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SUZUKI-TYPE FIXED POINT RESULTS IN Gb-METRIC SPACES.

1 A. A. MEBAWONDU AND 2O. T. MEWOMO

Abstract. In this paper, we prove some fixed point theorems for a new type of generalized contractive mappings

involving C-class function, αδs-admissible type mapping and Suzuki type mappings in the frame work of complete

Gb-metric spaces. The results obtained in this work generalizes and improves some fixed point results in the
literature.

1. Introduction and Premilinaries

Banach contraction principle [4] can be seen as the pivot of the theory of fixed point and its applications. The
theory of fixed point plays an important role in nonlinear functional analysis and it is very useful for showing
the existence and uniqueness theorems for nonlinear differential and integral equations. The importance of the
Banach contraction principle cannot be over emphasized in the study of fixed point theory and its applications.
The Banach contraction principle have been extended and generalized by researchers in this area by considering
classes of nonlinear mappings and spaces which are more general than the class of a contraction mappings
and metric spaces (see [1, 8, 18, 28, 25] and the references therein). For example, Geraghty [12] introduced a
generalized contraction mapping called Geraghty-contraction and established the fixed point theorem for this
class of contraction mappings in the frame work of metric spaces. We recall that for a metric space (X, d), a
mapping T : X → X is said to be an α-contraction if there exists α ∈ [0, 1) such that

d(Tx, Ty) ≤ αd(x, y), ∀ x, y ∈ X.(1.1)

Definition 1.1. [12] Let (X, d) be a metric space. A mapping T : X → X is called a Geraghty-contraction
mapping if

d(Tx, Ty) ≤ φ(d(x, y))d(x, y)(1.2)

for all x, y ∈ X, where φ : R+ → [0, 1) satisfies the following condition:

φ(tn)→ 1 as n→∞⇒ tn → 0 as n→∞.

The following is the result of Geraghty [12].

Theorem 1.2. Let (X, d) be a complete metric space and T : X → X be a self map that satisfies condition
(1.2). Then T has a unique fixed point x∗ ∈ X such that for each x ∈ X, limn→∞ Tnx = x∗.

Jaggi [14] introduced a class of contraction mappings involving rational expressions and proved some fixed point
results for this class of mappings. Khan et al. [17] introduced the concept of alternating distance function,
which is defined as follows: A function ψ : R+ → R+ is called an alternating distance function if the following
conditions are satisfied:

(1) ψ(0) = 0,
(2) ψ is monotonically nondecreasing,
(3) ψ is continuous.

They established the following result.

Theorem 1.3. Let (X, d) be a complete metric space, ψ an altering distance function, and T : X → X be a self
mapping which satisfies the following condition

ψ(d(Tx, Ty)) ≤ δψ(d(x, y))(1.3)

Key words and phrases. Suzuki mapping; fixed point; Gb-metric space, αδs-admissble mapping, triangular αδs-admissble mapping,
C-class function.
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2 1 A. A. MEBAWONDU AND 2O. T. MEWOMO

for all x, y ∈ X, where δ ∈ (0, 1). Then T has a unique fixed point.

Remark 1.4. Clearly, if we take ψ(x) = x, for all x ∈ X in (1.3), we obtain condition (1.1).

Using the concept of alternating distance function Rhoades [23], Dutta et al. [11] and Doric [10] established
some fixed points results for weak contraction and generalized contraction mappings in the frame work of metric
spaces. We recall that for a metric space (X, d), a mapping T : X → X is said to be weakly contractive if for all
x, y ∈ X

d(Tx, Ty) ≤ d(x, y)− ψ(d(x, y)),

ψ : [0,∞)→ [0,∞) is continuous and nondecreasing such that ψ(t) = 0 if and only if t = 0.

Theorem 1.5. [23] Let (X, d) be a complete metric space and T a weakly contractive map. Then T has a unique
fixed point.

Theorem 1.6. [11] Let (X, d) be a complete metric space. Suppose the mappings T : X → X satisfying

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− φ(d(x, y))(1.4)

for all x, y ∈ X, where ψ, φ are alternating distance functions. Then T has a fixed point.

Theorem 1.7. [10] Let X be a complete metric space and T : X → X be a mapping satisfying the inequality

ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− φ(M(x, y)),(1.5)

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)2 }, ψ an alternating distance function and φ :
[0,∞)→ [0,∞) is a lower semi-continous function with φ(t) = 0 if and only if t = 0. Then T has a unique fixed
point.

In 2008, Suzuki [31] introduced the concept of mappings satisfying condition (C) which is also known as Suzuki-
type generalized nonexpansive mapping and he proved some fixed point theorems for such class of mappings.

Definition 1.8. Let (X, d) be a metric space. A mapping T : X → X is said to satisfy condition (C) if for all
x, y ∈ X,

1

2
d(x, Tx) ≤ d(x, y)⇒ d(Tx, Ty) ≤ d(x, y).

Theorem 1.9. Let (X, d) be a compact metric space and T : X → X be a mapping satisfying condition (C) for
all x, y ∈ X. Then T has a unique fixed point.

Samet et al. [26] introduced the notion of α-admissible mapping and obtain some fixed point results for this
class of mappings.

Definition 1.10. [26] Let α : X × X → [0,∞) be a function. We say that a self mapping T : X → X is
α-admissible if for all x, y ∈ X,

α(x, y) ≥ 1⇒ α(Tx, Ty) ≥ 1.

Definition 1.11. [16] Let T : X → X and α : X × X → [0,∞) be mappings. We say that T is a triangular
α-admissible if

(1) T is α-admissible and
(2) α(x, y) ≥ 1 and α(y, z) ≥ 1⇒ α(x, z) ≥ 1 for all x, y, z ∈ X.

Theorem 1.12. [26] Let (X, d) be a complete metric space and T : X → X be an α-admissible mapping. Suppose
that the following conditions hold:

(1) for all x, y ∈ X, we have α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)), where ψ : [0,∞) → [0,∞) is a nondecreasing
function such that

∑∞
n=1 ψ

n(t) <∞ for all t > 0;
(2) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(3) either T is continuous or for any sequence {xn} in X with α(xn, xn+1) ≥ 1 for all n ≥ 0 and xn → x as

n→∞, then α(xn, x) ≥ 1.

Then T has a fixed point.
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SUZUKI-TYPE FIXED POINT RESULTS IN Gb-METRIC SPACES. 3

One of the interesting generalization of metric spaces is the concept of b-metric spaces introduced by Czerwik
in [9]. He established the Banach contraction principle in this frame work with the fact that b need not to be
continuous. Thereafter, several results has been extended from metric spaces to b-metric spaces, more so, a
lot of results on the fixed point theory of various classes of mappings in the frame work of b-metric spaces has
been established by different researchers in this area (see[7, 9, 35] and the references therein). For example in
[30], Sintunavarat introduced the concept of α-admissible mapping type S as a generalization of α-admissible
mapping. He further established some proved fixed point theorems based on his new types of α-admissibility in
the frame work of b-metric spaces

Definition 1.13. [30] Let X be a nonempty set and s ≥ 1 be a given real number. Let α : X × X → [0,∞)
and T : X → X be mappings. The mapping T is said to be an α-admissible mapping type S if for all x, y ∈ X

α(x, y) ≥ s⇒ α(Tx, Ty) ≥ s.

Remark 1.14. Clearly, if s = 1, we obtain Defintion 1.10.

Mustafa and Sims [19] introduced, the concept of generalized metric space (G − metric) and they established
some fixed point theorem in the frame work of complete G-metric spaces.

Definition 1.15. Let X be a nonempty set and G : X ×X ×X → R+ be a function satisfying the following
properties

(1) G(x, y, z) = 0 if and only if x = y = z,
(2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y,
(3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y,
(4) G(x, x, y) = G(x, z, y) = G(y, z, x) = · · · , (symmetry in all the three variables),
(5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X.

The function G is called a G-metric on X and the pair (X,G) is called a G-metric space.

Motivated by the concept of b-metric spaces [9], Aghajani et al. in [2], introduced the notion of generalized
b-metric space (Gb − metric spaces), presented some properties of Gb-metric spaces and prove some coupled
coincidence fixed point theorems for (ψ,ϕ)-weakly contractive mappings in the frame work of partially ordered
Gb-metric spaces.

Definition 1.16. [2] Let X be a nonempty set and s ≥ 1 be a given real number.Suppose that Gb : X×X×X →
R+ be a function satisfying the following properties

(1) Gb(x, y, z) = 0 if and only if x = y = z,
(2) 0 < Gb(x, x, y) for all x, y ∈ X with x 6= y,
(3) Gb(x, x, y) ≤ Gb(x, y, z) for all x, y, z ∈ X with z 6= y,
(4) Gb(x, x, y) = Gb(p{x, z, y}), where p is a permutation of x, y, z (symmetry),
(5) Gb(x, y, z) ≤ sGb(x, a, a) + sGb(a, y, z) for all x, y, z, a ∈ X.

The function Gb is called a generalized b-metric and the pair (X,Gb) is called a generalized b-metric space
(Gb −metric space).

Example 1.17. Let X = R and d(x, y) = |x− y|2. It is well known that (X, d) is a b-metric space with s = 2.
Let Gb(x, y, z) = d(x, y) + d(y, z) + d(z, x), it is easy to see that (X,Gb) is not Gb-metric space. However, if we
define Gb(x, y, z) = max{d(x, y), d(y, z), d(z, x)} is a Gb-metric space.

Definition 1.18. [2] A Gb-metric space is said to be symmetric if Gb(x, y, y) = Gb(y, x, x) for all x, y ∈ X.

Proposition 1.19. [2] Let X be a Gb-metric space. Then for each x, y, z, a ∈ X, it follows that

(1) Gb(x, y, z) = 0 then x = y = z,
(2) Gb(x, y, z) ≤ sGb(x, x, y) + sGb(x, x, z),
(3) Gb(x, y, y) ≤ 2sGb(y, x, x),
(4) Gb(x, y, z) ≤ sGb(x, a, z) + sGb(a, y, z).

Definition 1.20. [2] Let X be a Gb-metric space. A sequence {xn} in X is said to be;

(1) Gb-Cauchy if for each ε > 0 there exists a positive integer n0 such that for allm,n, l ≥ n0, Gb(xn, xm, xl) <
ε;
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4 1 A. A. MEBAWONDU AND 2O. T. MEWOMO

(2) Gb-convergent to a point x ∈ X, if for ε > 0 there exists a positive integer n0 such that for all m,n ≥
n0, Gb(xn, xm, x) < ε. That is limn,m→∞Gb(xn, xm, x) = 0. We call x the limit of the sequence {xn}
and write xn → x or limn→∞ xn = x.

Definition 1.21. [2] A Gb-metric space is called Gb-complete, if every Gb-Cauchy sequence is Gb-convergent in
X.

Proposition 1.22. [2] Let (X,Gb) be a Gb-metric space. The following statement are equivalent

(1) xn is Gb-convergent to x;
(2) Gb(xn, xn, x)→ 0 as n→∞;
(3) Gb(xn, x, x)→ 0 as n→∞;
(4) Gb(xn, xm, x)→ 0 as m,n→∞.

Proposition 1.23. [2] Let (X,Gb) be a Gb-metric space. The following statement are equivalent:

(1) {xn} is Gb-Cauchy sequence.
(2) Gb(xm, xn, xn)→ 0 as n,m→∞.

Definition 1.24. Let X be a nonempty set, T : X → X and α : X ×X ×X → [0,∞) be mappings. Then T is
called α-admissible if for all x, y, z ∈ X with α(x, y, z) ≥ 1 implies α(Tx, Ty, Tz) ≥ 1.

Definition 1.25. Let X be a nonempty set, T : X → X and α : X ×X ×X → [0,∞) be mappings. Then T is
called triangular α-admissible if

(1) T is α-admissible,
(2) α(x, a, a) ≥ 1 and α(a, y, z) ≥ 1 implies α(x, y, z) ≥ 1,

for all x, y, z, a ∈ X.

Definition 1.26. Let X be a nonempty set with s ≥ 1 a given real number. α : X × X × X → [0,∞) and
T : X → X be mappings. We say that T is α-admissible type S if for all x, y, z ∈ X with α(x, y, z) ≥ s implies
α(Tx, Ty, Tz) ≥ s.

Definition 1.27. Let X be a nonempty set with s ≥ 1 a given real number. T : X → X and α : X ×X ×X →
[0,∞) be mappings. We say that T is called triangular α-admissible type S if

(1) T is α-admissible type S,
(2) α(x, a, a) ≥ s and α(a, y, z) ≥ s implies α(x, y, z) ≥ s,

for all x, y, z, a ∈ X.

In 2014, Ansari [3] introduced the notion of C-class function, he proved some fixed point results using the concept
of C-class function and also established that the C-class function is a generalization of a whole lot of contractive
conditions.

Definition 1.28. [3] A mapping F : [0,∞)2 → R is called a C-class function if it is continous and the following
axioms holds:

(1) F (s, t) ≤ s for all s, t ∈ [0,∞);
(2) F (s, t) = s implies either s = 0 or t = 0.

We denote C the family of C-class functions. For details about C-class function see [3].

Example 1.29. The following functions F : [0,∞)2 → R defined for all s, t ∈ [0,∞) by

(1) F (s, t) = s− t, F (s, t) = s implies t = 0;
(2) F (s, t) = ms, 0 < m < 1, F (s, t) = s implies s = 0;
(3) F (s, t) = sβ(s), β : [0,∞)→ [0, 1) is a continuous function, F (s, t) = s implies s = 0.

Motivated by the research works described above, our purpose in this paper is to introduce the notion of αδs-
admissible type mapping, triangular αδs-admissible type mapping and using the concept of C-class function, we
prove some fixed point results for αδs-Suzuki type rational contraction mappings in the frame work of complete
Gb-metric spaces.
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SUZUKI-TYPE FIXED POINT RESULTS IN Gb-METRIC SPACES. 5

2. main result

In this section, we introduce the notion of αδs-Suzuki contraction type mappings and established the existence
and uniqueness results of the fixed point for this class of mappings.

We start by establishing some results that will be used in the proof of our main result.

Definition 2.1. Let X be a nonempty set with s, δ ≥ 1 a given real number. α : X × X × X → [0,∞) and
T : X → X be mappings. We say that T is αδs-admissible type mapping if for all x, y, z ∈ X with α(x, y, z) ≥ sδ
implies α(Tx, Ty, Tz) ≥ sδ.

Definition 2.2. Let X be a nonempty set with s ≥ 1 and δ ≥ 1 a given real number. T : X → X and
α : X ×X ×X → [0,∞) be mappings. We say that T is called triangular αδs-admissible type mapping if

(1) T is αδs-admissible type mapping,
(2) α(x, a, a) ≥ sδ and α(a, y, z) ≥ sδ implies α(x, y, z) ≥ sδ,

for all x, y, z, a ∈ X.

Remark 2.3. If s = 1, we recovery Definition 1.24 and 1.25 in both cases. More so, if δ = 1, we recovery
Definition 1.26 and 1.27 in both cases.

Lemma 2.4. Let X be a nonempty set and T be a triangular αδs-admissible mapping. Assume that there
exists x0 ∈ X, such that α(x0, Tx0, Tx0) ≥ sδ. Suppose the sequence {xn} is defined by xn+1 = Txn, then
α(xm, xn, xn) ≥ sδ for all m,n ∈ N.

Proof. Since T is triangular αδ-admissible mapping and there exists x0 ∈ X such that α(x0, Tx0, Tx0) ≥ sδ, we
then have that α(x1, x2, x2) = α(Tx0, Tx1, Tx1) ≥ sδ, continuing the process we have that α(xn, xn+1, xn+1) ≥
sδ for all n ∈ N ∪ {0}. Now, suppose that m < n for all m,n ∈ N, since α(xm, xm+1, xm+1) ≥ sδ and
α(xm+1, xm+2, xm+2) ≥ sδ, we have that α(xm, xm+2, xm+2) ≥ sδ. More so, since α(xm, xm+2, xm+2) ≥ sδ

and α(xm+2, xm+3, xm+3) ≥ sδ, we have that α(xm, xm+3, xm+3) ≥ sδ. Continuing this process, we have that

α(xm, xn, xn) ≥ sδ.
�

Lemma 2.5. Let (X,Gb) be a Gb-metric space with coefficient s ≥ 1 and suppose that {xn} is a sequence in X
such that limn→∞Gb(xn, xn+1, xn+1) = 0. If {xn} is not a Gb-Cauchy sequence, then there exists ε > 0 and two
sequences say {xmk

} and {xnk
} of positive integer such that for the following cases

Gb(xmk
, xnk

, xnk
), Gb(xmk

, xnk+1
, xnk+1

), Gb(xmk+1
, xnk+1

, xnk+1
) and Gb(xmk+1

, xnk
, xnk

), we have that

(1) ε ≤ lim infk→∞Gb(xmk
, xnk

, xnk
) ≤ lim supk→∞Gb(xmk

, xnk
, xnk

),≤ sε,
(2) ε

s ≤ lim infk→∞Gb(xmk+1
, xnk

, xnk
) ≤ lim supk→∞Gb(xmk+1

, xnk
, xnk

) ≤ s2ε,
(3) ε

s ≤ lim infk→∞Gb(xmk
, xnk+1

, xnk+1
) ≤ lim supk→∞Gb(xmk

, xnk+1
, xnk+1

) ≤ s2ε,
(4) ε

s2 ≤ lim infk→∞Gb(xmk+1
, xnk+1

, xnk+1
) ≤ lim supk→∞Gb(xmk+1

, xnk+1
, xnk+1

) ≤ s3ε.

Proof. Suppose {xn} is not a Gb-Cauchy sequence, then there exists ε > 0 and two sequences say {xmk
} and

{xnk
} of positive integers such that nk > mk ≥ k,

Gb(xmk
, xnk−1

, xnk−1
) < ε and Gb(xmk

, xnk
, xnk

) > ε.(2.1)

Using the fact that limn→∞Gb(xn, xn+1, xn+1) = 0 and (2.1), we have that

ε ≤ Gb(xmk
, xnk

, xnk
) ≤ sGb(xmk

, xnk−1
, xnk−1

) + sGb(xnk−1
, xnk

, xnk
)

≤ sε+ sGb(xnk−1
, xnk

, xnk
),

clearly, we have that

ε ≤ lim inf
n→∞

Gb(xmk
, xnk

, xnk
) ≤ lim sup

n→∞
Gb(xmk

, xnk
, xnk

) ≤ sε.

More so, we have that

Gb(xmk
, xnk

, xnk
) ≤ sGb(xmk

, xmk+1
, xmk+1

) + s2Gb(xmk+1
, xnk+1

, xnk+1
) + s2Gb(xnk+1

, xnk
, xnk

)

and

Gb(xmk+1
, xnk+1

, xnk+1
) ≤ sGb(xmk+1

, xmk
, xmk

) + s2Gb(xmk
, xnk

, xnk
) + s2Gb(xnk

, xnk+1
, xnk+1

).
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6 1 A. A. MEBAWONDU AND 2O. T. MEWOMO

We also have that
ε

s2
≤ lim inf

n→∞
Gb(xmk+1

, xnk+1
, xnk+1

) ≤ lim sup
n→∞

Gb(xmk+1
, xnk+1

, xnk+1
) ≤ s3ε.

Furthermore, we have that

Gb(xmk
, xnk

, xnk
) ≤ sGb(xmk

, xnk+1
, xnk+1

) + sGb(xnk+1
, xnk

, xnk
)

and

Gb(xmk
, xnk+1

, xnk+1
) ≤ sGb(xmk

, xnk
, xnk

) + sGb(xnk
, xnk+1

, xnk+1
).

We also have that
ε

s
≤ lim inf

n→∞
Gb(xmk

, xnk+1
, xnk+1

) ≤ lim sup
n→∞

Gb(xmk
, xnk+1

, xnk+1
) ≤ s2ε.

Using similar approach, we obtain that
ε

s2
≤ lim inf

n→∞
Gb(xmk+1

, xnk
, xnk

) ≤ lim sup
n→∞

Gb(xmk
, xnk

, xnk+1
) ≤ s2ε.

�

We now establish our main result.

Definition 2.6. Let (X,Gb) be a Gb-metric space with s, δ ≥ 1 a given real number, α : X×X×X → [0,∞) be
a function and T be a self map on X. The mapping T is said to be αδs-Suzuki type rational contraction mapping,
if

α(x, y, z) ≥ sδ and
1

3s2
Gb(x, Tx, Tx) ≤ Gb(x, y, z)(2.2)

⇒ψ(s3Gb(Tx, Ty, Tz)) ≤ F (ψ(M(x, y, z)), φ(M(x, y, z))) + Lψ(N(x, y))

for all x, y, z ∈ X, where L ≥ 0, ψ, φ are alternating distance functions, F ∈ C, M(x, y, z) = max{Gb(x, y, z), Gb(x, Tx, Tx),

Gb(y, Ty, Tz),
Gb(x,Tx,Tx)Gb(y,Ty,Tz)

s+Gb(x,y,z)
, Gb(y,z,Tx)[1+Gb(x,Tx,Tx)]

s+Gb(x,y,z)
} andN(x, y, z) = min{Gb(x, Ty, Ty), Gb(x, Tx, Tx),

Gb(y, Tx, Tx)}.

Theorem 2.7. Let (X,Gb) be a Gb-complete metric space and T : X → X be an αδs-Suzuki type rational
contraction mapping. Suppose the following conditions hold:

(1) T is a triangular αδs-admissible type mapping,
(2) there exists x0 ∈ X such that α(x0, Tx0, Tx0) ≥ sδ,
(3) T is continuous,
(4) if for any sequence {xn} in X with α(xn, xn+1, xn+1) ≥ sδ for all n ≥ 0 and xn → x as n → ∞, then

α(xn, x, x) ≥ sδ.

Then T has a fixed point.

Proof. Let x0 ∈ X be such that α(x0, Tx0, Tx0) ≥ sδ. We define the sequence {xn} by xn+1 = Txn for all
n ∈ N ∪ {0}. If we suppose that xn+1 = xn, for some n ∈ N ∪ {0}, we obtain the desired result. Now, suppose
that xn+1 6= xn for all n ∈ N ∪ {0}. Since T is triangular αδ-admissible type S mapping and α(x0, x1, x1) =
α(x0, Tx1, Tx1) ≥ sδ, we have that α(x1, x2, x2) = α(Tx0, Tx1, Tx1) ≥ sδ, continuing this process, we obtain
that α(xn, xn+1, xn+1) ≥ sδ for all n ∈ N ∪ {0}. Since α(xn, xn+1, xn+1) ≥ sδ and 1

3s2Gb(xn, Txn, Txn) =
1

3s2Gb(xn, xn+1, xn+1) < Gb(xn, xn+1, xn+1), we have

ψ(Gb(xn+1, xn+2, xn+2)) ≤ ψ(s3Gb(Txn, Txn+1, Txn+1))

≤ F (ψ(M(xn, xn+1, xn+1)), φ(M(xn, xn+1, xn+1))) + LN(xn, xn+1, xn+1),(2.3)

where,

M(xn, xn+1, xn+1) = max

{
Gb(xn, xn+1, xn+1), Gb(xn, xn+1, xn+1), Gb(xn+1, xn+2, xn+2),

Gb(xn, xn+1, xn+1)Gb(xn+1, xn+2, xn+2)

s+Gb(xn, xn+1, xn+1)
,
Gb(xn+1, xn+1, xn+1)Gb(xn, xn+1, xn+1)

s+Gb(xn, xn+1, xn+1)

}
= max

{
Gb(xn, xn+1, xn+1), Gb(xn+1, xn+2, xn+2),

Gb(xn, xn+1, xn+1)Gb(xn+1, xn+2, xn+2)

s+Gb(xn, xn+1, xn+1)

}
.
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Since, Gb(xn,xn+1,xn+1)
s+Gb(xn,xn+1,xn+1)

< 1, clearly, Gb(xn,xn+1,xn+1)Gb(xn+1,xn+2,xn+2)
s+Gb(xn,xn+1,xn+1)

< Gb(xn+1, xn+2, xn+2). So that

M(xn, xn+1, xn+1) = max

{
Gb(xn, xn+1, xn+1), Gb(xn+1, xn+2, xn+2)

}
.

Also, we have that

N(xn, xn+1, xn+1) = min{Gb(xn, xn+2, xn+2), Gb(xn, xn+1, xn+1), Gb(xn+1, xn+1, xn+1)} = 0.

If we suppose that

M(xn, xn+1, xn+1) = max

{
Gb(xn, xn+1, xn+1), Gb(xn+1, xn+2, xn+2)

}
= Gb(xn+1, xn+2, xn+2),

then (2.3) becomes

ψ(Gb(xn+1xn+2, xn+2)) ≤ ψ(s3Gb(TxnTxn+1, Txn+1))

≤ F (ψ(Gb(xn+1, xn+2, xn+2)), φ(Gb(xn+1, xn+2, xn+2)))(2.4)

≤ ψ(Gb(xn+1, xn+2, xn+2)),

which implies that

ψ(Gb(xn+1xn+2, xn+2)) = ψ(Gb(xn+1xn+2, xn+2))

so that F (ψ(Gb(xn+1, xn+2, xn+2)), φ(Gb(xn+1, xn+2, xn+2))) = ψ(Gb(xn+1xn+2, xn+2)) and by definition of F,
we must have that ψ(Gb(xn+1, xn+2, xn+2)) = 0 or φ(G(xn+1, xn+2, xn+2)) = 0. Using the propeties of ψ and
phi, we have that Gb(xn+1, xn+2, xn+2) = 0 which implies that xn+1 = xn+2 which is a contradiction. Thus we
must have that

M(xn, xn+1, xn+1) = max

{
Gb(xn, xn+1, xn+1), Gb(xn+1, xn+2, xn+2)

}
= Gb(xn, xn+1, xn+1),

which implies that

Gb(xn+1, xn+2, xn+2) ≤ Gb(xn, xn+1, xn+1).(2.5)

Thus, we have that

ψ(Gb(xn+1xn+2, xn+2)) ≤ ψ(s3Gb(TxnTxn+1, Txn+1))

≤ F (ψ(Gb(xn, xn+1, xn+1)), φ(Gb(xn, xn+1, xn+1)))(2.6)

≤ ψ(Gb(xn, xn+1, xn+1)),

which implies that ψ(Gb(xn+1xn+2, xn+2)) ≤ ψ(Gb(xn, xn+1, xn+1)), using the property of ψ, we have that

Gb(xn+1xn+2, xn+2) ≤ Gb(xn, xn+1, xn+1).

Using similar approach, we also have that

Gb(xn, xn+1, xn+1) ≤ Gb(xn−1, xn, xn).

Therefore, {Gb(xn, xn+1, xn+1)} is a nonincreasing sequence and bounded below. Thus there exists c ≥ 0 such
that

lim
n→∞

Gb(xn, xn+1, xn+1) = c.(2.7)

Now, suppose that c > 0, taking the limit as n→∞ of (2.6), we have that ψ(c) = ψ(c) so that F (ψ(c)), φ(c)) =
ψ(c) and by definition of F, we must have that ψ(c) = 0 or φ(c) = 0. Using the propeties of ψ and psi, we have
that c = 0. Thus, we have that

lim
n→∞

Gb(xn, xn+1, xn+1) = 0.(2.8)

Now, we shall show that {xn} is Gb-Cauchy sequence. Suppose that {xn} is not a Gb-Cauchy sequence, then
by Lemma 2.5, there exists an ε > 0 and sequences of positive integers {nk} and {mk} with nk > mk ≥ k such
that Gb(mk, nk, nk) ≥ ε. For each k > 0, corresponding to mk, we can choose nk to be the smallest positive
integer such that Gb(mk, nk, nk) ≥ ε,Gb(mk, nk−1, nk−1) < ε and (1) − (4). Using Lemma 2.4, we have that
α(xmk

, xnk
, xnk

) ≥ sδ and we can choose n0 ∈ N ∪ {0} such that

1

3s2
Gb(xmk

, Txmk
, Txmk

) <
ε

3s2
< ε ≤ Gb(xmk

, xnk
, xnk

).
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8 1 A. A. MEBAWONDU AND 2O. T. MEWOMO

Hence, for all k ≥ n0, we have

ψ(Gb(xmk+1
, xnk+1

, xnk+1
)) ≤ ψ(s3Gb(Txmk

, Txnk
, Txnk

))

≤ F (ψ(M(xmk
, xnk

, xnk
)), φ(M(xmk

, xnk
, xnk

))) + Lψ(N(xmk
, xnk

, xnk
)),(2.9)

where

M(xmk
, xnk

, xnk
) = max

{
Gb(xmk

, xnk
, xnk

), Gb(xmk
, xmk+1

, xmk+1
), Gb(xnk

, xnk+1
, xnk+1

),

Gb(xmk
, xmk+1

, xmk+1
)Gb(xnk

, xnk+1
, xnk+1

)

s+Gb(xmk
, xnk

, , xnk
)

,
Gb(xnk

, xnk
, xmk+1

)[1 +Gb(xnk
, xnk+1

, xnk+1
)]

s+Gb(xmk
, xnk

, , xnk
)

}
N(xmk

, xnk
, xnk

) = min{Gb(xmk
, xnk+1

, xnk+1
), Gb(xmk

, xmk+1
, xmk+1

), Gb(xnk
, xmk+1

, xmk+1
)}.

Using Lemma 2.5 and (2.8), we have that

ε ≤ lim sup
n→∞

M(xmk
, xnk

, xnk
) = max

{
Gb(xmk

, xnk
, , xnk

), Gb(xmk
, xmk+1

, xmk+1
), Gb(xnk

, xnk+1
, xnk+1

),

Gb(xmk
, xmk+1

, xmk+1
)Gb(xnk

, xnk+1
, xnk+1

)

s+Gb(xmk
, xnk

, , xnk
)

,
Gb(xnk

, xnk
, xmk+1

)[1 +Gb(xnk
, xnk+1

, xnk+1
)]

s+Gb(xmk
, xnk

, xnk
)

}
= {sε, 0, 0, 0, sε

1 + ε
} = sε

ε ≤ lim sup
n→∞

N(xmk
, xnk

, xnk
) = min{Gb(xmk

, xnk+1
, xnk+1

), Gb(xmk
, xmk+1

, xmk+1
), Gb(xnk

, xmk+1
, xmk+1

)} = 0.

So that (2.9) becomes

ψ(sε) = ψ(s3
ε

s2
) ≤ ψ(s3 lim sup

n→∞
Gb(xmk+1

, xnk+1
, xnk+1

)) = ψ(s3 lim sup
n→∞

Gb(Txmk
, Txnk

, Txnk
))

= lim sup
n→∞

ψ(s3Gb(Txmk
, Txnk

, Txnk
))

≤ F (ψ(sε), φ(sε)) ≤ ψ(sε)

we obtain ψ(sε) ≤ φ(sε) which implies that so that F (ψ(sε), φ(sε)) = ψ(sε) and by definition of F, we must have
that ψ(sε) = 0 or φ(sε) = 0. Using the propeties of ψ and φ, we have that sε = 0. Since s > 0, we must have
that ε = 0 and this contradicts the assumption that ε > 0. We therefore have that {xn} is Gb-Cauchy. Since
(X,Gb) is Gb-complete, it follows that there exists x ∈ X such that limn→∞ xn = x.

Suppose that T is continuous, we have that

x = lim
n→∞

xn = lim
n→∞

xn+1 = lim
n→∞

Txn = T lim
n→∞

xn = Tx.

Thus, T has a fixed point.

More so, using the condition that α(xn, xn+1, xn+1) ≥ sδ for all n ∈ N ∪ {0}, we obtain that α(xn, x, x) ≥ sδ.
We establish that T has a fixed point. Now suppose that

Gb(xn, x, x) <
1

3s2
Gb(xn, xn+1, xn+1)

or

Gb(xn+1, x, x) <
1

3s2
Gb(xn+1, xn+2, xn+2).

Then using the fact that Gb(xn+1, xn+2, xn+2) ≤ Gb(xn, xn+1, xn+1), we have

Gb(xn, xn+1, xn+1) ≤ sGb(xn, x, x) + sGb(x, xn+1, xn+1)

≤ sGb(xn, x, x) + 2s2Gb(xn+1, x, x)

<
1

3s
Gb(xn, xn+1, xn+1) +

2

3
Gb(xn+1, xn+2, xn+2)

≤ (
1

3s
+

2

3
)Gb(xn, xn+1, xn+1)

≤ Gb(xn, xn+1, xn+1)

The above inequality is a contradiction, thus, we must have that

Gb(xn, x, x) ≥ 1

3s2
Gb(xn, xn+1, xn+1) or Gb(xn+1, x, x) ≥ 1

3s2
Gb(xn+1, xn+2, xn+2).
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SUZUKI-TYPE FIXED POINT RESULTS IN Gb-METRIC SPACES. 9

Hence, we have

ψ(Gb(xn+1, Tx, Tx)) ≤ ψ(s3Gb(Txn, Tx, Tx))

≤ F (ψ(M(xn, x, x)), φ(M(xn, x, x))) + Lψ(N(xn, x, x)),(2.10)

where

M(xn, x, x) = max

{
Gb(xn, x, x), Gb(xn, Txn, Txn), Gb(x, Tx, Tx),

Gb(xn, Txn, Txn)Gb(x, Tx, Tx)

s+Gb(xn, x, x)
,

Gb(x, x, Txn)[1 +Gb(xn, Txn, Txn)]

s+Gb(xn, x, x)

}
N(xn, x, x) = min{Gb(xn, Tx, Tx), Gb(xn, Txn, Txn), Gb(x, Txn, Txn)}.

Using the properties of ψ, φ and taking limit as n→∞, (2.10) becomes

ψ(Gb(x, Tx, Tx)) ≤ ψ(Gb(x, Tx, Tx)),

which implies that F (ψ(Gb(x, Tx, Tx), φ(Gb(x, Tx, Tx))) = ψ(Gb(x, Tx, Tx) and by definition of F, we must
have that ψ(Gb(x, Tx, Tx) = 0 or φ(Gb(x, Tx, Tx)) = 0. Using the propeties of ψ and phi, we have that
G(x, Tx, Tx) = 0. which implies that

x = Tx.

Hence, T has a fixed point. �

Theorem 2.8. Suppose that the hypothesis of Theorem 2.7 holds and in addition suppose α(x, y, y) ≥ sδ for all
x, y ∈ F (T ), where F (T ) is the set of fixed point of T. Then T has a unique fixed point.

Proof. Let x, y ∈ F (T ), that is Tx = x and Ty = y such that x 6= y. Using our hypothesis that α(x, y, y) ≥ sδ

and 1
3s2sGb(x, Tx, Tx) = 0 ≤ Gb(x, y, y), we have

ψ(Gb(x, y, y)) ≤ ψ(s3Gb(Tx, Ty, Ty)) ≤ F (ψ(M(x, y, y)), φ(M(x, y, y)) + Lψ(N(x, y, y)),(2.11)

where

M(x, y, y) = max

{
Gb(x, y, y), Gb(x, Tx, Tx), Gb(y, Ty, Ty),

Gb(x, Tx, Tx)Gb(y, Ty, Ty)

s+Gb(x, y, y)
,
Gb(y, y, Tx)[1 +Gb(x, Tx, Tx)]

1 +Gb(x, y, y)

}
= G(x, y, y)

N(x, y, y) = min{Gb(x, Ty, Ty), Gb(x, Tx, Tx), Gb(y, Tx, Tx)} = 0.

Using the properties of ψ, φ, (2.11) becomes

ψ(Gb(x, y, y)) ≤ ψ(Gb(x, y, y)),

which implies that F (ψ(Gb(x, y, y)), φ(Gb(x, y, y))) = ψ(Gb(x, y, y)) and by definition of F, we must have that
ψ(Gb(x, y, y)) = 0 or φ(Gb(x, y, y)) = 0. Using the propeties of ψ and phi, we have that Gb(x, y, y) = 0. which
implies that

x = y.

Thus, T has a unique fixed point. �

Using Remark 2.3 L = 0 and we defined F (s, t) = s− t, we obtain the following results.

Corollary 2.9. Let (X,Gb) be a Gb-complete metric space and T : X → X be a mapping satisfying the
inequalities

α(x, y, z) ≥ 1 and
1

3s2
Gb(x, Tx, Tx) ≤ Gb(x, y, z)(2.12)

⇒ψ(s3Gb(Tx, Ty, Tz)) ≤ ψ(M(x, y, z))− φ(M(x, y, z)))

for all x, y, z ∈ X, where ψ, φ are alternating distance functions, and M(x, y, z) = max{Gb(x, y, z), Gb(x, Tx, Tx),

Gb(y, Ty, Tz),
Gb(x,Tx,Tx)Gb(y,Ty,Tz)

s+Gb(x,y,z)
, Gb(y,z,Tx)[1+Gb(x,Tx,Tx)]

s+Gb(x,y,z)
}. Suppose the following conditions hold:

(1) T is a triangular α-admissible type mapping,
(2) there exists x0 ∈ X such that α(x0, Tx0, Tx0) ≥ 1,
(3) T is continuous,
(4) if for any sequence {xn} in X with α(xn, xn+1, xn+1) ≥ 1 for all n ≥ 0 and xn → x as n → ∞, then

α(xn, x, x) ≥ 1.
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10 1 A. A. MEBAWONDU AND 2O. T. MEWOMO

Then T has a fixed point.

Corollary 2.10. Let (X,Gb) be a Gb-complete metric space and T : X → X be a mapping satisfying the
inequalities

α(x, y, z) ≥ s and
1

3s2
Gb(x, Tx, Tx) ≤ Gb(x, y, z)(2.13)

⇒ψ(s3Gb(Tx, Ty, Tz)) ≤ ψ(M(x, y, z))− φ(M(x, y, z)))

for all x, y, z ∈ X, where ψ, φ are alternating distance functions, and M(x, y, z) = max{Gb(x, y, z), Gb(x, Tx, Tx),

Gb(y, Ty, Tz),
Gb(x,Tx,Tx)Gb(y,Ty,Tz)

s+Gb(x,y,z)
, Gb(y,z,Tx)[1+Gb(x,Tx,Tx)]

s+Gb(x,y,z)
}. Suppose the following conditions hold:

(1) T is a triangular α-admissible type S mapping,
(2) there exists x0 ∈ X such that α(x0, Tx0, Tx0) ≥ s,
(3) T is continuous,
(4) if for any sequence {xn} in X with α(xn, xn+1, xn+1) ≥ s for all n ≥ 0 and xn → x as n → ∞, then

α(xn, x, x) ≥ s.

Then T has a fixed point.

If, we suppose that α(x, y, z) = 1, we obtain the following results.

Corollary 2.11. Let (X,Gb) be a Gb-complete metric space and T : X → X be a mapping satisfying the
inequalities

1

3s2
Gb(x, Tx, Tx) ≤ Gb(x, y, z)⇒ ψ(s3Gb(Tx, Ty, Tz)) ≤ ψ(M(x, y, z))− φ(M(x, y, z)))(2.14)

for all x, y, z ∈ X, where ψ, φ are alternating distance functions, and M(x, y, z) = max{Gb(x, y, z), Gb(x, Tx, Tx),

Gb(y, Ty, Tz),
Gb(x,Tx,Tx)Gb(y,Ty,Tz)

s+Gb(x,y,z)
, Gb(y,z,Tx)[1+Gb(x,Tx,Tx)]

s+Gb(x,y,z)
}. Then T has a fixed point.

Example 2.12. Let X = [0,∞) with Gb(x, y, z) = [|x − y| + |y − z| + |x − z|]2. Clearly, (X,Gb) is a complete
Gb-metric space with s = 2. We defined T : X → X by

Tx =

{
x
16 if x, y, z ∈ [0, 1]

5x if x, y, z ∈ (1,∞),

α : X ×X ×X → [0,∞) by

α(x, y, z) =

{
3 if x, y, z ∈ [0, 1]

0 if x, y, z ∈ (1,∞)

and φ, ψ : [0,∞)→ [0,∞) by ψ(t) = 2t, φ(t) = t, δ = 1 and F (s, t) = s− t. T is α1
2-Suzuki type mapping and T

satisfy conditions in Corollary 2.10 with a unique fixed point 0.

Proof. Clearly, for any x, y, z ∈ [0, 1], we have that α(x, y, z) > 2 and Tx = x
16 , T y = y

16 , T z = z
16 , we also

have that α(Tx, Ty, Tz) = α( x16 ,
y
16 ,

y
16 ) > 2. Suppose α(x, a, a) > 2 and α(a, y, z) > 2 for all x, y, z, a ∈ X, it

implies that x, y, z, a ∈ [0, 1], it follows that α(x, y, z) > 2. Thus, we have that T is triangular admissible type
S mapping. More so, for any x0 ∈ [0, 1], we have that α(x0, Tx0, Tx0) ≥ 2. Let {xn} be sequence in X with
α(xn, xn+1, xn+1) ≥ 2 for all n ∈ N ∪ {0} and xn → x as n → ∞, using the definition of α, we must have
that {xn} ⊂ [0, 1] and thus x ∈ [0, 1]. Hence α(xn, x, x) ≥ 2. Since α(x, y, z) > 2 if x, y, z ∈ [0, 1], we need to
show that T is αδs-Suzuki type rational mapping for any x, y, z ∈ [0, 1] with 1

3s2G(x, Tx, Tx) ≤ G(x, y, z). Let
x, y, z ∈ [0, 1] and without loss of generality, we suppose that x ≤ y, x ≤ z and y ≤ z. It is easy to see that for
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all x, y, z ∈ [0, 1], 1
12G(x, Tx, Tx) ≤ G(x, y, z) Now, observe that

ψ(s3G(Tx, Ty, Tz)) = ψ

(
8

256
[|x− y|+ |y − z|+ |x− z|]2

)
≤ 16

256
[|x− y|+ |y − z|+ |x− z|]2

≤ [|x− y|+ |y − z|+ |x− z|]2

= 2[|x− y|+ |y − z|+ |x− z|]2 − [|x− y|+ |y − z|+ |x− z|]2

= ψ(G(x, y, z))− φ(G(x, y, z))

= F (ψ(G(x, y, z)), φ(G(x, y, z)))

≤ F (ψ(M(x, y, z)), φ(M(x, y, z)))

Thus T satisfy all the hypothesis of Corolary 2.10 and x = 0 is the unique fixed point of T. �
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