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ON FIXED POINT RESULTS FOR A CLASS OF GENERALIZED

MEAN NONEXPANSIVE MAPPINGS

A. A. MEBAWONDU, C. IZUCHUKWU, K. O. OYEWOLE, AND O. T. MEWOMO

Abstra
t. In this paper, we introdu
e a new 
lass of generalized mean nonexpan-

sive mappings and propose an iterative algorithm for approximating the �xed points

of this 
lass of mappings in the frame work of uniformly 
onvex Bana
h spa
es. We

establish some �xed point results for this 
lass of mappings and prove the 
onver-

gen
e of the propose iterative algorithm. Finally, numeri
al experiment is presented

to demonstrate the e�
ien
y of our algorithm in 
omparison with other existing

algorithms in literature.

Ââîäèòüñÿ íîâèé êëàñ óçàãàëüíåíèõ íåðîçòÿãóþ÷èõ ó ñåðåäíüîìó âiäîáðàæåíü,

äëÿ ÿêèõ ïðîïîíó¹òüñÿ iòåðàöiéíèé àëãîðèòì íàáëèæåíîãî çíàõîäæåííÿ íåðóõîìèõ

òî÷îê â êîíòåêñòi ðiâíîìiðíî îïóêëèõ áàíàõîâèõ ïðîñòîðiâ. Äëÿ öüîãî êëàñó

âiäîáðàæåíü äîâåäåíi òåîðåìè ïðî íåðóõîìó òî÷êó, à òàêîæ çáiæíiñòü çàçíà÷åíîãî

àëãîðèòìó. Øëÿõîì ÷èñåëüíîãî åêñïåðèìåíòó íàø àëãîðèòì ïîðiâíþ¹òüñÿ ç

âiäîìèìè.

1. Introdu
tion

Bana
h 
ontra
tion prin
iple 
an be seen as the pivot of the theory of �xed points and

appli
ations. The theory of �xed points plays an important role in nonlinear fun
tional

analysis and is very useful in establishing the existen
e and uniqueness results for nonlin-

ear di�erential and integral equations. The importan
e of Bana
h 
ontra
tion prin
iple


annot be over emphasized in the study of �xed point theory and appli
ations, see [6℄.

Several authors have generalized the well 
elebrated Bana
h 
ontra
tion prin
iple by 
on-

sidering a 
lass of nonlinear mappings and spa
es whi
h are more general than the 
lass

of 
ontra
tion mappings and metri
 spa
es (see [3, 10, 26, 27℄ and the referen
es therein).

One of su
h generalizations of the 
ontra
tion mapping in the sense of Bana
h is the

well-known nonexpansive mapping. In 1965, Browder [8℄, Gohde [13℄ and Kirk [23℄ gave

some existen
e results for the �xed points of nonexpansive mappings and these were later

generalized by other authors (see, [35, 37℄).

In 1975, Zhang [44℄ introdu
ed and studied the 
lass of mean nonexpansive mappings in

Bana
h spa
es. He proved the unique existen
e of �xed points for this 
lass of mappings

in Bana
h spa
es with normal stru
ture. For a Bana
h spa
e X and a nonempty, 
losed

and 
onvex subset C of X, we re
all that a mapping T : C → X is said to be mean

nonexpasive if there exist a, b ≥ 0 with a+ b ≤ 1 su
h that

‖Tx− Ty‖ ≤ a‖x− y‖+ b‖x− Ty‖, (1.1)

for all x, y ∈ C.
In 2007, Wu [43℄ proved that if a + b < 1, then the mean nonexpansive mapping T
has a unique �xed point. Zuo in [46℄ proved that a mean nonexpansive mapping has

approximate �xed point sequen
e, and under some suitable 
onditions, he obtained some

existen
e and uniqueness theorems for �xed points of mean nonexpansive mapping.
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In 2008, Suzuki [37℄ introdu
ed a 
lass of mappings satisfying 
ondition (C), 
alled the

Suzuki generalized nonexpansive mappings and proved some �xed point results for this


lass of mappings.

De�nition 1.1. Let C be a nonempty subset of a Bana
h spa
eX, a mapping T : C → X
is said to satisfy 
ondition (C) on C, if for all x, y ∈ C,

1

2
‖Tx− x‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

In 2010, Nakprasit [29℄ gave an example of a mapping that is mean nonexpansive but

not Suzuki generalized nonexpansive and an example of a mapping that is Suzuki gen-

eralized nonexpansive but not mean nonexpansive. He showed that an in
reasing mean

nonexpansive mapping implies Suzuki generalized nonexpansive mapping.

Remark 1.2. We note from the results obtained in [29℄ that the 
lass of mean nonex-

panisve mappings and the 
lass of Suzuki generalized nonexpansive mappings are two

di�erent 
lasses of mappings. Thus, it is natural to ask the following question: Can we

�nd a 
lass of mappings that will generalize these 
lasses of mappings, thereby bridging

the gap between these two 
lasses of mappings?

In 2011, Falset et al. [11℄ introdu
ed another 
lass of mappings satisfying 
ondition (Cλ)
and established some �xed point results for this 
lass of mappings. Mappings satisfying

(Cλ) are proper generalization of mappings satisfying 
ondition (C).

De�nition 1.3. Let C be a nonempty subset of a Bana
h spa
e X and λ ∈ (0, 1). A
mapping T : C → X is said to satisfy 
ondition (Cλ) on C if for all x, y ∈ C,

λ‖Tx− x‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

Remark 1.4. It is easy to see that if λ = 1
2 , we obtain Suzuki generalized nonexpansive

mapping. It is also worth mentioning that if we apply similar argument as in [29℄, we


an obtain an example of a mapping that is mean nonexpansive but does not satisfy-

ing 
ondition (Cλ) and like-wise a mapping satisfying 
ondition (Cλ) that is not mean

nonexpansive. Thus, we ask: Can we �nd a 
lass of mappings that will generalize these


lasses of mappings?

Zhou and Cui in [45℄ studied the existen
e of �xed points for mean nonexpansive map-

pings and obtained the demi
losedness prin
iple for this 
lass of mappings in CAT(0)

spa
es. In addition, they proved a ∆-
onvergen
e and strong 
onvergen
e results of

Ishikawa iteration pro
ess for mean nonexpansive mappings under some suitable 
ondi-

tions. For some re
ent generalizations of mean nonexpansive mappings, see ([9, 25℄ and

the referen
e therein).

Several authors have introdu
ed di�erent iterative pro
esses for approximating the �xed

points of nonexpansive and other nonlinear mappings in Hilbert, Bana
h, Hadamard

and p-uniformly 
onvex metri
 spa
es, see [4, 5, 16, 17, 21, 31, 32, 38, 39, 41℄. In

general, developing a faster and more e�
ient iterative algorithms for approximating

�xed points of nonlinear mappings is still an a
tive area of resear
h in nonlinear fun
tional

analysis and �xed point theory. The Mann iterative pro
ess [24℄ is one of the oldest and

fundamental iterative pro
ess, whi
h is given as follows:

{

x0 ∈ C,

xn+1 = (1− αn)xn + αnTxn, n ≥ 0,
(1.2)

where {αn} is a sequen
e in (0, 1) and T is any nonlinear mapping on C.
In [19℄, Kadioglu and Yildirim introdu
ed a Pi
ard Normal S-iteration pro
ess and show

that the rate of 
onvergen
e of this iteration pro
ess is faster than that of Normal S-

iteration pro
ess. This iteration pro
ess is given as follows: For ea
h x0 ∈ C, the
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sequen
e {xn} in C is de�ned by











zn = (1− βn)xn + βnTxn,

yn = (1− αn)zn + αnTzn,

xn+1 = Tyn, n ≥ 0,

(1.3)

where {αn} and {βn} are sequen
es in (0, 1) and T is a nonlinear mapping on C.
In 2014, Gursoy and Karakay in [14℄ introdu
ed the following iteration pro
ess 
alled

Pi
ard-S iteration: For ea
h x0 ∈ C, the sequen
e {xn} in C is de�ned by











zn = (1− αn)xn + αnTxn,

yn = (1 − βn)Txn + βnTzn,

xn+1 = Tyn, n ≥ 0,

(1.4)

where {αn} and {βn} are sequen
es in (0, 1) and T is a nonlinear mapping on C. They
proved that this iterative pro
ess 
onverges faster than the Mann [24℄, Ishikawa [15℄,

Noor [30℄, Abbas et al. [1℄, and some other existing iterative s
hemes in literature.

In 2017, Karakaya et al. in [20℄ introdu
ed the following iteration pro
ess: For ea
h

x0 ∈ C, the sequen
e {xn} in C is de�ned by











zn = Txn,

yn = (1− αn)zn + αnTzn,

xn+1 = Tyn, n ≥ 0,

(1.5)

where {αn} is a sequen
e in (0, 1). They proved that this iterative pro
ess 
onverges

faster than Mann [24℄, Ishikawa [15℄, Noor [30℄, Abass et al. [1℄ and some other existing

iterative s
hemes in literature.

In 2018, Ullah et al. [42℄ introdu
ed the following iteration pro
ess 
alled the M-iteration

pro
ess: For ea
h x0 ∈ C, the sequen
e {xn} in C is de�ned by











zn = (1− αn)xn + αnTxn,

yn = Tzn

xn+1 = Tyn, n ≥ 0,

(1.6)

where {αn} is a sequen
e in (0, 1). They proved that this iterative pro
ess 
onverges

faster than Mann [24℄, Ishikawa [15℄, Noor [30℄, Abass et al. [1℄, iterative pro
ess (1.4),

iterative pro
ess (1.3) and some existing iterative s
hemes in literature. It was shown in

[2℄ that the iterative pro
ess (1.5) and (1.6) have the same rate of 
onvergen
e.

Remark 1.5. Sin
e it is more desirable to 
onstru
t iterative pro
esses that are more

e�
ient and have higher rate of 
onvergen
e, we then ask: Can we 
onstru
t a more

e�
ient iterative pro
ess with better rate of 
onvergen
e than the existing ones?

It is well-known that nonexpansive mappings are 
ontinuous on their domain and the


ontinuity nature of this 
lass of mappings make it less important in theoreti
al and ap-

pli
ation wise. On the other hand, it has been shown that mean nonexpansive mappings,

Suzuki generalized nonexpansive mappings, mapping satisfying 
ondition (Cλ) need not

be 
ontinuous on their domain. As su
h, these 
lasses of mappings have great impor-

tan
e in theoreti
al and appli
ation-wise 
ompare to nonexpansive mappings. Motivated

by the resear
h work des
ribed above and the 
urrent resear
h interest in this dire
tion,

our purpose in this paper is to introdu
e a new 
lass of generalized mean nonexpansive

mappings and propose a new three steps iteration pro
ess for approximating the �xed

point of this 
lass of mappings in uniformly 
onvex Bana
h spa
es. Using this iteration

pro
ess, we obtain some 
onvergen
e results for approximating the �xed points of this
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lass of mappings. Furthermore, we show that our proposed iterative s
heme performs

faster than some existing iterative s
hemes in the literature.

2. Preliminaries

Let X be a Bana
h spa
e with dimension greater than or equal to 2. The fun
tion

δX : (0, 2] → [0, 1] de�ned by

δX(ǫ) = inf

{

1− ‖
1

2
(x+ y)‖ : ‖x‖ = 1; ‖y‖ = 1, ǫ = ‖x− y‖

}

is 
alled the modulus of 
onvexity of X. If δX(ǫ) > 0 for all ǫ ∈ (0, 2], then X is 
alled

uniformly 
onvex. Let X be a Bana
h spa
e, X∗
its dual and S(X) = {x ∈ X : ‖x‖ = 1}.

The value of f ∈ X∗
at x ∈ X is denoted by 〈x, f〉.

De�nition 2.1. (1) The multivalued mapping J : X → 2X
∗

de�ned by

J(x) =

{

f ∈ X∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2
}

is 
alled the normalized duality mapping.

(2) A Bana
h spa
e X is 
alled smooth if limt→0
‖x+ty‖−‖x‖

t
exists for ea
h x, y ∈

S(X). In this 
ase, the norm of X is 
alled Gateaux di�erentiable. It is known

that J is single valued whenever X is smooth.

(3) A Bana
h spa
e X is Fre
het di�erentiable, if for ea
h x ∈ S(X), the limit above

exists and is attained uniformly for y ∈ S(X). In this 
ase, we have that for all

x, h ∈ X,

〈h, J(x)〉 +
1

2
‖x‖2 ≤

1

2
‖x+ h‖2 ≤ 〈h, J(x)〉 +

1

2
‖x‖2 + b(‖h‖),

where b is an in
reasing fun
tion de�ned on [0,∞) su
h that limt↓0
b(t)
t

= 0.
(4) A Bana
h spa
e X is said to have Opial property [33℄, if for every weakly 
on-

vergent sequen
e {xn} in X with weak limit y, we have

lim inf
n→∞

‖xn − y‖ < lim inf
n→∞

‖xn − z‖∀z ∈ X,

with y 6= z.
Let C be a nonempty subset of a Bana
h spa
e X and {xn} a bounded sequen
e in

X. For all x, y ∈ X, we de�ne

(1) asymptoti
 radius of {xn} at x by r(x, {xn}) = lim supn→∞ ‖xn − x‖;
(2) asymptoti
 radius of {xn} relative to C by r(C, {xn}) = inf{r, (x, {xn}) : x ∈ C};
(3) asymptoti
 
enter of {xn} relative to C byA(C, {xn}) = {r(x, {xn}) = r(C, {xn}) :

x ∈ C}.

We note that A(C, {xn}) is not empty and more so, if X is uniformly 
onvex, then

A(C, {xn}) has exa
tly one point (see [12℄).

In the sequel, we refer to F (T ) as the set of �xed points of T.

De�nition 2.2. Let C be a subset of a normed spa
e X. A mapping T : C → C is said

to satisfy 
ondition (I) if there exists a nonde
reasing fun
tion f : [0,∞) → [0,∞) su
h
that f(0) = 0 and f(t) > 0 ∀ t ∈ (0,∞) and that ‖x−Tx‖ ≥ f(d(x, F (T ))) for all x ∈ C,
where d(x, F (T )) denotes distan
e from x to F (T ).

De�nition 2.3. Let C be a nonempty subset of a Bana
h spa
e X and {xn} be a

sequen
e in X. Then {xn} is said to be Fejer monotone with respe
t to C, if for all x ∈ C
and n ∈ N, we have

‖xn+1 − x‖ ≤ ‖xn − x‖.
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Lemma 2.4. [36℄ Let X be a uniformly 
onvex Bana
h spa
e and 0 < p ≤ tn ≤ q < 1
for all n ∈ N. Let {xn} and {yn} be two sequen
es in X su
h that lim supn→∞ ‖xn‖ ≤ c,
lim supn→∞ ‖yn‖ ≤ c and limn→∞ ‖tnxn + (1 − tn)yn‖ = c holds for some c ≥ 0. Then
limn→∞ ‖xn − yn‖ = 0.

3. Generalized Mean Nonexpansive Mappings

In this se
tion, we introdu
e a 
lass of mappings 
alled the generalized mean nonexpansive

mappings. We give some basi
 properties and demi
losedness prin
iple for this 
lass of

mappings.

De�nition 3.1. Let C be a nonempty subset of a Bana
h spa
e X. A mapping T : C →
X will be 
alled generalized mean nonexpansive mapping if there exist a, b, λ ∈ [0, 1],
with a+ b ≤ 1 su
h that for all x, y ∈ C,

λ‖Tx− x‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ a‖x− y‖+ b‖x− Ty‖. (3.7)

Remark 3.2. It is easy to see that

(1) nonexpansive mappings are generalized mean nonexpansive,

(2) mean nonexpansive mappings are generalized mean nonexpansive,

(3) mappings satisfying 
ondition (C) are generalized mean nonexpansive,

(4) mappings satisfying 
ondition (Cλ) are generalized mean nonexpansive.

The following example shows that the 
onverse of these statements are not always

true.

Example 3.3. Suppose X = R and C = {0, 0.1, 0.2, · · · , 4}. Let T : C → R be a

mapping de�ned by

Tx =











3
2 if x ∈ [0, 3],

1 if x ∈ (3, 4),

0 if x = 4.

(3.8)

Then T is a generalized mean nonexpansive but does not satisfy 
ondition (Cλ) and


onsequently T does not satisfy 
ondition (C) and not a nonexpansive mapping.

Proof. To show that T is a generalized mean nonexpansive mapping, we take λ = 1
30 and

a = b = 1
2 and 
onsider the following 
ases:

Case 1: Suppose x, y ∈ [0, 3]. For this 
ase, we 
onsider the following sub
ases.

Case 1(a): Suppose x = y.

λ‖x− Tx‖ =
1

30
|x− 1.5| ≥ 0 = ‖x− y‖.

If

λ‖x− Tx‖ =
1

30
|x− 1.5| = 0 = ‖x− y‖,

we have

‖Tx− Ty‖ = 0 ≤
1

2
‖x− y‖+

1

2
‖x− Ty‖.

On the other hand, if

λ‖x− Tx‖ =
1

30
|x− 1.5| > 0 = ‖x− y‖.

Then, we have nothing to show.

Case 1(b): Suppose x 6= y.

λ‖x− Tx‖ =
1

30
|x− 1.5| ≤ 0.1 ≤ ‖x− y‖.
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We then have that

‖Tx− Ty‖ = 0 ≤
1

2
‖x− y‖+

1

2
‖x− Ty‖.

Case 2: Suppose x ∈ [0, 3] and y ∈ (3, 4).

λ‖x− Tx‖ =
1

30
|x− 1.5| ≤ 0.1 ≤ ‖x− y‖.

We then have that

‖Tx− Ty‖ =
1

2
≤

1

2
‖y − Ty‖

=
1

2
‖y − x+ x− Ty‖

≤
1

2
‖x− y‖+

1

2
‖x− Ty‖.

Case 3: Suppose x ∈ [0, 3] and y = 4.

λ‖x− Tx‖ =
1

30
|x− 1.5| < 1 ≤ ‖x− y‖.

We then have that

‖Tx− Ty‖ = 1.5 ≤
1

2
‖y − Ty‖

=
1

2
‖y − x+ x− Ty‖

≤
1

2
‖x− y‖+

1

2
‖x− Ty‖.

Case 4: Suppose x ∈ (3, 4) and y = [0, 3].

λ‖x− Tx‖ =
1

30
|x− 1| ≤ ‖x− y‖.

We then have that

‖Tx− Ty‖ =
1

2
≤

1

2
‖2x− (y + Ty)‖

=
1

2
‖x− y + x− Ty‖

≤
1

2
‖x− y‖+

1

2
‖x− Ty‖.

Case 5: Suppose x ∈ (3, 4) and y = 4.

λ‖x− Tx‖ =
1

30
|x− 1| < 0.1 ≤ ‖x− y‖.

We then have that

‖Tx− Ty‖ = 1 =
1

2
‖2x− (y + Ty)‖

=
1

2
‖x− y + x− Ty‖

≤
1

2
‖x− y‖+

1

2
‖x− Ty‖.

Case 6: Suppose x = 4 and y ∈ [0, 3].

λ‖x− Tx‖ =
1

30
|4− 0| < 1 ≤ ‖x− y‖.
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We then have that

‖Tx− Ty‖ = 1.5 ≤
1

2
‖2x− (y + Ty)‖

=
1

2
‖x− y + x− Ty‖

≤
1

2
‖x− y‖+

1

2
‖x− Ty‖.

Case 7: Suppose x = 4 and y ∈ (3, 4).

λ‖x− Tx‖ =
1

30
|4− 0| ≤ ‖x− y‖.

We then have that

‖Tx− Ty‖ = 1 ≤
1

2
‖2x− (y + Ty)‖

=
1

2
‖x− y + x− Ty‖

≤
1

2
‖x− y‖+

1

2
‖x− Ty‖.

It is easy to see that the other 
ases follows similar approa
h. Hen
e, T is a generalized

mean nonexpansive mapping.

However, we now show that T does not satisfy 
ondition Cλ. For any λ ∈ (0, 1), x = 2.7
and y = 4, we have that

λ‖x− Tx‖ = λ(1.2) < 1.2 < 1.3 = ‖x− y‖,

but

‖Tx− Ty‖ = 1.5 > 1.3 = ‖x− y‖.

Hen
e, T does not satisfy 
ondition Cλ and 
onsequently T does not satisfy 
ondition

(C) and T is not a nonexpansive mapping. �

Proposition 3.1. Let C be a nonempty subset of a Bana
h spa
e X and T : C → X be a

generalized mean nonexpansive mapping with F (T ) 6= ∅. Then T is quasi-nonexapansive.

Proof. Let x ∈ F (T ) and y ∈ C,

λ‖Tx− x‖ = 0 ≤ ‖x− y‖.

So, we have

‖x− Ty‖ = ‖Tx− Ty‖ ≤ a‖x− y‖+ b‖x− Ty‖

⇒ (1− b)‖x− Ty‖ ≤ (1 − b)‖x− y‖

⇒ ‖x− Ty‖ ≤ ‖x− y‖.

Hen
e, T is quasi-nonexpanisve. �

Theorem 3.4. Let C be a nonempty subset of a Bana
h spa
e X and T : C → X be

a generalized mean nonexpansive mapping. Then F (T ) is 
losed. Furthermore, if X is

stri
tly 
onvex and C is 
onvex, then F (T ) is 
onvex.

Proof. Let {xn} be a sequen
e in F (T ) su
h that {xn} 
onverges to some y ∈ C. We

show that y ∈ F (T ). Sin
e

λ‖Txn − xn‖ = 0 ≤ ‖xn − y‖,
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so, we have

‖xn − Ty‖ = ‖Txn − Ty‖

≤ a‖xn − y‖+ b‖xn − Ty‖

⇒ ‖xn − Ty‖ ≤ ‖xn − y‖.

Sin
e lim
n→∞

‖xn − y‖ = 0, we obtain

lim
n→∞

‖xn − Ty‖ = 0.

As su
h, we have that

Ty = y.

Hen
e, F (T ) is 
losed.
Now suppose that X is stri
tly 
onvex and C is 
onvex. We show that F (T ) is 
onvex.
Let β ∈ (0, 1) and x, y ∈ F (T ) with x 6= y. Sin
e

λ‖x− Tx‖ = 0 ≤ ‖x− z‖,

we obtain

‖x− Tz‖ = ‖Tx− Tz‖ ≤ a‖x− z‖+ b‖x− Tz‖

⇒ ‖x− Tz‖ ≤ ‖x− z‖. (3.9)

Using similar argument, we have

‖y − Tz‖ ≤ ‖y − z‖. (3.10)

Let z = βx+ (1− β)y ∈ C, for β ∈ [0, 1], then from (3.9) and (3.10), we obtain

‖x− y‖ ≤ ‖x− Tz‖+ ‖Tz − y‖

≤ ‖x− z‖+ ‖z − y‖ (3.11)

= ‖x− (βx+ (1 − β)y)‖+ ‖(βx+ (1 − β)y − y‖

≤ (1 − β)‖x− x‖+ β‖x− y‖+ (1− β)‖x− y‖+ β‖y − y‖

= ‖x− y‖.

Using the fa
t thatX is stri
tly 
onvex, there exists µ ∈ [0, 1] su
h that Tz = µx+(1−µ)y.
Now

(1− µ)‖x− y‖ = ‖Tx− Tz‖ ≤ ‖x− z‖ = (1− β)‖x− y‖ (3.12)

and

µ‖x− y‖ = ‖Ty − Tz‖ ≤ ‖x− z‖ = β‖x− y‖. (3.13)

From the above inequalities, we have that 1 − µ ≤ 1 − β and µ ≤ β, this implies that

µ = β. Thus, z ∈ F (T ), whi
h implies that F (T ) is 
onvex. �

Lemma 3.5. Let C be a nonempty subset of a Bana
h spa
e X. Suppose that T : C → C
is a generalized mean nonexpansive mapping on C. Then for all x, y ∈ C and for β ∈ [0, 1],
we have the following

(1) ‖T 2x− Tx‖ ≤ ‖Tx− x‖,

(2) either

β
2 ‖x− Tx‖ ≤ ‖x− y‖ or

β
2 ‖Tx− T 2x‖ ≤ ‖Tx− y‖,

(3) either ‖Tx−Ty‖ ≤ a‖x−y‖+b‖x−Ty‖ or ‖T 2x−Ty‖ ≤ a‖Tx−y‖+b‖Tx−Ty‖.

Proof. (1) For x ∈ C, we have that λ‖Tx− x‖ ≤ ‖Tx− x‖, whi
h implies that

‖T 2x− Tx‖ = ‖T (Tx)− Tx‖ ≤ a‖Tx− x‖+ b‖Tx− Tx‖ ≤ ‖Tx− x‖.
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(2) Suppose on the 
ontrary that

β
2 ‖x−Tx‖ > ‖x− y‖ or β

2 ‖Tx−T 2x‖ > ‖Tx− y‖
for some x, y ∈ C. Now, using (1), observe that

‖x− Tx‖ ≤ ‖x− y‖+ ‖y − Tx‖

<
β

2
‖x− Tx‖+

β

2
‖Tx− T 2x‖

≤
β

2
‖x− Tx‖+

β

2
‖x− Tx‖

= β‖x− Tx‖

≤ ‖x− Tx‖,

whi
h is a 
ontradi
tion. Thus, we obtain the desired result.

(3) The proof of (3) follows from (2). Thus we omit it.

�

Lemma 3.6. Let C be a nonempty subset of a Bana
h sp
e X and T : C → C a

generalized mean nonexpansvie mapping. Then for all x, y ∈ C,

‖x− Ty‖ ≤
(2 + a+ b)

(1− b)
‖x− Tx‖+ ‖x− y‖.

Proof. From Lemma 3.5, we have for x, y ∈ C that ‖Tx− Ty‖ ≤ a‖x− y‖+ b‖x− Ty‖
or ‖T 2x− Ty‖ ≤ a‖Tx− y‖+ b‖Tx− Ty‖.

Considering ‖Tx− Ty‖ ≤ a‖x− y‖+ b‖x− Ty‖, we obtain that

‖x− Ty‖ ≤ ‖x− Tx‖+ ‖Tx− Ty‖

≤ ‖x− Tx‖+ a‖x− y‖+ b‖x− Ty‖

≤ ‖x− Tx‖+ (1− b)‖x− y‖+ b‖x− Ty‖

⇒‖x− Ty‖ ≤
1

(1− b)
‖x− Tx‖+ ‖x− y‖ ≤

(2 + a+ b)

(1− b)
‖x− Tx‖+ ‖x− y‖.

Also, 
onsidering ‖T 2x − Ty‖ ≤ a‖Tx− y‖ + b‖Tx− Ty‖, using (1) of Lemma 3.5, we

obtain that

‖x− Ty‖ ≤ ‖x− Tx‖+ ‖Tx− T 2x‖+ ‖T 2x− Ty‖

≤ ‖x− Tx‖+ ‖x− Tx‖+ a‖Tx− y‖+ b‖Tx− Ty‖

≤ 2‖x− Tx‖+ a‖Tx− x‖+ a‖x− y‖+ b‖Tx− x‖ + b‖x− Ty‖

≤ (2 + a+ b)‖x− Tx‖+ (1− b)‖x− y‖+ b‖x− Ty‖

⇒‖x− Ty‖ ≤
(2 + a+ b)

(1− b)
‖x− Tx‖+ ‖x− y‖.

Thus in both 
ases, we obtain the desired result. �

Theorem 3.7. Let C be a nonempty 
losed subset of a Bana
h spa
e X with Opial

property and T : C → C be a generalized mean nonexpansive mapping with λ = β
2 , β ∈

[0, 1]. If {xn} 
onverges weakly to x and limn→∞ ‖Txn − xn‖ = 0, then Tx = x. That is
I − T is demi
losed at zero, where I is the identity mapping on X.

Proof. By Lemma 3.5

λ‖xn − Txn‖ ≤ ‖xn − x‖.

Thus by de�nition

‖Txn − Tx‖ ≤ a‖xn − x‖+ b‖xn − Tx‖.
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Now, observe that

‖xn − Tx‖ ≤ ‖xn − Txn‖+ ‖Txn − Tx‖

≤ ‖xn − Txn‖+ a‖xn − x‖+ b‖xn − Tx‖

≤ ‖xn − Txn‖+ (1− b)‖xn − x‖ + b‖xn − Tx‖

⇒‖xn − Tx‖ ≤
1

(1− b)
‖xn − Txn‖+ ‖xn − x‖.

Using our hypothesis, we have that

lim inf
n→∞

‖xn − Tx‖ ≤ lim inf
n→∞

‖xn − x‖. (3.14)

Using our hypothesis that {xn} 
onverges weakly to x and Opial property, we have

lim inf
n→∞

‖xn − x‖ ≤ lim inf
n→∞

‖xn − Tx‖,

whi
h 
ontradi
ts (3.14). Thus, we have that Tx = x. �

Theorem 3.8. Let C be a nonempty 
losed 
onvex subset of a uniformly 
onvex Bana
h

spa
e X. Suppose that T : C → C is a generalized mean nonexpansive mapping on C
su
h that λ = β

2 with β ∈ (0, 1). Then F (T ) 6= ∅ if and only if {T n(x)} is a bounded

sequen
e for some x ∈ C, where n ∈ N.

Proof. Suppose that {T n(x)} is a bounded sequen
e for some x ∈ C and de�ne {xn} =
{T n(x)} for all n ∈ N. Then there exists y ∈ C su
h that A(C, {xn}) = {y}. Sin
e

β

2
‖Txn − xn‖ =

β

2
‖xn+1 − xn‖ ≤ ‖xn+1 − xn‖,

we obtain that

‖xn+2 − xn+1‖ = ‖Txn+1 − Txn‖

≤ a‖xn+1 − xn‖+ b‖xn+1 − Txn‖

= a‖xn+1 − xn‖+ b‖xn+1 − xn+1‖

≤ ‖xn+1 − xn‖.

We 
laim that ‖xn+1 − xn‖ ≤ 2
β
‖xn − y‖ or ‖xn+2 − xn+1‖ ≤ 2

β
‖xn+1 − y‖ for all n ∈ N.

Suppose on the 
ontrary that

2
β
‖xn−y‖ < ‖xn+1−xn‖ or

2
β
‖xn+1−y‖ < ‖xn+2−xn+1‖.

Now, observe that

‖xn+1 − xn‖ ≤ ‖xn+1 − y‖+ ‖y − xn‖

<
β

2
‖xn+2 − xn+1‖+

β

2
‖xn+1 − xn‖

≤
β

2
‖xn+1 − xn‖+

β

2
‖xn+1 − xn‖

= β‖xn+1 − xn‖

≤ ‖xn+1 − xn‖.

Thus we have a 
ontradi
tion. Hen
e for all n ∈ N, we have that ‖xn+1−xn‖ ≤ 2
β
‖xn−y‖

or ‖xn+2 − xn+1‖ ≤ 2
β
‖xn+1 − y‖.

Now, 
onsidering the �rst 
ase,

β
2 ‖xn+1−xn‖ = β

2 ‖Txn−xn‖ ≤ ‖xn− y‖. By de�nition,
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we have that

‖Txn − Ty‖ ≤ a‖xn − y‖+ b‖xn − Ty‖

≤ (1 − b)‖xn − y‖+ b‖xn − Ty‖

⇒ lim sup
n→∞

‖Txn − Ty‖ ≤ a lim sup
n→∞

‖xn − y‖+ b lim sup
n→∞

‖xn − Ty‖

⇒ lim sup
n→∞

‖xn − Ty‖ ≤ lim sup
n→∞

‖xn − y‖.

Thus, we have T (y) ∈ A(C, {xn}), so that Ty = y. Using similar approa
h, we also obtain

Ty = y for the se
ond 
ase. Thus F (T ) 6= ∅.
Conversely, suppose F (T ) 6= ∅. Then there exists say y ∈ F (T ) and by indu
tion, we have
that T ny = y for all n ∈ N. Thus {T n(y)} is a 
onstant sequen
e and so bounded. �

4. Convergen
e Results

In this se
tion, we propose a three steps iterative algorithm for approximating the �xed

point of generalized mean nonexpansive mapping and establish the strong 
onvergen
e

of the algorithm. The propose iterative algorithm is given as follows: For ea
h x0 ∈ C,
the sequen
e {xn} in C is de�ned by











zn = (1− γn)xn + γnTxn,

yn = T [(1− αn)zn + αnTzn],

xn+1 = T [(1− βn)Tzn + βnTyn], n ≥ 0,

(4.15)

where {αn}, {βn} and {γn} are sequen
es in [0, 1].

Lemma 4.1. Let C be a nonempty 
losed and 
onvex subset of a uniformly 
onvex

Bana
h spa
e X and T : C → C be a generalized mean nonexpansive mapping with

F (T ) 6= ∅. Suppose that {xn} is de�ned by (4.15), where {βn}, {γn} and {αn} are se-

quen
es in [0, 1]. Then the following hold:

(i) {xn} is bounded.

(ii) limn→∞ ‖xn − x∗‖ exists for all x∗ ∈ F (T ).

Proof. Using (4.15) and Proposition 3.1, we have

‖zn − x∗‖ ≤ (1− γn)‖xn − x∗‖+ γn‖Txn − x∗‖

≤ (1− γn)‖xn − x∗‖+ γn‖xn − x∗‖ (4.16)

≤ ‖xn − x∗‖.

Using (4.15), (4.16) and Proposition 3.1, we have

‖yn − x∗‖ = ‖T [(1− αn)zn + αnTzn]− x∗‖

≤ (1− αn)‖zn − x∗‖+ αn‖Tzn − x∗‖

≤ (1− αn)‖zn − x∗‖+ αn‖zn − x∗‖ (4.17)

= ‖zn − x∗‖

= ‖xn − x∗‖.

Using (4.15), (4.17) and Proposition 3.1, we have

‖xn+1 − x∗‖ = ‖T [(1− βn)Tzn + βnTyn]− x∗‖

≤ (1− βn)‖Tzn − x∗‖+ βn‖Tyn − x∗‖

≤ (1− βn)‖zn − x∗‖+ βn‖yn − x∗‖

≤ (1− βn)‖xn − x∗‖+ βn‖xn − x∗‖ (4.18)

= ‖xn − x∗‖.
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This shows that {‖xn − x∗‖} is bounded and non-de
reasing for all x∗ ∈ F (T ). Thus
{xn} is bounded and limn→∞ ‖xn − x∗‖ exists. �

Lemma 4.2. Let C be a nonempty 
losed and 
onvex subset of a uniformly 
onvex

Bana
h spa
e X and T : C → C be a generalized mean nonexpansive mapping with

F (T ) 6= ∅. Suppose that {xn} is de�ned by (4.15), where {βn}, {γn} and {αn} are se-

quen
es in [0, 1], then limn→∞ ‖Txn − xn‖ = 0.

Proof. Sin
e F (T ) 6= ∅, let x∗ ∈ F (T ). We have established in Lemma 4.1 that {xn} is

bounded and limn→∞ ‖xn − x∗‖ exists for all x∗ ∈ F (T ). Suppose that limn→∞ ‖xn −
x∗‖ = c. If we take c = 0, then we are done. Thus, we 
onsider the 
ase where c > 0.
From (4.16), we have ‖zn − x∗‖ ≤ ‖xn − x∗‖, it then follows that

lim sup
n→∞

‖zn − x∗‖ ≤ c. (4.19)

Also, using Proposition 3.1, we have ‖Txn − x∗‖ ≤ ‖xn − x∗‖, it then follows that

lim sup
n→∞

‖Txn − x∗‖ ≤ c. (4.20)

Using (4.17) and (4.18), we have

‖xn+1 − x∗‖ = ‖T [(1− βn)Tzn + βnTyn]− x∗‖

≤ (1− βn)‖zn − x∗‖+ βn‖yn − x∗‖

≤ (1− βn)‖zn − x∗‖+ βn‖xn − x∗‖.

Taking the lim infn→∞ of both sides and rearranging the inequalities, we have

c ≤ lim inf
n→∞

‖zn − x∗‖. (4.21)

From (4.19) and (4.21), we obtain that limn→∞ ‖zn − x∗‖ = c. That is,

lim
n→∞

‖(1− γn)xn + γnTxn − x∗‖ = c.

Thus by Lemma 2.4, we have

lim
n→∞

‖xn − Txn‖ = 0.

�

Theorem 4.3. Let X be a uniformly 
onvex Bana
h spa
e whi
h satis�es the Opial's


ondition and C a nonempty 
losed 
onvex subset of X. Let T : C → C be a generalized

mean nonexpansive mapping su
h that λ = β
2 ∈ [0, 1

2 ] with F (T ) 6= ∅ and {xn} be a

sequen
e de�ned by Iteration (4.15). Then {xn} 
onverges weakly to a �xed point of T.

Proof. In Lemma 4.1, we show that limn→∞ ‖xn − x∗‖ exists and that {xn} is bounded.

Now, sin
e X is uniformly 
onvex, we 
an �nd a subsequen
e say {xni
} of {xn} that


onverges weakly in C. We now show that {xn} has a unique weak subsequential limit

in F (T ). Let u and v be weak limits of the subsequen
es {xnk
} and {xnj

} of {xn}
respe
tively. By Theorem 4.2, we have that limn→∞ ‖xn − Txn‖ = 0 and I − T is

demi
losed with respe
t to zero by Theorem 3.7, we therefore have that Tu = u. Using
similar approa
h, we 
an show that v = Tv. In what follows, we show uniqueness. From

Lemma 4.1, we have that limn→∞ ‖xn − v‖ exists. Now, suppose that u 6= v, then by
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Opial's 
ondition,

lim
n→∞

‖xn − u‖ = lim
k→∞

‖xnk
− u‖

< lim
k→∞

‖xnk
− v‖

= lim
n→∞

‖xn − v‖

= lim
j→∞

‖xnj
− v‖

< lim
j→∞

‖xnj
− u‖

= lim
n→∞

‖xn − u‖.

This is a 
ontradi
tion, so u = v. Hen
e {xn} 
onverges weakly to a �xed point of F (T )
and this 
ompletes the proof. �

Theorem 4.4. Let C be a nonempty 
losed 
onvex subset of a uniformly 
onvex Bana
h

spa
e X. Let T : C → C be a generalized mean nonexpansive mapping on C, {xn} de�ned

by (4.15) and F (T ) 6= ∅. Then {xn} 
onverges strongly to a point of F (T ) if and only if

lim infn→∞ d(xn, F (T )) = 0 where d(x, F (T )) = inf{‖x− x∗‖ : x∗ ∈ F (T )}.

Proof. Suppose that {xn} 
onverges to a �xed point, say x∗
of T. Then limn→∞ d(xn, x

∗) =
0, and sin
e 0 ≤ d(xn, F (T )) ≤ d(xn, x

∗), it follows that limn→∞ d(xn, F (T )) = 0. There-
fore, lim infn→∞ d(xn, F (T )) = 0.
Conversely, suppose that lim infn→∞ d(xn, F (T )) = 0. From Lemma 4.1, we have that

limn→∞ ‖xn − x∗‖ exists and that limn→∞ d(xn, F (T )) exists for all x∗ ∈ F (T ). By our

hypothesis, lim infn→∞ d(xn, F (T )) = 0, so for any give ǫ > 0, there exists n0 ∈ N, su
h
that for all n ≥ n0, we have d(xn, F (T )) ≤ ǫ. We now show that {xn} is a Cau
hy

sequen
e in C. Sin
e, limn→∞ d(xn, F (T )) = 0, for any give ǫ > 0, there exists n0 ∈ N

su
h that for n,m ≥ n0, we have

d(xm, F (T )) ≤
ǫ

2
,

d(xn, F (T )) ≤
ǫ

2
.

Therefore, we have

‖xm − xn‖ ≤ ‖xm − x∗‖+ ‖xn − x∗‖

≤ d(xm, F (T )) + d(xn, F (T ))

≤
ǫ

2
+

ǫ

2
= ǫ.

Hen
e {xn} is Cau
hy in C. Sin
e C is 
losed, then there exists a point x1 ∈ C su
h that

limn→∞ xn = x1. Sin
e limn→∞ d(xn, F (T )) = 0, it follows that limn→∞ d(x1, F (T )) = 0.
Thus x1 ∈ F (T ) Sin
e F (T ) is 
losed. �

Theorem 4.5. Let C be a nonempty 
losed 
onvex subset of a uniformly 
onvex Bana
h

spa
e X. Let T : C → C be a generalized mean nonexpansive mapping, {xn} de�ned by

(4.15) and F (T ) 6= ∅. Let T satisfy 
ondition (I), then {xn} 
onverges strongly to a �xed

point of T.

Proof. From Lemma 4.1, we have limn→∞ ‖xn − F (T )‖ exists and by Theorem 4.2, we

have limn→∞ ‖xn − Txn‖ = 0. Using the fa
t that

0 ≤ lim
n→∞

f(d(x, F (T )) ≤ lim
n→∞

‖xn − Txn‖ = 0 ∀x ∈ C,

we have that limn→∞ f(d(xn, F (T ))) = 0. Sin
e f is nonde
reasing with f(0) = 0 and

f(t) > 0 for t ∈ (0,∞), it then follows that limn→∞ d(xn, F (T )) = 0. Hen
e, by Theorem
4.4 {xn} 
onverges strongly to x∗ ∈ F (T ). �
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5. Numeri
al Examples

Example 5.1. De�ne a mapping T : [0, 1] → [0, 1] as

Tx =

{

1− x if x ∈ [0, 1/5),
x+4
5 if x ∈ [1/5, 1].

(5.22)

Then T is a generalized mean nonexpansive mapping but not mean nonexpansive.

Proof. Suppose T is mean nonexpansive, then there exist nonnegative real numbers a
and b, su
h that a + b ≤ 1 and ‖Tx− Ty‖ ≤ a‖x− y‖ + b‖x − Ty‖ for all x, y ∈ [0, 1].
Now suppose x = 1 and y = 0, we then have that

‖Tx− Ty‖ = 0

≤ a‖x− y‖+ b‖x− Ty‖

= a.

So a ≤ 1 and b = 0. Thus T is nonexpansive, but this 
ontradi
ts the fa
t that T is not


ontinuous. Hen
e T is not mean nonexpansive.

To show that T is generalized mean nonexpansive, it su�
es to show that T is Suzuki

generalized nonexpansive. To do this, we 
onsider the following 
ases:

Case 1: Let x ∈ [0, 1
5 ), as su
h, we have that

1
2‖x−Tx‖ = 1−2x

2 ∈ ( 3
10 ,

1
2 ]. By de�nition,

for

1
2‖x− Tx‖ ≤ ‖x− y‖, we must have that y ≥ 1

2 , that is y ∈ [ 12 , 1]. And so, we have

‖Tx− Ty‖ =

∣

∣

∣

∣

5x+ y − 1

5

∣

∣

∣

∣

<
1

5

and

‖x− y‖ = |x− y| >

∣

∣

∣

∣

1

5
−

1

2

∣

∣

∣

∣

=
3

10
.

Thus we have that

1
2‖x− Tx‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

Case 2: Let x ∈ [ 15 , 1], as su
h, we have that
1
2‖x− Tx‖ = 2−2x

5 ∈ [0, 45 ]. By de�nition,

for

1
2‖x− Tx‖ ≤ ‖x− y‖, we must have that 2−2x

5 ≤ |x− y|. We have two possibilities.

Case 2a: If x < y, we have that 2−2x
5 < y − x, as su
h we must have that

2+3x
5 ≤ y ⇒

y ∈ [ 1325 , 1] ⊂ [ 15 , 1]. And so, we obtain that

‖Tx− Ty‖ =

∣

∣

∣

∣

x+ 4

5
−

y + 4

5

∣

∣

∣

∣

=
1

5
|x− y| ≤ ‖x− y‖.

Thus we have that

1
2‖x− Tx‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

Case 2b: If x ≥ y, we have that 2−2x
5 ≤ x− y, as su
h, we have y ≤ 7x−2

5 ⇒ y ∈ [−3
25 , 1].

We only need to 
onsider the 
ase in whi
h y ∈ [0, 1]. For y ≤ 7x−2
5 , we obtain that

x ≥ 5y+2
7 , whi
h implies that x ∈ [ 27 , 1], as su
h we 
onsider x ∈ [ 27 , 1] and y ∈ [0, 1]. For

x ∈ [ 27 , 1] and y ∈ [ 15 , 1] have been 
onsidered in 
ase 2a. So, we 
onsider x ∈ [ 27 , 1] and

y ∈ [0, 1
5 ). To start with, suppose x ∈ [ 27 ,

2
5 ] and y ∈ [0, 1

5 ), we therefore have that

‖Tx− Ty‖ =

∣

∣

∣

∣

x+ 4

5
− (1− y)

∣

∣

∣

∣

=

∣

∣

∣

∣

x+ 5y − 1

5

∣

∣

∣

∣

≤
2

25

and

‖x− y‖ = |x− y| >

∣

∣

∣

∣

2

7
−

1

5

∣

∣

∣

∣

=
3

35
.
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Thus we have that

1
2‖x− Tx‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

Also for x ∈ [ 25 , 1] and y ∈ [0, 15 ), we therefore have that

‖Tx− Ty‖ =

∣

∣

∣

∣

x+ 4

5
− (1− y)

∣

∣

∣

∣

=

∣

∣

∣

∣

x+ 5y − 1

5

∣

∣

∣

∣

≤
1

5

and

‖x− y‖ = |x− y| >

∣

∣

∣

∣

2

5
−

1

5

∣

∣

∣

∣

=
1

5
.

Thus we have that

1
2‖x − Tx‖ ≤ ‖x − y‖ ⇒ ‖Tx − Ty‖ ≤ ‖x − y‖. Hen
e T is Suzuki

generalized nonexpansive and so a generalized mean nonexpansive.

In what follows, we numeri
ally 
ompare our new iteration pro
ess with some existing

iterative pro
esses. Taking αn = 2n√
7n+9

, γn = 2√
n+9

, βn = 1
3n+7 and x0 = 0.9.

Step Our Algorithm Karakay et al. Algorithm M. Algorithm Pi
ard-S Algorithm

x0 0.9 0.9 0.9 0.9

x1 0.9967649 0.9960000 0.9960000 0.9960000

x2 0.9999356 0.9999040 0.9999040 0.9998602

x3 1 0.9999987 0.9999987 0.9999954

x4 1 1 1 0.9999999

x5 1 1 1 1

This 
omparison shows that the iterative pro
esses (4.15) 
onverges faster than the it-

erative pro
esses (1.4), (1.5) and (1.6). More so, the iterative pro
esses (1.5) and (1.6)


onverges at the same time. �

6. Con
lusion

In this paper, we introdu
ed a 
lass of mappings, 
alled the generalized mean nonex-

pansive mappings and obtained some �xed point results for this 
lass of mappings. In

addition, we proposed an iterative algorithm for approximating the �xed point of this


lass of mappings and established the 
onvergen
e of the iterative algorithm in uniformly


onvex Bana
h spa
es. Furthermore, we show that the proposed iterative pro
ess is more

e�
ient and 
onverges faster than some iterative pro
esses in literature.

Con�i
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