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Abstract

This paper examines chaos control of two four-dimensional chaotic systems, namely: the Lorenz–Stenflo (LS) system
that models low-frequency short-wavelength gravity waves and a new four-dimensional chaotic system (Qi systems),
containing three cross products. The control analysis is based on recursive backstepping design technique and it is
shown to be effective for the 4D systems considered. Numerical simulations are also presented.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Control mechanism that enable a system to maintain a desired dynamical behaviour (the ‘‘goal’’ or ‘‘target’’) even when
intrinsically chaotic have many applications ranging from biology to engineering [1–4]. Thus, it is of considerable interest
and potential utility, to devise control techniques capable of achieving the desired type of behaviour in nonlinear and cha-
otic systems. The control of chaos and bifurcation is concerned with using some designed control input(s) to modify the
characteristics of a parameterized nonlinear system. The control can be static or dynamic feedback control, or open-loop
control. The objective can be the stabilization and reduction of the amplitude of bifurcation orbital solutions, optimization
of a performance index near bifurcation, reshapening of the bifurcation diagram or a combination of these.

For over a decade, there has been intense research activities devoted to the design of effective control techniques
[1–33]. A large number of the proposed methods are based on the Ott, Grebogi and Yorke (OGY) closed-loop feedback
method [5] and the Pyragas time-delayed auto-synchronization (TDAS) method [6]. The OGY method seeks to use
small perturbation to place chaotic orbits onto unstable periodic orbits [5]; and have been applied to some experimental
systems [7–12] including the stabilization of pattern dynamics in a Taylor vortex flow with hourglass geometry [11] and
control of chaotic Taylor–Coutte flow [12]. On the other hand, Pyragas TDAS method uses continuous time-delayed
feedback [6]; and has been shown to be an efficient method that has been realized experimentally in electronic chaos
oscillators [13], mechanical pendulums [14], lasers [15] and chemical systems [16].

Despite the successful implementation of these two basic schemes, some drawbacks have been identified. For instance,
the restriction to stabilization of unstable periodic orbits (UPO) to stable periodic orbits (PO) in the OGY method neglects
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the fact that steady state solutions represent the most practical operation mode in many chaotic systems such as electronic
oscillators [17] or lasers [18]. The TDAS, on the other hand depends on the torsion of neighbouring trajectories in the phase
space [19]. In addition, stability analysis of delayed feedback systems is very difficult. To address these drawbacks and
many others, numerous linear [20–23] and nonlinear [24–33] control methods have emerged over the years. In particular,
backstepping recursive nonlinear control scheme has been employed recently for controlling and tracking chaotic systems
[27–33]; because backstepping design can guarantee global stability, tracking and transient performance for a broad class
of strick-feedback nonlinear systems [32,33]. The technique is a systematic design approach and consists in a recursive pro-
cedure that skillfully interlaces the choice of a Lyapunov function with the control.

In this paper, a simple backstepping-based control scheme is proposed for controlling four-dimensional (4D) chaotic
systems. The 4D chaotic systems considered here are the Lorenz–Stenflo system (LS) [34–38] and a new 4D chaotic sys-
tem recently proposed by Qi et al. [39]. Based on active control technique, we have recently studied the synchronization
behaviour of these two systems [40]. The rest of the paper is organized as follows: In Section 2, we consider the control
of the Lorenz–Stenflo system and in Section 3, we treat the Qi system. The paper is concluded in Section 4.
2. Controlling Lorenz–Stenflo system

2.1. The Lorenz–Stenflo system

Here, we consider the following four coupled nonlinear autonomous first order differential equations:
_x1 ¼ aðx2 � x1Þ þ cx4

_x2 ¼ x1ðr � x3Þ � x2

_x3 ¼ x1x2 � bx3

_x4 ¼ �x1 � ax4

ð1Þ
which were formulated by Stenflo [34] from a low-frequency short-wavelength gravity wave equation. In (1), the dots
denote time derivatives, r (>0), a (>0), c (>0) and b (>0) are, respectively, the Rayleigh number, Prandtl number, rota-
tion number and geometric parameter. System (1), named Lorenz–Stenflo (LS) system is similar to the famous Lorenz
equations, but differ from it by the introduction of the new control parameter c, and a new state variable x4, describing
the flow rotation. Thus, the generalized system (1) reduces to the Lorenz system in the absence of c and x4.

Some dynamical behaviours of the Lorenz–Stenflo equation are reported in [34–38,40], including the familiar period-
doubling route to chaos [35,37]; and adaptive control and synchronization [38] and synchronization based on active con-
trol [40]. With the following parameters: a = 1.0, b = 0.7, c = 1.5 and r = 26.0, the LS system exhibits the chaotic motion.

2.2. Design of backstepping control

Let us consider an LS system given by:
_x1 ¼ aðx2 � x1Þ þ cx4

_x2 ¼ x1ðr � x3Þ � x2

_x3 ¼ x1x2 � bx3 þ uðtÞ
_x4 ¼ �x1 � ax4

ð2Þ
where u(t) is a control function. Here, we aim at determining the controller u(t) which is required to drive system (2) to a
desired behaviour. We first define error states ei (i = 1,2,3,4)
e1 ¼ x1 � x1d; e2 ¼ x2 � x2d; e3 ¼ x3 � x3d; x4 ¼ x4 � x4d; ð3Þ
where x1d, x2d, x3d, and x4d are desired states. For simplicity, let x1d ¼ 0, x2d ¼ c1e1, x3d ¼ c2e1 þ c3e2, and
x4d ¼ c4e1 þ c5e2 þ c6e3, where the ci’s are arbitrary control parameters to be chosen later. Using Eq. (3) in (2), it follows
that the error dynamic equation can be written as
_e1 ¼ ðaðc1 � 1Þ þ cc4Þe1 þ ðaþ cc5Þe2 þ cðc6e3 þ e4Þ
_e2 ¼ e1ðr � e3 � c2e1 � c3e2Þ � e2 � c1e1 � c1 _e1

_e3 ¼ e1ðe2 þ c1e1Þ � bðe3 þ c2e1 þ c3e2Þ � c2 _e1 � c3 _e2 þ uðtÞ
_e4 ¼ �e1 � aðe4 þ c4e1 þ c5e2 þ c6e3Þ � ðc4 _e1 þ c5 _e2 þ c6 _e3Þ

ð4Þ
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Considering the following Lyapunov function:
Fig. 1.
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the time derivative of Eq. (5) is
_V ¼
X4

i¼1

kiei _ei ¼ k1e1 _e1 þ k2e2 _e2 þ k3e3 _e3 þ k4e4 _e4 ð6Þ
Substituting (4) in (6) and choosing the control parameters as: c1 = c2 = c4 = c5 = c6 = 0 and c3 = 1, we obtain the
Lyapunov first derivative
_V ¼ k1e1ðae2 � ae2 þ ce4Þ þ k2e2½e1ðr � e3 � e2Þ � e2� þ k3e3½e1e2 � bðe3 þ e2Þ � ½e1ðr � e3 � e2Þ � e2� þ uðtÞ�
� k4e4ðe1 þ ae4Þ: ð7Þ
To make _V negative definite, we must choose the ki’s such that _V is zero. Let k1 = k2 = k4 = 0 and k3 = 1. It follows that
uðtÞ ¼ bðe3 þ e2Þ þ ½e1ðr � e3 � e2Þ � e2� � e1e2 ð8Þ
satisfies the condition.

2.3. Numerical results

For the purpose of numerical simulation, we fix a ¼ 1:0, b ¼ 0:7, c ¼ 1:5 and r ¼ 26:0 to place the system in chaotic
motion. Fig. 1 illustrates a typical chaotic orbits in the uncontrolled state. When the control is switched on it is clear
from Fig. 2 that the chaotic behaviour has been controlled as soon as u(t) is activated at t = 150. Thus, the control law
given by Eq. (8) is effective.
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Chaotic dynamics of the Lorenz–Stenflo system in the uncontrolled state: (a) the chaotic phase portrait, (b) time series of the x1
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Fig. 2. Dynamics of the Lorenz–Stenflo system in controlled state when u(t) has been activated: (a) the controlled phase portrait, (b)
time series of the x1 variable and (c) time series of the x4 variable. The parameters of the system are as in Fig. 1.
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3. Controlling Qi system

3.1. The Qi system

The second model system which we study is the following 4D autonomous system described by [39]
_x1 ¼ aðx2 � x1Þ þ x2x3x4

_x2 ¼ bðx1 þ x2Þ � x1x3x4

_x3 ¼ �cx3 þ x1x2x4

_x4 ¼ �dx4 þ x1x2x3;

ð9Þ
where x1; x2; x3 and x4 are the state variables of the system and a; b; c and d are all positive real constant parameters.
System (9) was recently introduced by Qi et al. [39] and it has been shown to exhibit complex dynamical behaviour
including the familiar period-doubling route to chaos as well as hopf bifurcations [39]. In Ref. [40], we presented an
active control based synchronization scheme for the Qi system operated in the chaotic mode. For the system parame-
ters: a ¼ 30; b ¼ 10; c ¼ 1 and d ¼ 10, the Qi model exhibits chaotic motion.

3.2. Design of backstepping control

Following Section 2, we choose a Qi system given by
_x1 ¼ aðx2 � x1Þ þ x2x3x4

_x2 ¼ bðx1 þ x2Þ � x1x3x4

_x3 ¼ �cx3 þ x1x2x4 þ uðtÞ
_x4 ¼ �dx4 þ x1x2x3;

ð10Þ
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where u(t) is the control function to be determined. Using the definition of the error states as in Eq. (3), it follows that
the error dynamics of system (10) can be written as
Fig. 3.
time se
_e1 ¼ aðe2 þ c1e1 � e1Þ þ ðe2 þ c1e1Þðe3 þ c2e1 þ c3e2Þðe4 þ c4e1 þ c5e2 þ c6e3Þ
_e2 ¼ bðe1 þ e2 þ c1e1Þ � e1ðe3 þ c2e1 þ c3e2Þðe4 þ c4e1 þ c5e2 þ c6e3Þ � c1 _e1

_e3 ¼ �cðe3 þ c2e1 þ c3e2Þ þ e1ðe2 þ c1e1Þðe4 þ c4e1 þ c5e2 þ c6e3Þ � c2 _e1 � c3 _e2 þ uðtÞ
_e4 ¼ �dðe4 þ c4e1 þ c5e2 þ c6e3Þ þ e1ðe2 þ c1e1 þ c3e2Þðe3 þ c2e1 þ c3e2Þ � c4 _e1 � c5 _e2 � c6 _e3:

ð11Þ
Substituting Eq. (11) in Eq. (6) and choosing the control parameters as in the previous case, i.e. c1 = c2 = c4 = c5 =
c6 = 0 and c3 = 1, we have
_V ¼ k1e1½aðe2 � e1Þ þ e2e4ðe2 þ e3Þ� þ k2e2½bðe1 þ e2Þ � e1e4ðe2 þ e3Þ� þ k3e3½�cðe2 þ e3Þ þ e1e2e4 � bðe1 þ e2Þ
þ e1e4ðe2 þ e3Þ þ uðtÞ� þ k4e4½2e1e2ðe2 þ e3Þ � ce4�
To make _V negative definite, we choose the ki’s such that _V is zero. Let k1 = k 2 = k4 = 0 and k3 = 1. Thus, it follows
that
uðtÞ ¼ cðe2 þ e3Þ � e1e2e4 þ bðe1 þ e2Þ � e1e4ðe2 þ e3Þ ð13Þ
satisfies the required condition.

3.3. Numerical results

In the numerical simulations, we set the parameters of the Qi system as follows: a ¼ 30; b ¼ 10; c ¼ 1 and d ¼ 10.
This ensures the chaotic behaviour shown in Fig. 3 when the control is deactivated. In Fig. 4, we activate the control at
t = 5 and it is obvious that the chaotic behaviour has been controlled as soon as control is activated.
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Chaotic dynamics of the Qi system in the uncontrolled state: (a) chaotic phase portrait, (b) time series of the x2 variable and (c)
ries of the x4 variable. The parameters of the system are a ¼ 30; b ¼ 10; c ¼ 1 and d ¼ 10.
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Fig. 4. Dynamics of the Qi system in controlled state when u(t) has been activated: (a) the controlled phase portrait, (b) time series of
the x2 variable and (c) time series of the x4 variable. The parameters of the system are as in Fig. 3.
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4. Conclusion

This paper has examined chaos control in two different 4D chaotic systems, namely: Lorenz–Stenflo system and a
new system which we call the Qi system by employing recursive backstepping approach. The presented numerical
results shows that the backstepping control is very effective and can guarantee stability of the system about any
desired point.
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