁl € £27

and

Fi(x,y) = =2 +xy + 2, Vo = {x )72,y = (0} € b
Let the mapping ¥;,¥; : ¢, — ¢, be defined by ¥x = (%,%,...,%...)V}c =
{x}2, € 6, and Wox = (%‘,%, g .)Vx = {x;};2, € £» respectively. Let the
mapping T;: 0, —> 4t i=1,2,...,N, be defined by Tix =

Siv, 5 Six; _ 1 oo _ _
(3,35, 3 )Va={x}Z €l and r=1,5=057=05 Let x=

(s Xy xh )y x = (xboxd, X ) e = 002y ), and u=
(uy,uz, .. .,u;...) € £. By the definition of y, € C and Lemma 2.12 we obtain

1
OSEWM%H%O&%ﬂw+MM—@®+;@—mm—%>

= n+y+5@ V) + (Vo — W)
(46)
= -y, - ? n+ﬁ”ww+ww+y+wm

6y, 11y2
2 n o n__
=y + < 5 Wn>y 5 WnYn-
62,

Suppose (46) is a quadratic inequality such that a = 1,b = (—— w,,) and ¢ =

11y2
" — WyZ,. Then, the discriminant A = b? —4dac is
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6y ? 11y?
A= (;) wn> 4(5y”wnyn>

26, %
T 257 s

_ (16’
*Syn Wp | .

This implies that y, = 3 w,. Now, we proceed to compute v, = K!?Aw,. Again, by
Lemma 2.12, we have

2
YnWn + wy

0. Falva,2) + (¥2(0),3 = va) + Ba(0) = D) 3 = 1y — A, ¥y € 0.
Given that
H(u,v) = 2u — 10uv + 10u* — 2v, ¥, (u) = %7 and ¥, (u) :g,
then
0<2v, — 10v,y + 10v22y + (5 — V) + Do (y) — Da(vy) +§<y — Vi,V — Awy)
=2v, — 10v,y + 10v22y + vsl y—v)+y—v.+ % (y = va) (v, — Awy)
Vn

1
==2(y —vy) — 10v,(y — vn) +?(y — V) +Yy— v, +E(y —vp)(vy — Awy,)
1

= (=2—=10v,)(y — va) +2—”(y — V) +y— +§(y — V) (v — Awy).

This implies

Aw,
—2—10v, 14
( V) + 5+ + P
n 5 n A n
L0 Oy, 4 2 A,
5 Ky
—10 =500, + vy +5  ve—Aw, (47)
5 s
_49vn -5 Vn — Awn
+ =0
5 Ky

—49v,s — 5s +v, — Aw, = 0.

Hence, we obtain from (47) that v, 7AW”+53 Take B=1,y=1,f = 10x oy =
5150 Bn = 57 and 0, = =5 Let {w,}, {yn} and {x,} be generated by Algo-
rithm 45 as follows
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0.7
— - %-— unaccelerated — - % - — unaccelerated
—&— accelerated —&— accelerated
2
g
fir
S T T . . . ¢ *
R4 7 8 1 2 3 4 5 6 7
Number of lterations Number of lterations
0.35 35
— - %-— unaccelerated —- % - — unaccelerated
—&— accelerated —&— accelerated
2
e
i
. ‘ ‘ ey L L | | = o o Y o
1 2 3 4 5 g 7 1 2 3 4 5 X y g g 10
Number of Iterations Number of Iterations

Fig. 1 Errors vs iteration numbers (n): Case 1 (top left); Case 2 (top right); Case 3 (bottom left); Case 4
(bottom right)

n—1
Wy = Xp +ﬁ(xn — Xn—1)
Yu = Ko 5(I = 0.5A% (I — K{*)A)w,
1 1 1 1 1
Xptl = 2}12—-"—2(14 +mxn) +3n—+1xﬂ + [(1 - 3In+ lxn)l - 2 ¥ 2(1+ 0'31)]Wnym

(48)
for all  n>1,  w,=Ww wiooowi )y =k Ly, and x, =
(xlx2. . x . 0). Clearly, Fy,F,,'V1,%¥,, and f satisfying the assumptions in

Theorem 3.4. Also, we have MY Fix(T;) N SGVMEP(F,,®;, ¥, F2, ®,,¥,) =
{0}, we conclude that {w,}, {y,} and {x,} converge strongly to 0. We shall omit
the computer programming in this instance.
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Example 4.2 Let Hy = H, = C = Q = R with an an inner product (-,-) : R x R —
R defined by (x,y) = x -y where x,y € R. Let the mapping A : R — R be defined
by Ax=2x—1, for all xe R, then A*z=2z+1VzeR. Let T;,: R— R,i =
1,2,...,N be defined by T; = 2%, ¥x € R. Let F|,F, : R x R — R be defined by

3i+17
Fl(x7y) = 7x2 +y27vxay € IR?
and

Fi(x,y) = =2x* + xy +y*,Vx,y € R.

Let the mapping W1, ¥; : R — R be defined by ¥x = Vx € R and Wox =3 Vx €
R respectively. Then as in Example 4.1 above, we can find y, € C and v, € Q
respectlvely, such that yn = 16 w, and vn = % Take u=0,B=1,y=1,f =
110x oy = an 5 B, = m and 0, = §— +1 We vary the initial values of xy and x;
and then plot the graph of errors against number of iterations (Fig. 1).

Case 1: xp=05and x; =0.2, Case2: xy=—0.5and x; =1,
Case 3: xo=—1and x; =0.5 Cased: xp =2 and x; = 2.
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