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ON FIXED POINT RESULTS FOR A CLASS OF GENERALIZED
MEAN NONEXPANSIVE MAPPINGS

A. A. MEBAWONDU, C. IZUCHUKWU, K. O. OYEWOLE, AND O. T. MEWOMO

ABsTRACT. In this paper, we introduce a new class of generalized mean nonexpan-
sive mappings and propose an iterative algorithm for approximating the fixed points
of this class of mappings in the frame work of uniformly convex Banach spaces. We
establish some fixed point results for this class of mappings and prove the conver-
gence of the propose iterative algorithm. Finally, numerical experiment is presented
to demonstrate the efficiency of our algorithm in comparison with other existing
algorithms in literature.

BBopuThcsa HOBHiT KiTaC y3araJbHEHAX HEPO3TAIYIOUUX ¥ CEPEJHBOMY BigoOparkensn,
JUIS SIKUX [IPOIIOHYETHCS iTepaiiiHuil aJropuT™ HAOIMKEHOTO 3HAXOZKEHHS HEPYXOMIX
TOYOK B KOHTEKCTI PIBHOMIPHO omykJimx GaHaxoBux mpocropis. Jljs nporo kjacy
Bi;toOparkeHb JOBEIeHI TEOPEMU IIPO HEPYXOMY TOUKY, a TAKO2XK 3012KHICThH 3a3HaAYEHOr0O
asropurMy. IIISXOM €HCEJIBHOrO €KCIEPUMEHTY HAIl aJrOPUTM [OPIBHIOETBHCS 3
BiJOMHMHU.

1. INTRODUCTION

Banach contraction principle can be seen as the pivot of the theory of fixed points and
applications. The theory of fixed points plays an important role in nonlinear functional
analysis and is very useful in establishing the existence and uniqueness results for nonlin-
ear differential and integral equations. The importance of Banach contraction principle
cannot be over emphasized in the study of fixed point theory and applications, see [6].
Several authors have generalized the well celebrated Banach contraction principle by con-
sidering a class of nonlinear mappings and spaces which are more general than the class
of contraction mappings and metric spaces (see [3] 10} 26], 27] and the references therein).
One of such generalizations of the contraction mapping in the sense of Banach is the
well-known nonexpansive mapping. In 1965, Browder [§], Gohde [13] and Kirk [23] gave
some existence results for the fixed points of nonexpansive mappings and these were later
generalized by other authors (see, [35] [37]).

In 1975, Zhang [44] introduced and studied the class of mean nonexpansive mappings in
Banach spaces. He proved the unique existence of fixed points for this class of mappings
in Banach spaces with normal structure. For a Banach space X and a nonempty, closed
and convex subset C' of X, we recall that a mapping 7" : C' — X is said to be mean
nonexpasive if there exist a,b > 0 with a + b < 1 such that

[Tz =Tyl < allz —yll + bllz = Tyl|, (1.1)

for all z,y € C.

In 2007, Wu [43] proved that if @ + b < 1, then the mean nonexpansive mapping 7'
has a unique fixed point. Zuo in [46] proved that a mean nonexpansive mapping has
approximate fixed point sequence, and under some suitable conditions, he obtained some
existence and uniqueness theorems for fixed points of mean nonexpansive mapping.
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In 2008, Suzuki [37] introduced a class of mappings satisfying condition (C'), called the
Suzuki generalized nonexpansive mappings and proved some fixed point results for this
class of mappings.

Definition 1.1. Let C be a nonempty subset of a Banach space X, a mapping T : C — X
is said to satisfy condition (C') on C, if for all z,y € C,

1
STz =zl < o —yll = [Tz - Tyl < llz -yl

In 2010, Nakprasit [29] gave an example of a mapping that is mean nonexpansive but
not Suzuki generalized nonexpansive and an example of a mapping that is Suzuki gen-
eralized nonexpansive but not mean nonexpansive. He showed that an increasing mean
nonexpansive mapping implies Suzuki generalized nonexpansive mapping.

Remark 1.2. We note from the results obtained in [29] that the class of mean nonex-
panisve mappings and the class of Suzuki generalized nonexpansive mappings are two
different classes of mappings. Thus, it is natural to ask the following question: Can we
find a class of mappings that will generalize these classes of mappings, thereby bridging
the gap between these two classes of mappings?

In 2011, Falset et al. [II] introduced another class of mappings satisfying condition (CJ)
and established some fixed point results for this class of mappings. Mappings satisfying
(Cy) are proper generalization of mappings satisfying condition (C').

Definition 1.3. Let C' be a nonempty subset of a Banach space X and A € (0,1). A
mapping T : C — X is said to satisfy condition (C) on C' if for all z,y € C,

ATz —z| <z —yll = [Tz = Tyl < ||z —yl|.

Remark 1.4. It is easy to see that if A = %, we obtain Suzuki generalized nonexpansive
mapping. It is also worth mentioning that if we apply similar argument as in [29], we
can obtain an example of a mapping that is mean nonexpansive but does not satisfy-
ing condition (C)) and like-wise a mapping satisfying condition (C)) that is not mean
nonexpansive. Thus, we ask: Can we find a class of mappings that will generalize these
classes of mappings?

Zhou and Cui in [45] studied the existence of fixed points for mean nonexpansive map-
pings and obtained the demiclosedness principle for this class of mappings in CAT(0)
spaces. In addition, they proved a A-convergence and strong convergence results of
Ishikawa iteration process for mean nonexpansive mappings under some suitable condi-
tions. For some recent generalizations of mean nonexpansive mappings, see ([9), 25] and
the reference therein).

Several authors have introduced different iterative processes for approximating the fixed
points of nonexpansive and other nonlinear mappings in Hilbert, Banach, Hadamard
and p-uniformly convex metric spaces, see [4], [5 16 17, 21, BT, B2, B8, B9, 41]. In
general, developing a faster and more efficient iterative algorithms for approximating
fixed points of nonlinear mappings is still an active area of research in nonlinear functional
analysis and fixed point theory. The Mann iterative process [24] is one of the oldest and
fundamental iterative process, which is given as follows:

{IEO S C, (1'2)

Tn1 = (1 - an)xn + o Ty, n >0,

where {«,} is a sequence in (0,1) and 7" is any nonlinear mapping on C.

In [19], Kadioglu and Yildirim introduced a Picard Normal S-iteration process and show
that the rate of convergence of this iteration process is faster than that of Normal S-
iteration process. This iteration process is given as follows: For each zy € C, the
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sequence {x,} in C is defined by

Zn = (1 - ﬂn)xn + BanEnv
Yn = (1 — apn)zn + @nT 2y, (1.3)
Tpt1 = Tyn, n >0,

where {a,,} and {3, } are sequences in (0,1) and T is a nonlinear mapping on C.
In 2014, Gursoy and Karakay in [I4] introduced the following iteration process called
Picard-S iteration: For each xy € C, the sequence {x,} in C is defined by

zn = (1 — an)xn + ayTay,,
Yn = (1 - ﬁn)TfEn + ﬁnTZnu (14)
Tni1 =TYn, n >0,

where {a,,} and {f,} are sequences in (0,1) and T is a nonlinear mapping on C. They
proved that this iterative process converges faster than the Mann [24], Ishikawa [15],
Noor [30], Abbas et al. [I], and some other existing iterative schemes in literature.

In 2017, Karakaya et al. in [20] introduced the following iteration process: For each
xo € C, the sequence {x,} in C is defined by

Zn = Ta:nv
yn = (1 — an)zn + anT 2y, (1.5)
Tpt1 = Tyn, n >0,

where {a,,} is a sequence in (0,1). They proved that this iterative process converges
faster than Mann [24], Ishikawa [15], Noor [30], Abass et al. [I] and some other existing
iterative schemes in literature.

In 2018, Ullah et al. [42] introduced the following iteration process called the M-iteration
process: For each xy € C, the sequence {x,} in C is defined by

zn = (1 — an)an + anTap,
yn =Tz (1.6)
Tne1 = TYn, n >0,

where {ay,} is a sequence in (0,1). They proved that this iterative process converges
faster than Mann [24], Ishikawa [15], Noor [30], Abass et al. [1], iterative process (4,
iterative process (I.3)) and some existing iterative schemes in literature. It was shown in
[2] that the iterative process (I3]) and (LG) have the same rate of convergence.

Remark 1.5. Since it is more desirable to construct iterative processes that are more
efficient and have higher rate of convergence, we then ask: Can we construct a more
efficient iterative process with better rate of convergence than the existing ones?

It is well-known that nonexpansive mappings are continuous on their domain and the
continuity nature of this class of mappings make it less important in theoretical and ap-
plication wise. On the other hand, it has been shown that mean nonexpansive mappings,
Suzuki generalized nonexpansive mappings, mapping satisfying condition (Cy) need not
be continuous on their domain. As such, these classes of mappings have great impor-
tance in theoretical and application-wise compare to nonexpansive mappings. Motivated
by the research work described above and the current research interest in this direction,
our purpose in this paper is to introduce a new class of generalized mean nonexpansive
mappings and propose a new three steps iteration process for approximating the fixed
point of this class of mappings in uniformly convex Banach spaces. Using this iteration
process, we obtain some convergence results for approximating the fixed points of this
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class of mappings. Furthermore, we show that our proposed iterative scheme performs
faster than some existing iterative schemes in the literature.

2. PRELIMINARIES

Let X be a Banach space with dimension greater than or equal to 2. The function
dx :(0,2] — [0,1] defined by

. 1
5x(c) =mf{1 N+ u)l el = Lyl = Le = ||x—y||}

is called the modulus of convexity of X. If dx(¢) > 0 for all € € (0,2], then X is called
uniformly convex. Let X be a Banach space, X* its dual and S(X) ={z € X : |z| = 1}.
The value of f € X* at x € X is denoted by (z, f).

Definition 2.1. (1) The multivalued mapping J : X — 2% defined by

J(x) = {f €X' (@, f) = |lz]]? = ||f||2}

is called the normalized duality mapping.

(2) A Banach space X is called smooth if lim;_, exists for each z,y €
S(X). In this case, the norm of X is called Gateaux differentiable. It is known
that J is single valued whenever X is smooth.

(3) A Banach space X is Frechet differentiable, if for each x € S(X), the limit above
exists and is attained uniformly for y € S(X). In this case, we have that for all
x,h e X,

llz+tyll =l
t

1 1 1
(h, J(@)) + 52l < 5lle +RIP < G, T(@) + 5l + b(IA),

where b is an increasing function defined on [0, c0) such that limy g &:) =0.
(4) A Banach space X is said to have Opial property [33], if for every weakly con-

vergent sequence {2, } in X with weak limit y, we have
liminf ||z, — y|| < liminf ||z, — 2z||Vz € X,
n—r oo n—roo

with y # z.
Let C be a nonempty subset of a Banach space X and {x,} a bounded sequence in
X. For all z,y € X, we define
(1) asymptotic radius of {z,} at « by r(z,{z,}) = limsup,,_, ||zn — z;
(2) asymptotic radius of {z,, } relative to C by r(C, {z,}) = inf{r, (z,{z,}) : x € C};
(3) asymptotic center of {x,, } relative to C by A(C, {z,}) = {r(z,{zn}) = r(C, {zn}) :
x € C}.
We note that A(C,{x,}) is not empty and more so, if X is uniformly convex, then
A(C,{x,}) has exactly one point (see [12]).
In the sequel, we refer to F'(T') as the set of fixed points of T.

Definition 2.2. Let C be a subset of a normed space X. A mapping 7' : C' — C is said
to satisfy condition () if there exists a nondecreasing function f : [0,00) — [0, 00) such
that f(0) =0and f(t) >0Vt e (0,00) and that || —Tz| > f(d(z, F(T))) for all z € C,
where d(z, F(T)) denotes distance from x to F(T).

Definition 2.3. Let C' be a nonempty subset of a Banach space X and {x,} be a
sequence in X. Then {z,} is said to be Fejer monotone with respect to C, if for all x € C
and n € N, we have

Jonss — 2]l < llzn — o]l
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Lemma 2.4. [36] Let X be a uniformly convexr Banach space and 0 < p <t, < qg<1
for all n € N. Let {x,} and {yn} be two sequences in X such that limsup,,_,  ||zn| < ¢,
limsup,,_, . |[ynll < ¢ and lim, o0 ||tnxn + (1 — to)yn|| = ¢ holds for some ¢ > 0. Then

lim, 00 ||@n — ynll = 0.
3. GENERALIZED MEAN NONEXPANSIVE MAPPINGS

In this section, we introduce a class of mappings called the generalized mean nonexpansive
mappings. We give some basic properties and demiclosedness principle for this class of
mappings.

Definition 3.1. Let C be a nonempty subset of a Banach space X. A mapping T': C —
X will be called generalized mean nonexpansive mapping if there exist a,b, A € [0, 1],
with @ + b < 1 such that for all z,y € C,

MTz =zl < [lz =yl = [[Te = Ty| < allz =yl + bz — Tyl (3.7)

Remark 3.2. It is easy to see that
(1) nonexpansive mappings are generalized mean nonexpansive,
(2) mean nonexpansive mappings are generalized mean nonexpansive,
(3) mappings satisfying condition (C') are generalized mean nonexpansive,
(4) mappings satisfying condition (C)) are generalized mean nonexpansive.

The following example shows that the converse of these statements are not always
true.

Example 3.3. Suppose X = R and C = {0,0.1,0.2,---,4}. Let T : C — R be a
mapping defined by

3 if z€]0,3],
Tx=<1 if ze€(3,4), (3.8)
0 if z=4.

Then T is a generalized mean nonexpansive but does not satisfy condition (C)) and
consequently T' does not satisfy condition (C') and not a nonexpansive mapping.

Proof. To show that T' is a generalized mean nonexpansive mapping, we take A = % and

a="b= % and consider the following cases:

Case 1: Suppose z,y € [0, 3]. For this case, we consider the following subcases.
Case 1(a): Suppose = = y.

1
Allz = Tall = g5le = 1.5] 2 0 = ]z — ]|
If
Ao = Tal) = =z — 1.5/ =0 = | — y]|
TR B
we have
1 1
[Tz — Tyl =0< glll‘—yII + §II$—Ty||-
On the other hand, if
1
Al = Tal| = 55|z — 1.5 > 0= ||z —y].

Then, we have nothing to show.
Case 1(b): Suppose = # y.

1
Alz =Tl = g5le 1.5 <01 < [|z —y].
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We then have that
Tz =Ty =0 < gllo— gl + 5lle — Tyl.
Case 2: Suppose z € [0, 3] and y € (3,4).
Mo —Tal = oo e — 15| < 01 < [z~

We then have that

11
Te—Ty|==<=|ly-T
1Tz =Tyl = 5 < 5lly = Tyl
1
=5M—w+w—Tw
1 1
< glle =yl +Sllz =Tyl

Case 3: Suppose z € [0,3] and y = 4.
1
Al = Tal| = g5lo — 15 < 1 < ||z —y].
We then have that
1
1Tz =Tyl = 1.5 < 5lly — Tyll
1
=gly—w+a-Ty|
1 1
< glle =yl + glle ~ Tyl
Case 4: Suppose = € (3,4) and y = [0, 3].
1
Mlz =Tzl = g5le = 1] < Jla —yll.
We then have that

1
1Tz =Tyl = 5 < 51122 = (y + Ty)]

|~

1
jm—y+w—Tw

IN

1 1
Sl =yl + 5lle = Ty,

Case 5: Suppose x € (3,4) and y = 4.

1
Mz —Tz|| = =]z -1/ <01 < ||z -yl
30
We then have that

1
1Tz =Tyl = 1= S22~ (y + Ty)ll
1
= 5llz —y+z Tyl
1 1
< 2lle =yl + e Ty,
Case 6: Suppose =4 and y € [0, 3].

1
Mz =Tzl = 54 -0 <1< |lz —yl.

361
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We then have that

1
1Tz =Tyl = 1.5 < 52z = (y + Ty)|
1
= glle—y+z—Ty|
1 1
< sl =yl + 5llz = Tyl
Case T: Suppose x =4 and y € (3,4).
1
Az —Tzx||=—=]4-0| < ||z —v|.
o~ Tl = =10 <}z ~ o]
We then have that

1
1Tz = Tyll = 1 < 5122 — (y + Ty)l|
1
= §||;v—y—|—;v—Ty||

1 1
< |z — —||lz — Tyll.

Sz =yl + 5l = Ty
It is easy to see that the other cases follows similar approach. Hence, T' is a generalized
mean nonexpansive mapping.
However, we now show that 7' does not satisty condition C). For any A\ € (0,1),x = 2.7
and y = 4, we have that

Mz —Tz|| =M1.2)<12<13=|z—y],
but
1Tz —Ty||=15>13=|z—y].

Hence, T does not satisfy condition C) and consequently T' does not satisfy condition
(C) and T is not a nonexpansive mapping. O

Proposition 3.1. Let C' be a nonempty subset of a Banach space X andT : C — X be a
generalized mean nonexpansive mapping with F(T) # 0. Then T is quasi-nonezapansive.

Proof. Let x € F(T) and y € C,
MTz =z =0 < |lz—yl.
So, we have
lo =Tyl = [Tz = Tyl < allz -yl + bllz — Tyl
= (1 =b)flz =Tyl < (1 =b)llz -yl
= |z =Tyl < [lz —yl.
Hence, T' is quasi-nonexpanisve. g

Theorem 3.4. Let C' be a nonempty subset of a Banach space X and T : C — X be
a generalized mean nonexpansive mapping. Then F(T) is closed. Furthermore, if X is
strictly convex and C' is convez, then F(T) is convez.

Proof. Let {z,} be a sequence in F(T) such that {x,} converges to some y € C. We
show that y € F(T'). Since

MTz, — ] =0 < |2 — yll,
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so, we have
l2n = Tyll = | T2y — Tyl
< allzn =yl + bllzn — Tyl
= |lzn = Tyl < [lzn — yll.
Since nlin;o||xn —y|| = 0, we obtain
Jim [z, =Ty = 0.
As such, we have that
Ty =y.
Hence, F(T) is closed.

Now suppose that X is strictly convex and C' is convex. We show that F(T) is convex.
Let 8 € (0,1) and z,y € F(T) with x # y. Since

Az = Tzl| = 0 < [l — =],
we obtain
o = Tz|| = Tz = T2|| < allz — z[| + bllx — Tz
=l =Tz < |z —z|. (3.9)
Using similar argument, we have
ly =Tzl < lly — 2. (3.10)
Let z = Bz + (1 — B)y € C, for g € [0, 1], then from (B9) and BI0), we obtain
e —yll < llz =Tzl + [Tz - yl|
<llz =zl +llz -yl (3.11)
=z =Bz + 1 =Byl + Bz + (1 =By -yl
<A =Plle =zl + Blle =yl + (1 = B)llz -yl + Blly —
= [l =yl

Using the fact that X is strictly convex, there exists p € [0, 1] such that Tz = px+(1—p)y.
Now

A=z —yll = Tz = Tz|| < ||lz -z = (1 = B)llz — vl (3.12)

and
pllz =yl = Ty = Tz|| < |lz — 2] = Bllz — yll. (3.13)
From the above inequalities, we have that 1 — pu < 1 — g and p < (3, this implies that
= B. Thus, z € F(T), which implies that F(T) is convex. O

Lemma 3.5. Let C be a nonempty subset of a Banach space X. Suppose that T : C — C
is a generalized mean nonexpansive mapping on C. Then for all x,y € C and for 5 € [0, 1],
we have the following

1) |T%z — Tl < Tz — x|,

(2) either 5||lz — Ta|| < ||z — y|| or §||Tx - T?z| < [Tz -y,

(3) either |Tz—Ty| < al|z—yl|+blla=Ty|| or | T?z~Ty| < a| Tz—y|+b|Tz~Ty|.

Proof. (1) For x € C, we have that \||Tz — z|| < ||Tz — ||, which implies that
|T?x — Tz|| = | T(Tx) — Tz|| < al|Tz — x| + b||Tz — Tz|| < |Tx — z|.
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(2) Suppose on the contrary that 2|z —Ta| > ||z — y|| or &[Tz — T2%z|| > | Tz —y|
for some z,y € C. Now, using (1), observe that

| =Tzl < |lz -yl +[ly — T||
< Do~ Tl + Djie — 1%

< §||x —Tz| + §||x — Tz
= Bllz — Tzl
< |lz =T,
which is a contradiction. Thus, we obtain the desired result.

(3) The proof of (3) follows from (2). Thus we omit it.
g

Lemma 3.6. Let C be a nonempty subset of a Banach spce X and T : C — C a
generalized mean nonexpansvie mapping. Then for all z,y € C,

(2+a+D)
(1-0)
Proof. From Lemma [35] we have for 2,y € C that ||Tz — Ty| < al|lz — y| + bl|lz — Ty||

or [Tz — Ty| < a|| Tz — y|| + bl| Tz — Tyl|.

lz —Ty|| < o = Ta| + [l =yl

Considering | Tx — Ty|| < al|lx — y|| + b||x — T'y||, we obtain that
e =Tyl < llz — Tzl + | Tz - Ty|
< [l = Tzf| + alle — y|| + bl — Ty
< [l = Tzf| + (1 = b)l|x — yl| + bl|x — Ty||
1 (24+a+0b)
(1—0) (1-10)

Also, considering || 7%z — Ty| < a||Tx — y|| + b||Tz — Ty||, using (1) of Lemma B3] we
obtain that

lo = Tyl < llo = Tl + | T2 — T2l + |T%x — Ty|
Slw=Taf| + lz = Ta| + al| Tz — yl| + 6] Tz — Ty||
<2lle = Tl + al|Tw — x| + alle — y|| + bl| Tz — || + blle — Ty||
<@2+a+bd)fle—Tzl+ (1 -d)llz—yl +bllz - Ty|

=z —Ty| < | =Tl + [lz -y < | = Tzl + [lz -y

(2+a+0b)
=z = Tyl| < ——5—llv = Tz| + [z — y|.
(1-0)
Thus in both cases, we obtain the desired result. O

Theorem 3.7. Let C be a nonempty closed subset of a Banach space X with Opial
property and T : C' — C be a generalized mean nonexpansive mapping with \ = %,ﬁ €
[0,1]. If {xn} converges weakly to x and lim,,_, || T2y — ,|| = 0, then Ta = . That is
I —T is demiclosed at zero, where I is the identity mapping on X.

Proof. By Lemma [3.5]
Mzn = Tan|| < [lzn — =]
Thus by definition
| Tz, — Tx| < al|lz, — || + b||lxn, — Tx||.
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Now, observe that
2n = Ta| < llan = Tanll + | T2, — T
<lon — Ton || + allzn — || + bz, — T
<lan = Ton | + (1 = 0)||zn — || + bllzn — Ta]|

1
=>zn —Ta| < -0 [0 = Tl + Iz — 2.
Using our hypothesis, we have that
liminf ||z, — Tz| < liminf ||z, — z|. (3.14)
n—oo n—oo

Using our hypothesis that {z,,} converges weakly to 2 and Opial property, we have
liminf ||z, — z|| < liminf ||z, — Tz,
n—oo n—oo

which contradicts (3I4)). Thus, we have that Tx = . O

Theorem 3.8. Let C be a nonempty closed convex subset of a uniformly convexr Banach
space X. Suppose that T : C — C' is a generalized mean nonexpansive mapping on C
such that X\ = 5 with 8 € (0,1). Then F(T) # 0 if and only if {T"(x)} is a bounded
sequence for some x € C, where n € N.

Proof. Suppose that {T"(x)} is a bounded sequence for some x € C' and define {z,} =
{T"(x)} for all n € N. Then there exists y € C such that A(C,{z,}) = {y}. Since

B B

EHTxn — | = §||$n+1 = Znl| < |lzns1 — @,
we obtain that

[#n42 = Tnal| = [[TTns1 — Tan|
< allznir — @l + bl|@nsr — Tan|
= a||33n+1 - xn” + b”szrl - $n+1||

< ||33n+1 - xn”

We claim that [[2n+1 —2all < llzn —yll or [[2p42 — 2| < Fllwnsr —yl foralln € N.
Suppose on the contrary that %Hxn—yH < || ®pg1 —xn]| or %Hxn“ —yll < | Znt2—xns1]l-
Now, observe that

[#n41 = Zall < llznts —yll + lly — 2all
< g”anr? - :EnJrlH + §||$n+1 - xn”

< 2 lonsr — zull+ 2 llanss — zal

= Bllznt1 — zal|

< ||33n+1 - xn”

Thus we have a contradiction. Hence for all n € N, we have that || z,4+1— x| < %Hxn =yl
or [|zns2 = @ntr ]| < Fllens =yl
Now, considering the first case, §||:1:n+1 — x| = §||Txn — || < ||z — yl|. By definition,
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we have that
[Txn = Tyl < allzn — yll + bllzn — Tyl
< (X =b)lln =yl + bllan — Tyl
=limsup | Tz, — Ty| < alimsup ||z, — y|| + blimsup ||z, — Ty||
n—oo

n—oo n—r00

= limsup ||z, — Ty|| < limsup ||z, — y|.
n—roo n—oo

Thus, we have T'(y) € A(C, {x,}), so that Ty = y. Using similar approach, we also obtain
Ty = y for the second case. Thus F(T) # 0.

Conversely, suppose F(T) # 0. Then there exists say y € F(T) and by induction, we have
that T"y =y for all n € N. Thus {T"(y)} is a constant sequence and so bounded. O

4. CONVERGENCE RESULTS

In this section, we propose a three steps iterative algorithm for approximating the fixed
point of generalized mean nonexpansive mapping and establish the strong convergence
of the algorithm. The propose iterative algorithm is given as follows: For each zo € C,
the sequence {z,} in C is defined by

zn = (1 = yn)xn + v Tan,
Yn =T[(1 — an)zn + anTz), (4.15)
Tnt1 =T[(1 = Bp)Tzn + BpTynl, n >0,

where {ay,}, {8} and {7,} are sequences in [0, 1].

Lemma 4.1. Let C be a nonempty closed and convexr subset of a uniformly convex
Banach space X and T : C — C be a generalized mean nonerpansive mapping with

F(T) # 0. Suppose that {x,} is defined by ({-13]), where {Bn}, {vn} and {a,} are se-
quences in [0,1]. Then the following hold:

(i) {zn} is bounded.
(i) lmy, oo ||xn — x*|| exists for all z* € F(T).
Proof. Using ([@I5) and Proposition Bl we have
lzn — 2"l < (1 =)0 — ™| + || Tzn — 27|
< (L =7)llzn — 2% + llzn — 27| (4.16)
< len — 2.
Using (£I5), (£I6) and Proposition Bl we have
[yn — 2" = IT(1 = an)zn + anTzn] — 27|
< (1= an)llzn = 27| + anl|Tzn — 27|

< (= an)llzn — 27| + anllzn — 27| (4.17)
= llzn — 27|
= [lzn — 27|

Using (£I5), (A17) and Proposition Bl we have
@ns1 — ™| = IT[(1 = Bn) T2 + BuTyn] — 27|
<A =BTz — || + Bl Tyn — ™|
< (1 =Bn)llzn — [ + Bullyn — 27|
< (1 =Bn)llen — 2™ + Bullen — 2| (4.18)

= [Jen —27].
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This shows that {|z, — 2*||} is bounded and non-decreasing for all z* € F(T). Thus
{z,} is bounded and lim,, , ||z, — 2*|| exists. O

Lemma 4.2. Let C be a nonempty closed and convex subset of a uniformly convex
Banach space X and T : C — C be a generalized mean nonerpansive mapping with

F(T) # 0. Suppose that {x,,} is defined by ({.13]), where {Bn}, {vn} and {a,} are se-
quences in [0, 1], then lim, || Tz, — x,|| = 0.

Proof. Since F(T') # 0, let z* € F(T'). We have established in Lemma 1] that {z,} is
bounded and lim,, o ||, — 2*| exists for all * € F(T'). Suppose that lim, o ||z, —
x*|| = c. If we take ¢ = 0, then we are done. Thus, we consider the case where ¢ > 0.
From ([@I6), we have ||z, — ™| < ||z, — ™|, it then follows that

limsup ||z, —z"|| < c. (4.19)
n—oo

Also, using Proposition Bl we have | Tz, — *|| < ||z, — ™|, it then follows that

limsup | Tz, — z*|| < c. (4.20)

n—r00

Using ([I7) and ([IS), we have

|Zn+1 — 2| = [|T[(1 = Bn)Tzn + BnTyn] — 2"
< (A= Bu)llzn — 2" + Bullyn — 27|
< (1= Bu)llzn — 2| + Bullzn — 2™

Taking the liminf,,_, ., of both sides and rearranging the inequalities, we have
¢ <liminf ||z, — a*|. (4.21)
n—roo
From (@I9) and ([@21]), we obtain that lim, . ||z, — 2*|] = ¢. That is,

lim |[(1—vn)zn + WTx, — 2% =c.

n—oo

Thus by Lemma 24] we have
lim @, — Tz,| = 0.
n—oo
O

Theorem 4.3. Let X be a uniformly convex Banach space which satisfies the Opial’s
condition and C a nonempty closed convex subset of X. Let T : C' — C' be a generalized
B

mean nonezpansive mapping such that X = 5 € [0,1] with F(T) # 0 and {z,} be a

sequence defined by Iteration {[-12)). Then {x,} converges weakly to a fived point of T.

Proof. In Lemma ] we show that lim,, o ||, — 2*|| exists and that {z,} is bounded.
Now, since X is uniformly convex, we can find a subsequence say {z,,} of {x,} that
converges weakly in C. We now show that {x,,} has a unique weak subsequential limit
in F(T). Let u and v be weak limits of the subsequences {z,,} and {z,,} of {z,}
respectively. By Theorem 2] we have that lim, o ||, — T2,|| = 0 and T — T is
demiclosed with respect to zero by Theorem [B.7], we therefore have that Tu = u. Using
similar approach, we can show that v = Tv. In what follows, we show uniqueness. From
Lemma ETl we have that lim,, . ||z, — v|| exists. Now, suppose that v # v, then by
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Opial’s condition,

Jim 2y —ull = lim {2, —uf

A

lim ||@,, — ]|

k— oo

= lim |x, — v
n—00

S
j—o00

< lim ||z, — ull
j‘)OO

= lim |x, —u].
n—00

This is a contradiction, so u = v. Hence {x,} converges weakly to a fixed point of F(T)
and this completes the proof. 0

Theorem 4.4. Let C' be a nonempty closed convex subset of a uniformly convex Banach
space X. Let T : C' — C be a generalized mean nonexpansive mapping on C, {x,,} defined
by (£10) and F(T) # 0. Then {x,} converges strongly to a point of F(T') if and only if
liminf,, o d(zp, F(T)) = 0 where d(z, F(T)) = inf{||z — 2*|| : * € F(T)}.

Proof. Suppose that {z,,} converges to a fixed point, say 2* of T. Then lim,, o d(2,, 2*) =
0, and since 0 < d(zy, F(T)) < d(xy,x*), it follows that lim,_,oc d(x,, F(T)) = 0. There-
fore, liminf,, oo d(xy, F(T)) = 0.

Conversely, suppose that liminf, . d(z,, F(T)) = 0. From Lemma E1l we have that
limy, o0 ||2n — 2*|| exists and that lim,,_ o d(z,, F(T')) exists for all * € F(T). By our
hypothesis, liminf,,_, d(z,, F(T)) = 0, so for any give € > 0, there exists ng € N, such
that for all n > ng, we have d(z,, F(T)) < e. We now show that {z,} is a Cauchy
sequence in C. Since, lim,, o d(z,, F(T)) = 0, for any give ¢ > 0, there exists ng € N
such that for n,m > ng, we have

d(m, F(T))

IN
NS NN e

d(wn, F(T))

IN

Therefore, we have
[€m =l < ll2m — 2% + [len — 7]

< (@, P(T)) + d(wn, F(T)

< € € -

>~ 5 + 5 = €.
Hence {z,} is Cauchy in C. Since C is closed, then there exists a point x; € C such that
lim,, o0 @, = 1. Since lim,, o d(2,, F(T)) = 0, it follows that lim,, ,~ d(x1, F(T)) = 0.
Thus z; € F(T) Since F(T) is closed. O

Theorem 4.5. Let C be a nonempty closed convex subset of a uniformly convexr Banach
space X. Let T : C' — C be a generalized mean nonexpansive mapping, {x,} defined by
(-13) and F(T) # 0. Let T satisfy condition (I), then {x,} converges strongly to a fized
point of T.

Proof. From Lemma [£1] we have lim,, ., ||z, — F(T)|| exists and by Theorem 2] we
have lim,, o ||@y, — Txy|| = 0. Using the fact that

0< li_)m fld(z, F(T)) < ILm |z — Txy|| =0 Vo € C,

we have that lim,,—, f(d(x,, F(T))) = 0. Since f is nondecreasing with f(0) = 0 and

f(t) > 0fort € (0,00), it then follows that lim,, . d(z,, F'(T)) = 0. Hence, by Theorem
A4 {x,} converges strongly to x* € F(T). O
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5. NUMERICAL EXAMPLES

Example 5.1. Define a mapping 7' : [0,1] — [0, 1] as

Ty — 1—4:1:'1f z €10,1/5), (5.22)
2 i z e [1/5,1].

Then T is a generalized mean nonexpansive mapping but not mean nonexpansive.

Proof. Suppose T is mean nonexpansive, then there exist nonnegative real numbers a
and b, such that a +b < 1 and |Tz — Ty| < a|lz — y|| + bllx — Ty|| for all =,y € [0, 1].
Now suppose x = 1 and y = 0, we then have that
[Tz — Tyl =0

< allz — yl[ + bllz — Ty

=a.
So a <1 and b=0. Thus T is nonexpansive, but this contradicts the fact that T is not
continuous. Hence 7' is not mean nonexpansive.

To show that 7" is generalized mean nonexpansive, it suffices to show that 7" is Suzuki
generalized nonexpansive. To do this, we consider the following cases:

Case 1: Let x € [0, £), as such, we have that 1||:1c—Tgc|| = 1222 ¢ (3, 1]. By definition,
1
2

for—||x—Tx||<||33—y|| we must have that y > 3 thatlsye[,] nd so, we have
or +y—1 1
Tor—Ty| =220 2| < 2
o -7yl = |2 < L
and
le =yl =1z —9l > |5 — 5| = =
-yl =z — - — ===
Y Y2572 T 10

Thus we have that 3|z — Tz| < ||z — y|| = ||T2z — Ty|| < [z — y].

Case 2: Let z € [L,1], as such, we have that |z — Tz|| = 222% € [0, 2]. By definition,
for ||z — Tz|| < ||96 — yl|, we must have that CELH 22 < |z — y|. We have two possibilities.
Case 2a: If # < y, we have that 222 <y — , as such we must have that 2832 <y =
y € [$2.1] C [£,1]. And so, we obtain that
r+4 y+4 1
_ 2T Dyl < —ll.
P <)

Thus we have that 1|z — Tz| < ||z — y|| = ||T2 — Ty|| < ||z — y].

[Tz =Tyl =

712

Case 2b: If 2 > y, we have that 2222 < 2 —y, as such, we have y < =y e [F, 1]
We only need to consider the case in which y € [0,1]. For y < 7””5 2, we obtain that
x> 57’7+2 which implies that z € [2, 1], as such we consider = € [2,1] and y € [0, 1]. For
x € [2,1] and y € [£, 1] have been considered in case 2a. So, we consider z € [2,1] and
y € [0, 2). To start with, suppose = € [2, 2] and y € [0, 1), we therefore have that
x+4 r+by—1 2
Tz —Ty| = (g = 2T 2
-7yl = |25 - - = [ <
and
le =yl =l =yl > |5~ 2| = =
Xr — = — - — = = —.
=== 775" 3
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Thus we have that 3|z — Tz| < ||z — y|| = ||T2z — Ty|| < [z — y].
Also for z € [2,1] and y € [0, 1), we therefore have that
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7o =7yl = [ZE - - = [P <
and
o= vl =lo-ul> |3 - 3[ =3
5 5 5
Thus we have that 1|z — Tz| < ||z — y|| = [Tz — Ty|| < ||z — y|. Hence T is Suzuki

generalized nonexpansive and so a generalized mean nonexpansive.
In what follows, we numerically compare our new iteration process with some existing

iterative processes. Taking o, = \/ETnﬁ’% = \/%Jrg,ﬂn = le and zo = 0.9.
Step | Our Algorithm | Karakay et al. Algorithm | M. Algorithm | Picard-S Algorithm
o 0.9 0.9 0.9 0.9
x1 0.9967649 0.9960000 0.9960000 0.9960000
Z2 0.9999356 0.9999040 0.9999040 0.9998602
T3 1 0.9999987 0.9999987 0.9999954
x4 1 1 1 0.9999999
75 1 1 1 1
This comparison shows that the iterative processes ([d.I3]) converges faster than the it-

erative processes (L4), (L3) and (L6). More so, the iterative processes (L.3) and (L.6])
converges at the same time. ]

6. CONCLUSION

In this paper, we introduced a class of mappings, called the generalized mean nonex-
pansive mappings and obtained some fixed point results for this class of mappings. In
addition, we proposed an iterative algorithm for approximating the fixed point of this
class of mappings and established the convergence of the iterative algorithm in uniformly
convex Banach spaces. Furthermore, we show that the proposed iterative process is more
efficient and converges faster than some iterative processes in literature.
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