

Improving Static Reservoir Modelling through Integration of Quantitative Seismic Data

A.E. JONATHAN, B. JIBRIN, O.OLADIPO, M. OGUNLEYE & S. OLOTU

Presentation Outline

- Objectives
- Introduction and Reservoir description
- Inversion fundamentals and Workflow
- Results
 - Co-Krigging Modeling Results
 - Reservoir Property Variations (Porosity distribution) and GU/Flow Unit controls
- Conclusion

Objectives

- Derive acoustic impedance and porosity relationships
- Generate a seismic-porosity model
- Construct a reservoir model with seismic-derived porosity as a secondary property

Introduction – location and geology

- Located shallow offshore Dahomey Basin
- Rifted basin (half-graben), part of WARS
- Structural style: normal and strikeslip faults
- 3 Discovery Fields

Introduction – Depositional Envt and Facies Belts

Fluvial-Shoreface Depositional Setting

E – W Palaeo-shoreline

Depositional genetic Units

- Back barrier
- Washover sands
- Lagoons
- Tidal deltas
- Mouth bar
- Braidplain and braid bars

Controls on Depositional Facies and Reservoir Quality

- Sea level variations
- Distance from palaeoshoreline

LEKCIL

LEKOIL

Depositional Analogue and Architecture of Genetic Units

- Facies belts are parallel to paleo-shoreline
- Facies Associations and Genetic Units reflects position and distance from the paleoshoreline
- Reservoir quality changes basin ward of the shoreline i.e. increase authigenic carbonate cements

Reservoir Zonation and Layering

- Key surfaces and flooding events correlated across basin (H1 to H9)
- Higher resolution stratigtraphic zonation achieved from stacking patterns of characteristic Genetic Units in the wells, defined by FS & SBs
- Reservoir Flow Units are separated from major flooding events and SBs
 - Flooding Shales are 9 36 ft thick
 - SBs defined by multi-well logs breaks and seismic terminations
- Characterization of Genetic Units is based on
 - Higher order GUs (4th Order)
 - & Petrophysical properties

Kaki et. al. (2013)	This Study	Name	GR DEN RES
H2		Mid-Miocene Unconformity	1 3
H3		Base Miocene Unconformity	
Intra-Imo FM		Eocene Unconformity	
H4		Top Araromi Fm	
Intra-Araromi FM		Mid-Maastrichtian Unconformity	500 ft
H5		Maastrichtian Unconformity	
	F1	Flooding Event	
H6	SB4	Top Abeokuta Sandstone	
	F2	Flooding Event	3 3 2
		Flow Unit	
	F3	Flooding Event	
		Flow Unit	F2 📕 🍝 🔢 ዿ 🖇
	F4	Flooding Event	
		Flow Unit	F5 2 3
	F5	Flooding Event	
H7	SB3	Early Cenomanian Sandstone	
	F6	Flooding Event	
		Flow Unit	
	F7	Flooding Event	
H8	SB2	Mid-Albian Unconformity	
	F8	Flooding Event	
		Flow Unit	
	F9	Flooding Event	$\square \leq \square \langle j \rangle$
H9	SB1	Mid Cretaceous Unconformity	F9
?	SBO	?	3 5
Deep Marker		Base of syn-rift Ise (?)	7

		BASIN TYPE	ROCK	PERIOD	PETROPHYSICAL PROPERTIES	
BASIN	LOCATION				POROSITY	
					RANGE %	MEAN %
Bredasdrop Basin	South African Cretaceous Basins	RIFT	SILICICLASTIC	CRETACEOUS	11.3 - 16	13.65%
Gongola Basin	North Eastern Nigeria	RIFT	SILICICLASTIC	CRETACEOUS		25%
Tano Basin	Ghana	RIFT	SILICICLASTIC	CRETACEOUS	17 - 22	19.50%

Inversion Model: Porosity Trends

as secondary attribute

Seismic-derived porosity cube

LEKOIL

Results - 3D Reservoir Architecture and Gross Rock LEKOIL Property Characterization

- Low acoustic impedance (AI) indicates high porosity
- High acoustic impedance indicate of mainly shale lithology
- Low porosity may result from either tight sand (?cementation) or percentage of shale
- Lateral variations in acoustic impedance suggest proximal-distal/axial lateral variabilities in porosities

Reservoir Property Realization Models - Turonian

- SGS shows low porosity distribution from the centre to the southern region
- Co-kriged with Trend Map shows high variability
- Co-kriged with seismic resampling shows high porosity distribution

High

LEKOIL

Reservoir Property Realization Models - Cenomanian LEKOIL

Sequential Gaussian Simulation (SGS)

SGS co-kriged with Trend Map from Inverted QI Model

SGS co-kriged with Seismic Resampling from Inverted QI Model

- Overall high porosity distribution
- Co-kriged realisations show a remarkably different distribution from SGS
- The inversion results and co-krigging of inverted data indicate higher porosity distribution around the north western part of the block.
- In southern and eastern part, the co-krigged models show more variability
- East West facies belt is better developed with the realization from Trend Map, i.e. southern part of AOI

High

Reservoir Property Realization Models – Albian

Sequential Gaussian Simulation (SGS)

from Inverted QI Model

SGS co-kriged with Trend Map

- SGS shows a more even porosity distribution
- Co-kriging resulted in a porosity distribution that trends with East West facies belt
- Co-kriged with seismic resampling shows high porosity to the north and low porosity to the south

LEKCIL

SGS co-kriged with Seismic

Resampling from Inverted QI Model

Constraining the seismic porosity with real data

- SGS over-estimates porosity distribution
- Porosity distribution from trend maps is over-estimated in shales
- Porosity from Co-kriging with seismic resampling is best constrained
- ----- Log data
- Sequential Guassian Simulation (SGS) and Trend Maps QI
 - Co-kriging with Seismic resampled QI

Trend Maps QI

LEKOIL

Conclusion

- Optimal use of available data
- Improved reservoir property distribution and reduced uncertainty in an area with limited data
- Observed Property distribution honours facies trend which provides confidence in inversion model output
- Results has been used to improve future development concepts and potential appraisal targets in such complex stacked reservoir GUs

Acknowledgement

LEKEL

