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Abstract
This paper presents an inertial Tseng extragradient method for approximating a
solution of the variational inequality problem. The proposed method uses a single
projection onto a half space which can be easily evaluated. The method considered
in this paper does not require the knowledge of the Lipschitz constant as it uses vari-
able stepsizes from step to step which are updated over each iteration by a simple
calculation. We prove a strong convergence theorem of the sequence generated by
this method to a solution of the variational inequality problem in the framework of a
2-uniformly convex Banach space which is also uniformly smooth. Furthermore, we
report some numerical experiments to illustrate the performance of this method. Our
result extends and unifies corresponding results in this direction in the literature.
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1 Introduction

In this paper, we consider the Variational Inequality Problem (for short, VIP) defined
as: Find x ∈ C such that

〈F(x), y − x〉 ≥ 0, ∀ y ∈ C, (1.1)

where C is a nonempty, closed and convex subset of a real Banach space E with dual
space E∗. We denote by Sol(F, C), the solution set of problem (1.1). Variational
inequalities play an important role in studying a wide class of unilateral, obstacle and
equilibrium problems arising in several branches of pure and applied sciences in a
unified and general framework (see [1, 6] and the references therein). For this reason,
there have been extensive studies of this problem by many authors and therefore,
several iterative algorithms have been developed for solving variational inequalities
and related optimization problems in Hilbert, Banach, Hadamard and p-uniformly
convex metric spaces, see [5, 16, 17, 27].

The development of iterative methods for solving the VIP goes back to the follow-
ing fixed point reformulation: for any λ > 0, a point x∗ is a solution of VIP (1.1),
that is x∗ ∈ Sol(F, C) if and only if x∗ = PC(x∗ − λF(x∗)), where PC is a metric
projection (see, e.g., [15]). In the case where F is a L-Lipschitz continuous operator,

another fixed point method is: for any λk ∈
(
0, 1

L

)
, a point x∗ solves VIP (1.1), if

and only if

x∗ = PC(x∗ − λF(PC(x∗ − λF(x∗))), (1.2)

see for example [18, Lemma 2.2]. Korpelevich [22] introduced the well known Extra-
gradient Method (EGM), see also (Antipin [3]) by converting the fixed point (1.2)
into an iterative method. The EGM is given by

⎧⎨
⎩

x1 ∈ C,

yk = PC(xk − λkF (xk)),

xk+1 = PC(xk − λkF (yk)), k ≥ 1.
(1.3)

Under the assumptions of monotonicity and Lipschitz continuity of F, Korpelevich
showed that the sequence {xk} given by (1.3) converges weakly to a solution of the
VIP in a finite dimensional space. This result of Korpelevich was further extended by
Nadezhkina and Takahashi [26] to the framework of real Hilbert space. We note that
an advantage of the method given by (1.2) is that it allows for the strong monotonicity
assumption on F to be weakened to just monotonicity or even pseudomonotonicity.
However, as seen in the algorithm, obtaining the next iterate xk+1 from the previ-
ous iterate xk requires the calculation of two projections onto the feasible set C per
each iteration. This has been observed to have an adverse effect on the computation
efficiency of the method when the structure of the set C is not simple. In order to
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overcome this weakness of the method, Censor et al. [11] (see also [9, 10, 12]) intro-
duced the Subgradient Extragradient Method (SEGM) where the second projection
ontoC is replaced by a projection onto a halfspace which can be explicitly calculated.
The SEGM is presented as follows:⎧⎪⎪⎨

⎪⎪⎩

x1 ∈ C,

yk = PC(xk − λkF (xk)),

Ck = {w ∈ H : 〈xk − λkF (xk) − yk, w − yk〉 ≤ 0},
xk+1 = PCk

(xk − F(yk)), k ≥ 1.

(1.4)

Also, Cholamjiak et al. [29] introduced a new algorithm which combines the
inertial contraction projection method and the Mann-type method [24] for solving
monotone variational inequality problems in real Hilbert spaces. They proved strong
convergence of the proposed method under some standard assumptions. Precisely,
they proposed the following:
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Following this direction, Chidume and Nnakwe [13] extended the study of the SEGM
to the framework of a 2-uniformly convex and uniformly smooth Banach space. The
following method was proposed for the VIP:

⎧⎪⎪⎨
⎪⎪⎩

x1 ∈ C,

yk = �C(xk − λkF (xk)),

Ck = {w ∈ H : 〈xk − λkF (xk) − yk, w − yk〉 ≤ 0},
xk+1 = �Ck

(xk − F(yk)), k ≥ 1,

(1.7)

where �C is the generalized projection of the Banach space E onto C and J is
the normalized duality mapping from E to 2E∗

. They obtained and proved a weak
convergence theorem using the proposed method.

On the other hand, despite the noted improvement in the development of these
methods, the discussed methods still preserve the weakness of the extragradient
method in the form of a projection onto a feasible set. Secondly, the parameter αk is
selected in a way which shows dependence on the Lipschitz constant of the under-
lying operator. This is also a drawback for the methods as most times the Lipschitz
constant is not easy to calculate even when they are known. Recently, the Tseng
Extragradient Method (TEGM) has received great attention of many authors. Com-
pared to the EGM and the SEGM, the TEGM method requires to compute only one
projection onto the feasible set. To be precise, the TEGM is given by

⎧⎨
⎩

x1 ∈ H,

yk = PC(xk − λkF (xk)),

xk+1 = yk − λk(F (yk) − F(xk)), ∀ k ≥ 1.
(1.8)

Recently, Thong et al. [36] considered the problem of approximating the VIP in a
real Hilbert space. By combining the inertial method, TEGM and viscosity approxi-
mation method, they proved a strong convergence theorem for solving the VIP for a
monotone and Lipschitz continuous operator. We observe that obtaining strong con-
vergence of methods for solving the VIP requires a strong monotonicity assumption
of the operator or that the method is combined with any of Halpern or viscosity
approximation method (see [36]).

In this paper, motivated by the literature above, we propose a method for approxi-
mating the solution of the VIP for a pseudomonotone operator. The method combines
the inertial, TEGM and an Halpern method. Strong convergence theorem was proved
in the framework of a 2-uniformly convex Banach space which is also uniformly
smooth. We highlight the following as the advantage of our work over previous works
in this direction:

(i) the simplicity of calculating projection onto the feasible set C makes our
method efficient for computation;

(ii) compared to the work of Thong et al. [36], our method does not require the
knowledge of the Lipschitz constant of F ;

(iii) our method does not require a linesearch which has also been shown to slow
down convergence rates of method (see [21, 34]) and many others that used
the same approach;

(iv) our study is conducted in the framework of the Banach space.
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The rest of the paper is organized as follows: In Section 2, we recall some basic
definitions and important results which are required in the proof of our main results.
We present our proposed method in Section 3 and then give its convergence analysis.
In Section 4, we report some numerical illustrations to show the efficiency of our
method compared to some of the methods discussed in Section 1. Finally, we give a
concluding remark in Section 5.

2 Preliminaries

In this section, we recall some preliminary definitions and useful lemmas. Let C be
a nonempty, closed and convex subset of a real Banach space E with norm || · ||.
We denote by E∗ and 〈·, ·〉 respectively, the dual space of E and the duality pairing
between the elements of E and E∗. We write xk ⇀ x∗ and xk → x∗ wweak and the
strong convergence of a sequence {xk} to a point x∗ respectively.

Let E be a real Banach space, given a function h : E → R,

(i) h is called Gâteaux differentiable at x ∈ E, if there exists an element of E,

denoted by h′(x) or ∇h(x) such that

lim
t→0

h(x + ty) − h(x)

t
= 〈y, h′(x)〉, y ∈ E,

where h′(x) or ∇h(x) is called Gâteaux differential or gradient of h at x. We
say h is Gâteaux differentiable on E if h is Gâteaux differentiable at every
x ∈ E;

(ii) h is called weakly lower semicontinuous at x ∈ E, if xk ⇀ x implies h(x) ≤
lim inf
k→∞ h(xk). We say that h is weakly lower semicontinuous on E, if h is

weakly lower semicontinuous at every x ∈ E;
(iii) if h is a convex function, then it is said to be differentiable at a point x ∈ E if

the following set

∂h(x) = {w ∈ E∗ : h(y) − h(x) ≥ 〈w, y − x〉, y ∈ E} (2.1)

is nonempty. Each element in ∂h(x) is called a subgradient of h at x or the
subdifferential of h and the inequality (2.1) is said to be the subdifferential
inequality of h at x.

The function h is subdifferentiable on E, if h is subdifferentiable at every
point x ∈ E. It is well known that if h is Gâteaux differentiable at x, then h

is subdifferentiable at x and ∂h(x) = {h′(x)}, that is, ∂h(x) is just a singleton
set. For more details on Gâteaux differentiable functions on Banach spaces,
see [8].

Let J : E → 2E∗
be the normalized duality mapping defined by

J (x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||2 = ||x∗||2, ∀ x ∈ E}.
We consider the Lyapunov functional φ : E × E → R

+ defined by

φ(x, y) = ||x||2 − 2〈x, Jy〉 + ||y||2, ∀ x, y ∈ E.
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Following [2], Alber introduced the generalized projection operator given by

�Cx = inf
y∈C

{φ(y, x), ∀ x ∈ E}.

In the real Hilbert spaces, observe that φ(x, y) = ||x − y||2 and �C ≡ PC, where
PC : H → C is the metric projection of H onto C. It is obvious from the definition
of φ that

(||x||2 − ||y||2) ≤ φ(x, y) ≤ (||x||2 + ||y||2).
The functional φ also satisfy the following important properties (see [30, 31]):

(P1) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x − z, J z − Jy〉;
(P2) φ(x, y) + φ(y, x) = 2〈x − y, Jx − Jy〉;
(P3) φ(x, y) = ||x||||Jx − Jy|| + ||y||||x − y||.

We also considered the functional V : E × E∗ → R which is defined by
V (x, x∗) = ||x||2 − 2〈x, x∗〉 + ||x||2 for all x ∈ E and x∗ ∈ E∗. It is easy to see
that V (x, x∗) = φ(x, J−1x∗). We note that, if E is a reflexive, strictly convex and
smooth Banach space, then

V (x, x∗) ≤ V (x, x∗ + y∗) − 2〈J−1x∗, x∗ − y∗〉,
for all x ∈ E and all x∗, y∗ ∈ E∗, (see [32]).

Definition 2.1 Let F : C → E∗ be an operator. Then F is

(a) monotone, if

〈F(x), x − y〉 ≥ 〈F(y), x − y〉, ∀ x, y ∈ C;
(b) pseudomonotone, if

〈F(x), x − y〉 ≥ 0 ⇒ 〈F(y), x − y〉 ≥ 0, ∀ x, y ∈ C.

Let SE and BE be the unit sphere and unit closed ball of a real Banach space E

respectively. The modulus of convexity of E is the function δE : (0, 2] → [0, 1]
defined by

δE(ε) = inf

{
1 − 1

2
||x + y|| : x, y ∈ BE, ||x − y|| ≥ ε

}
.

A Banach space E is said to be uniformly convex if δE(ε) > 0 for any ε ∈ (0, 2]
and 2-uniformly convex if there exists a constant c > 0 such that δE(ε) > cε2

for any ε ∈ (0, 2]. It is obvious that every 2-uniformly convex Banach space is
uniformly convex. The Banach space E is said to be strictly convex if ||x + y|| < 2
for every x, y ∈ SE with x �= y. The modulus of smoothness of E is the function
ρE : [0, +∞) → [0, +∞) defined by

ρE(t) = sup

{
1

2
(||x + ty|| − ||x − ty||) − 1 : x, ∈ SE, ||y|| ≤ t

}
.
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The Banach space E is said to be uniformly smooth if lim
t→0

ρE(t)

t
= 0 and 2-

uniformly smooth if there exists a fixed constant κ > 0 such that ρE(t) < κt2. E is
said to be smooth if the limit

lim
t→0

||x + ty|| − ||x||
t

exists for all x, y ∈ SE . It is well known that every 2-uniformly smooth Banach space
is uniformly smooth. For more on the geometry of Banach spaces (see [14, 19]).

Lemma 2.2 [2] Let C be a nonempty, closed and convex subset of a reflexive, strictly
convex and smooth Banach space X. If x ∈ E and q ∈ C, then

q = �Cx ⇐⇒ 〈y − q, Jx − Jq〉 ≤ 0, ∀ y ∈ C (2.2)

and

φ(y, �Cx) + φ(�Cx, x) ≤ φ(y, x), ∀ y ∈ C, x ∈ E. (2.3)

Lemma 2.3 [20] LetE be a smooth and uniformly convex real Banach space, let {xk}
and {yk} be two sequences in E. If either {xk} or {yk} is bounded and φ(xk, yk) → 0
as k → ∞, then ||xk − yk|| → 0 as k → ∞.

Lemma 2.4 [7] Let
1

p
+ 1

q
= 1, p, q > 1. The space E is q-uniformly smooth if

and only if its dual E∗ is p-uniformly convex.

Lemma 2.5 [37] Let E be a 2-uniformly smooth Banach space with the best
smoothness constant κ > 0. Then, the following inequality holds:

||x + y||2 ≤ ||x||2 + 2〈y, Jx〉 + 2||κy||2, ∀ x, y ∈ E.

Lemma 2.6 [4] Suppose E is 2-uniformly convex Banach space. Then, there exists a
constant c ≥ 1 such that

φ(x, y) ≥ 1

c
||x − y||2, ∀ x, y ∈ E.

Lemma 2.7 [33] Let {ak} be a sequence of nonnegative real numbers, {αk} be a

sequence of real numbers in (0, 1) such that
∞∑

k→1
αk = ∞ and {bk} be a sequence of

real numbers. Assume that

ak+1 ≤ (1 − αk)ak + αkbk, ∀ k ≥ 1.

If lim sup
j→∞

bkj
≤ 0 for every subsequence {akj

} of {ak} satisfying the condition

lim inf
j→∞ (akj +1 − akj

) ≥ 0,

then lim
k→∞ ak = 0.
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Definition 2.8 (see [25, 28]). Let F : C → E∗ be an operator. The Minty Variational
Inequalities (MVI) consist of finding a point x∗ ∈ C such that

〈F(y), y − x∗〉 ≥ 0, ∀ y ∈ C. (2.4)

We denote by M(F, C), the set of solution of (2.4). Some existence results for the
MVI have been presented in [28]. Also, the assumption that M(F, C) �= ∅ has been
used for solving V IP (1.1) in finite dimensional spaces (see, e.g., [35]). It is easy to
prove that pseudomonotonicity implies M(F, C) �= ∅, but the converse is not true.

Lemma 2.9 [25] Consider the VIP (1.1). Suppose the mapping h : [0, 1] → E∗
defined by h(t) = F(tx + (1 − t)y) for all x, y ∈ C and t ∈ [0, 1] (i.e., h is
hemicontinuous), then M(F, C) ⊂ Sol(F, C). Moreover, if F is pseudomonotone,
then Sol(F, C) is well defined and M(F, C) = Sol(F, C).

3 Main result

In this section, we present the convergence analysis of a Tseng extragradient-like
method with generalized projection for VIP. Let C be a nonempty, closed and convex
subset of a real 2-uniformly convex Banach space E which is also uniformly smooth
with dual E∗. We represent by c and κ respectively the 2-uniformly convexity con-
stant and 2-uniformly smoothness constant of E and E∗. For i = 1, 2 · · ·m, let hi :
E → R be a family of convex, weakly lower semicontinous and Gâteaux differen-
tiable functions such that h′

i (·) is Ki-Lipschitz continuous with K = max1≤i≤m Ki .
We consider a problem of finding a point in the set Sol(F, C).

For this purpose, we assume the following conditions:

Assumption 3.1

(A1) The feasible set C is nonempty, closed and convex.
(A2) The mapping F : C → E∗ is pseudomonotone on E, L-Lipschitz continu-

ous on E and weakly sequentially continuous on C. However, our proposed
method does not require the information of L to be known.

(A3) The solution set Sol(F, C) is nonempty.
(A4) The feasible set C is defined by

C := ∩m
i=1C

i

where

Ci := {z ∈ E : hi(z) ≤ 0}.

In addition, we assume that {τk} is a positive sequence such that τk = ◦(βk),

which implies that lim
k→∞

τk

βk

= 0, where {βk} ⊂ (0, 1) satisfies
∞∑

k=1
βk = ∞ and

lim
k→∞ βk = 0.

We study the convergence analysis of the following Tseng extragradient method.
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Lemma 3.2 [38] The sequence {αk} generated by (3.2) is a monotonically decreas-
ing sequence and

lim
k→∞ αk = α ≥ min

{μ

L
, α0

}
,

with α > 0.

Remark 3.3 From the definition of C and Ck, it is easy to see that C ⊂ Ck . Indeed,
for each i = 1, 2, · · · , m and x ∈ Ci, we have by the subdifferential inequality that

hi(wk) + 〈h′
i (wk), x − wk〉 ≤ hi(x) ≤ 0.

By the definition of Ci
k, we have that x ∈ Ci

k . Hence, C
i ⊂ Ci

k for all i and therefore
C ⊂ Ck for all k ≥ 1.

Remark 3.4 If wk = yk , then wk ∈ Sol(F, C).
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Proof Assume that wk = yk for some k ≥ 1. Then by (3.2), we have

wk = �Ck
J−1(Jwk − αkF (wk)).

Using this, we assert that wk ∈ Ck, thus wk ∈ Ci
k for each i = 1, 2, · · · , m. By the

definition of Ci
k, we have that hi(wk) + 〈h′

i (wk), wk − wk〉 ≤ 0. This implies that
hi(wk) ≤ 0 for each i, hence wk ∈ C.

From the definition of {yk} and the property of �Ck
in Lemma 2.2, we have

〈Jwk − αkF (wk) − Jwk, y − wk〉 ≤ 0, ∀ y ∈ Ck

or equivalently
αk〈F(wk), y − wk〉 ≥ 0, ∀ y ∈ Ck .

Since αk > 0, we obtain that 〈F(wk), y − wk〉 ≥ 0. Hence, wk ∈ Sol(F, Ck). The
conclusion follows from this, wk ∈ C and C ⊂ Ck . That is wk ∈ Sol(F, C).

Remark 3.5 From (3.1) of Algorithm 3.2, we have

lim
k→∞ θk

(
φ(x∗, xk−1) − φ(x∗, xk)

) = 0.

Proof Indeed, we have that θk||xk −xk−1|| ≤ τk for each k ≥ 1, which together with

lim
k→∞

τk

βk

= 0 implies

lim
k→∞

θk

βk

||xk − xk−1|| ≤ lim
k→∞

τk

βk

= 0. (3.3)

Now,

φ(x∗, xk−1) − φ(x∗, xk) = ||x||2 − 2〈x∗, J xk−1〉 + ||xk−1||2
−(||x∗||2 − 2〈x∗, J xk〉 + ||xk||2)

= ||xk−1||2 − ||xk||2 + 2〈x∗, J xk − Jxk−1〉 − ||xk||2
≤ ||xk−1−xk||(||xk|| + ||xk−1||)+2||x∗||||Jxk−1−Jxk||.

Since J is norm-to-norm continuous on subsets of E∗, we obtain from (3.3) that

lim
k→∞ βk · θk

βk

||Jxk − Jxk−1|| = lim
k→∞ βk · θk

βk

||xk − xk−1|| = 0, (3.4)

hence,

lim
k→∞ βk

(
θk

βk

||xk−1 − xk||(||xk|| + ||xk−1||) + 2
θk

βk

||x∗||||Jxk−1 − Jxk||
)

= 0.

Thus,
lim

k→∞ θk

(
φ(x∗, xk−1) − φ(x∗, xk)

) = 0.

Lemma 3.6 Assume that Assumption 3.1 holds and {wk} is a sequence generated by
Algorithm 3.2. Let {wkj

} be a subsequence of {wk} converging weakly to x̄ ∈ E and
lim

j→∞ ||wkj
− ykj

|| = 0, then x̄ ∈ Sol(F, C).
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Proof Using the definition of {yk} and Lemma 2.2, we have

〈Jwkj
− αkj

F (wkj
) − Jyk, y − ykj

〉 ≤ 0, ∀ y ∈ Ck,

equivalently

1

αkj

〈Jwkj
− Jykj

, y − ykj
〉 ≤ 〈F(wkj

), y − ykj
〉, ∀ y ∈ Ck .

It follows that
1

αkj

〈Jwkj
− Jykj

, y − ykj
〉 + 〈F(wkj

), ykj
− wkj

〉 ≤ 〈F(wkj
), y − wkj

〉, ∀ y ∈ Ck . (3.5)

Since ||wkj
− ykj

|| → 0 as j → ∞ and J is norm-to-norm continuous on subsets of
E, we obtain ||Jwkj

− Jykj
|| → 0. Taking limit as j → ∞ in (3.5), we obtain

lim inf
j→∞ 〈F(wkj

), y − wkj
〉 ≥ 0, ∀ y ∈ Ck . (3.6)

Using this, wkj
∈ C and C ⊂ Ckj

, we have that

lim inf
j→∞ 〈F(wkj

), y − wkj
〉 ≥ 0, ∀ y ∈ C. (3.7)

Next, we show that x̄ ∈ C. Indeed, it follows from ykj
∈ Ckj

that

hi(wkj
) + 〈h′

i (wkj
), ykj

− wkj
〉 ≤ 0.

By using Cauchy Schwartz inequality, we have

hi(wkj
) ≤ 〈h′

i (wkj
), wkj

− ykj
〉

≤ ||h′
i (wkj

)|| · ||wkj
− ykj

||.
Since h′

i is Lipschitz continuous and {wkj
} is bounded, we have that {h′

i (wkj
)} is

bounded. Thus, there exists Ki > 0 such that ||h′
i (wkj

)|| for each i. Therefore, we
obtain

hi(wkj
) ≤ K · ||wkj

− ykj
||,

where K = max1≤i≤m{Ki}. Hence, by the weakly continuity of hi , we have

hi(x̄) ≤ lim inf
j→∞ hi(wkj

) ≤ lim
j→∞ K · ||wkj

− ykj
|| = 0.

Therefore, x̄ ∈ C.

Now choose a sequence {εj } of positive numbers such that {εj } is decreasing and
εj → 0 as j → ∞. For each j ≥ 1, denote by Nkj

the smallest positive integer such
that

〈F(wkj
), y − wkj

〉 + εj ≥ 0, ∀ j ∈ Nkj
.

Observe that {Nkj
} is nondecreasing since {εj } is decreasing. Thus for each j ≥ 1,

since {wkj
} ⊂ C, we have F(wkj

) �= 0 and by setting ANkj
:=

F(wNkj
)

||F(wNkj
)||2 , we

get 〈F(wkj
), ANkj

〉 = 1, for each j ≥ 1. It follows from (3.7) for each j ≥ 1, that

〈F(wNkj
), w + εjANkj

− wNkj
〉 ≥ 0.
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Now, since F is pseudomonotone, we obtain

〈F(y + εjANkj
), y + εjANkj

− wNkj
〉 ≥ 0.

Therefore,

〈F(y), y − wNkj
〉 ≥ 〈F(y) − F(y + εjANkj

), y + εjANkj
− wNkj

〉
−εj 〈F(y), ANkj

〉 (3.8)

To obtain the conclusion of the lemma, we show that lim
j→∞ εjANkj

= 0. To see

this, since wkj
⇀ x̄ ∈ E and F is weakly sequentially continuous on C, it follows

that {F(wNkj
)} converges weakly to F(x̄). We suppose F(x̄) �= 0, otherwise x̄ ∈

Sol(F, C). Since norm || · || is sequentially weakly lower semicontinuous, we have

||F(x̄)|| ≤ lim inf
j→∞ ||F(wkj

)||.
Since wNkj

⊂ wkj
and εj → 0 as j → ∞, we get

0 ≤ lim sup
j→∞

||εjANkj
|| = lim sup

j→∞
εj

||F(wkj
)|| ≤ lim sup εj

lim inf
j→∞ ||F(wkj

)|| = 0,

thus, lim
j→∞ εjANkj

= 0. Therefore,

lim inf
j→∞ 〈F(y), y − wNkj

〉 ≥ 0.

Hence, for all y ∈ C, we have

〈F(y), y − x̄〉 = lim
j→∞〈F(y), y − wNkj

〉 = lim inf
j→∞ 〈F(y), y − wNkj

〉 ≥ 0.

Therefore by Lemma 2.9, we obtain x̄ ∈ Sol(F, C).

Lemma 3.7 The sequence {xk} defined iteratively by Algorithm 3.2 is bounded and
satisfies the inequality

φ(x∗, zk) ≤ φ(x∗, wk) −
(
1 − 2cμk2α2

k

α2
k+1

)
φ(yk, wk). (3.9)

Proof Let x∗ ∈ Sol(F, C), then from (3.2), we have

φ(x∗, zk) = φ(x∗, J−1(Jyk − αk(F (yk) − F(wk)))

= ||x∗||2 − 2〈x∗, Jyk − αk(F (yk) − F(wk))〉
+||Jyk − αk(F ()y)k − F(wk))||2

= ||x∗||2 − 2〈x∗Jyk〉 + 2αk〈x∗, F (yk) − F(wk)〉
+||Jyk − αk(F (yk) − F(wk))||2. (3.10)

Using Lemma 2.3, we get that E∗ is 2-uniformly smooth and so by Lemma 2.4, we
get

||Jyk − αk(F (yk) − F(wk))||2 ≤ ||Jyk||2 − 2αk〈yk, F (yk) − F(wk)〉
+2κ2α2

k ||F(yk) − F(wk)||2
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Substituting this in (3.10) and applying (P1), we obtain

φ(x∗, zk) ≤ ||x∗||2 − 2〈x∗, Jyk〉 + 2αk〈x∗, F (yk) − F(wk)〉
+||Jyk ||2 − 2αk〈yk, F (yk) − F(wk)〉
+2κ2α2

k ||F(yk) − F(wk)||2
= φ(x∗, yk) + 2αk〈x∗ − yk, F (yk) − F(wk)〉 + 2κ2α2

k ||F(yk) − F(wk)||2
= φ(x∗, wk) + φ(wk, yk) + 2〈x∗ − wk, Jwk − Jyk〉

+2αk〈x∗ − yk, F (yk) − F(wk)〉
+ 2κ2α2

k ||F(yk) − F(wk)||2. (3.11)

From (P2), we have φ(wk, yk) = −φ(yk, wk) + 2〈yk − wk, Jyk − Jwk〉. Using this
in (3.11), we obtain

φ(x∗, zk) ≤ φ(x∗, wk) − φ(yk, wk) − 2αk〈yk − x∗, F (wk)〉
+2αk〈x∗ − yk, F (yk) − F(wk)〉

+ 2κ2α2
k ||F(yk) − F(wk)||2

= φ(x∗, wk) − φ(yk, wk) − 2αk〈yk − x∗, F (yk)〉
+2κ2α2

k ||F(yk) − F(wk)||2. (3.12)

Note that by x∗ ∈ Sol(F, C), we have 〈F(x∗), yk − x∗〉 ≥ 0, ∀ y ∈ C. It follows
that 〈F(yk), yk − x∗〉 ≥ 0, since F is pseudomonotone. Thus we have from (3.12),
that

φ(x∗, zk) ≤ φ(x∗, wk) − φ(yk, wk) + 2κ2α2
k ||F(yk) − F(wk)||2.

By applying Lemma 2.6, we obtain

φ(x∗, zk) ≤ φ(x∗, wk) − φ(yk, wk) + 2cμκ2α2
k

α2
k+1

φ(yk, wk)

= φ(x∗, wk) −
(
1 − 2cμκ2α2

k

α2
k+1

)
φ(yk, wk).

Again from (3.2), we have

φ(x∗, wk) = φ(x∗, J−1((1 − θk)Jxk + θkJxk−1))

≤ (1 − θk)φ(x∗, xk) + θkφ(x∗, xk−1). (3.13)
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From (3.2) and (3.13), we have

φ(x∗, xk+1) = φ(x∗, J−1(βkJu + (1 − βk)J zk))

≤ βkφ(x∗, u) + (1 − βk)φ(x∗, zk) (3.14)

≤ βkφ(x∗, u) + (1 − βk)φ(x∗, wk)

≤ βkφ(x∗, u) + (1 − βk)((1 − θk)φ(x∗, xk) + θkφ(x∗, xk−1))

≤ max
{
φ(x∗, u),max{φ(x∗, xk), φ(x∗, xk−1)}

}

≤ ...

≤ max
{
φ(x∗, u),max{φ(x∗, x1), φ(x∗, x0)}

}
. (3.15)

We are now in the position to state and prove our strong convergence theorem.

Theorem 3.8 Assume that Assumption 3.1 holds and let {xk} be the sequence given
by Algorithm 3.2, then {xk} converges strongly to a point x∗ = �Sol(F,C)u ∈
Sol(F, C).

Proof Let x∗ ∈ Sol(F, C). From (3.2), we obtain

φ(x∗, xk+1) = φ(x∗, J−1(βkJu + (1 − βk)J zk))

= V (x∗, βkJu + (1 − βk)J zk)

≤ V (x∗, βkJu + (1 − βk)J zk − βk(Ju − Jx∗))
+2〈J−1(βkJu + (1 − βk)J zk) − p, βk(Ju − Jx∗)〉

= βkV (x∗, J x∗) + (1 − βk)V (x∗, J zk) + 2βk〈xk+1 − x∗, Ju − Jx∗〉
= βkφ(x∗, x∗) + (1 − βk)φ(x∗, zk) + 2〈xk+1 − x∗, Ju − Jx∗〉
≤ (1 − βk)φ(p, wk) + 2βk〈xk+1 − x∗, Ju − Jx∗〉
≤ (1 − βk)((1 − θk)φ(x∗, xk) + θkφ(x∗, xk−1)) + 2βk〈xk+1 − x∗, Ju − Jx∗〉
≤ (1 − βk)φ(x∗, xk) + βk

(
θk

βk

φ(x∗, xk−1) + 2〈xk+1 − x∗, Ju − Jx∗〉
)
. (3.16)

To show that {||xk − x∗||2} → 0 as k → ∞. It suffices to show that lim sup
k→∞

〈xk+1 −
x∗, Ju − Jx∗〉 ≤ 0, and then apply Lemma 2.7 to (3.16). Suppose there exists a
subsequence {φ(x∗, xkj

)} of {φ(x∗, xkj +1)} satisfying
lim sup
j→∞

[φ(x∗, xkj +1) − φ(x∗, xkj
)] ≥ 0.

Consider such a subsequence, we have from (3.9) and Remark 3.6, that

lim sup
j→∞

(
1 −

2cμκ2α2
kj

α2
kj +1

)
φ(ykj

, wkj
) ≤ lim sup

j→∞
(
βkj

φ(x∗, u) + (1 − βkj
)φ(x∗, wkj

) − φ(x∗, xkj +1)
)

= lim sup
j→∞

(
βkj

(φ(x∗, u) − φ(x∗, wkj
))

)

+ lim sup
j→∞

(φ(x∗, wkj
) − φ(x∗, xkj +1))

≤ lim sup
j→∞

(φ(x∗, wkj
) − φ(x∗, xkj +1))
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≤ lim sup
(
(1− θkj

)φ(x∗, xkj
)+θkj

φ(x∗, xkj −1)−φ(x∗, xkj +1)
)

= lim sup
j→∞

(
φ(x∗, xkj

) − φ(x∗, xkj +1)
)

+ lim sup
j→∞

θkj

(
φ(x∗, xkj −1) − φ(x∗, xkj

)
)

= − lim inf
j→∞

(
φ(x∗, xkj +1) − φ(x∗, xkj

)
)

+ lim sup
j→∞

θkj

(
φ(x∗, xkj −1) − φ(x∗, xkj

)
)

≤ 0. (3.17)

Since

(
1 −

2cμκ2α2
kj

α2
kj +1

)
> 0, we obtain by (3.17), that

lim
j→∞ φ(ykj

, wkj
) = 0. (3.18)

It follows from Lemma 2.3 and the boundedness {ykj
}, that ||ykj

− wkj
|| → 0 as

j → ∞.
Finally, we show that ||xkj +1 − xkj

|| → 0 as j → ∞. First, from (3.2), we have

||Jzkj
− Jykj

|| = ||Jykj
− αkj

(F (ykj
) − F(wkj

)) − Jykj
||

≤ αkj
||F(ykj

) − F(wkj
)||

≤ μαkj

αkj +1
||ykj

− wkj
||,

which implies that ||Jzkj
− Jykj

|| → 0 as j → ∞. Since J−1 is norm-to-norm
uniformly continuous on bounded subsets of E∗, we have that

lim
j→∞ ||zkj

− ykj
|| = 0. (3.19)

Again from (3.2), we have

||Jxkj +1 − Jzkj
|| = βkj

||u − zkj
|| + (1 − βkj

)||Jzkj
− Jzkj

|| → 0.

This implies that

||xkj +1 − zkj
|| = 0, (3.20)

since J−1 is norm-to-norm uniformly continuous on bounded subsets of E∗. There-
fore, by applying triangle inequalities, we obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

lim
j→∞ ||ykj

− wkj
|| = lim

j→∞(||ykj
− wkj

|| + ||wkj
− xkj

||) = 0,

lim
j→∞ ||xkj +1 − ykj

|| = lim
j→∞(||xkj +1 − zkj

|| + ||zkj
− ykj

||) = 0,

lim
j→∞ ||xkj +1 − xkj

|| = lim
j→∞(||xkj +1 − zkj

|| + ||zkj
− xkj

||) = 0.

(3.21)

Since the sequence {xkj
} is bounded, it follows that there exists a subsequence

{xkji
} of {xkj

} that converges weakly to x̄ ∈ E, such that

lim sup
j→∞

〈Ju − Jx∗, xkj +1 − x∗〉 = lim
i→∞ = 〈Ju − Jx∗, xkji+1 − x∗〉.



Numerical Algorithms

Table 1 Computation result for Example 4.1

m Algorithm 2 Algorithm 1

5 No of iter 39 314

CPU (time) 0.0211 0.0622

8 no of iter 44 979

CPU (time) 0.0281 0.1593

10 No of iter 46 1216

CPU (time) 0.0758 0.2592

It is easy to see by (3.21) that xkji+1 ⇀ x̄, hence we have by x∗ = �Sol(F,C)u and
Lemma 2.2, that

lim sup
j→∞

〈Ju − Jx∗, xkj +1 − x∗〉 = lim
i→∞ = 〈Ju − Jx∗, xkji+1 − x∗〉

= 〈Ju − Jx∗, x̄ − x∗〉 ≤ 0. (3.22)

Also, from (3.21), we obtain ykj
⇀ x̄, thus by Lemma 3.7, x̄ ∈ Sol(F, C). Hence

by (3.16), (3.22), condition (iii), and Lemma 2.7, we have that

lim
k→∞ φ(x∗, xk) = 0.

It follows from this and Lemma 2.3 that ||xk − x∗|| → 0 as k → ∞. Therefore {xk}
converges strongly to x∗ ∈ Sol(F, C).

4 Numerical example

Example 4.1 The following example has been considered by many authors in the
literature (see [23, 35]). The operator F is defined by F = Mx + q, where
M = BT B + P + Q with P, Q ∈ R

m×m are randomly generated matrices such that
P is skew-symmetric, Q is a diagonal matrix of nonnegative (i.e., Q is positive def-
inite) entries and q = 0. We define the feasible set by C = {x ∈ E : ||x|| = 5}. It
is easy to check that the zero vector is feasible and therefore the unique solution of
the corresponding variational inequality. We present the numerical results using the

different values of m. In this example, we choose βk = 1

10(k + 1)
, u = μ = 0.5,

θ = 0.5, α0 = 0.25. We make comparison with Algorithm 2 with the same parameter
and suitable one where their algorithm differ from ours and as necessary. We termi-
nate the iterations at ||xk+1 − xk|| ≤ 10−3. The results are reported in Table 1 and
Fig. 1.
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Fig. 1 Example 4.1

Example 4.2 Let E = �2(R) be the linear spaces whose elements are all 2-summable
sequences {xi}∞i=1 of scalars in R, that is

�2(R) :=
{

x = (x1, x2 · · · , xi · · · ), xi ∈ R and
∞∑
i=1

|xi |2 < ∞
}

,

with the inner product 〈·, ·〉 : �2(R) × �2(R) → R defined by 〈x, y〉 :=
∞∑
i=1

xiyi

and the norm || · || : �2(R) → R by ||x|| :=
√

∞∑
i=1

|xi |2, where x = {xi}∞i=1,

y = {yi}∞i=1. Let C = {x ∈ E : ||x|| ≤ 5}, and let F : �2(R) → �2(R) be defined by
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F(x) = (5 − ||x||)x for all x ∈ �2(R), it is easy to see that F is L = 11
4 -Lipschitz

continuous. The projection onto C is easily computed as

PC(x) =
⎧⎨
⎩

x if ||x|| ≤ 5,
5x

||x|| otherwise.

During this experiment, we choose βk = 1

(2k + 1)0.5
, u = μ = 0.5, θ = 0.5,

θk = θ̄k, τk = 1

k2.2
and α0 = 0.25. For Algorithm 1, the following are also used

for the parameters δk = 0.5 − βk and γ = 0.01. We terminate the iterations if
||xk+1 − xk|| ≤ 10−5. We test Algorithms 1 and 2 for different cases of the initial
points x0 and x1. The result of this experiment are displayed in Fig. 2.
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Fig. 2 Example 4.2. Top left: Case 1, Top right Case 2, Bottom: Case 3
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Case 1 x0 = (1, 0, 0 · · · , 0, · · · )′ and x1 = (4, 0, 0 · · · , 0, · · · )′.
Case 2 x0 = (0.5, 0, 0 · · · , 0, · · · )′ and x1 = (2, 0, 0 · · · , 0, · · · )′.
Case 3 x0 = (−1, 0, 0 · · · , 0, · · · )′ and x1 = (1, 0, 0 · · · , 0, · · · )′.

5 Conclusion

In this paper, we have considered an iterative approximation of the solutions of pseu-
domonotone variational inequality problem.We proposed an inertial Tseng algorithm
originally used for finding zeros of sum of monotone operators. The proposed method
uses a single projection onto a half space which can be easily evaluated. The method
considered in this paper does not require the knowledge of the Lipschitz constant as
it uses variable stepsizes from step to step which are updated over each iteration by a
simple calculation. We proved a strong convergence theorem of the sequence gener-
ated by this method to a solution of the VIP in the framework of a 2-uniformly convex
Banach space which is also uniformly smooth. We also presented some numerical
examples to further show the efficiency of the method.
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