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Abstract: In this paper, the entropy generation rate in unsteady buoyancy-driven hydro-

magnetic couple stress fluid flow through a porous channel has been investigated. The partial

differential equations are converted into their corresponding dimensionless equivalence, in-

cluding the prescribed initial boundary conditions. These equations were solved using the

Adomian decomposition method and the behaviour of some pertinent fluid variables, such

as velocity, temperature, entropy generation rate and the irreversibility ratio were examined

and discussed for different parameters of interest, which include, the Grashof number, the

Hartmann’s number, the Reynolds number, the Brinkman number and the couple stress pa-
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rameter. It was found that the entropy generation rate in the fluid model largely depends

on the intermolecular forces between the fluid parcels. This has accounted for the observed

increase in the entropy generation rate with respect to the couple stress parameter. Other

observed entropy generation rate trends found their cause to the internal phenomenon in the

fluid, though may be triggered by other forces such as the buoyancy and the Lorentz forces.

Graphs are shown to illustrate the findings.

AMS Subject Classification: 76D05, 35Q30

Key Words: magnetic field, entropy generation, unsteady flow, irreversibility ratio, buoy-
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1. Introduction

The study of hydromagnetic flow of fluid that exhibits a non-symmetric stress
tensor in its fluid structure [1] has been on the increase due to its numer-
ous applications in engineering and industries. For instance, in geophysical
prospecting including geothermal and petroleum reservoirs, and molten metal
processing. This class of fluid, which is generally referred to as non-Newtonian
fluid, includes lubricating films with polymer additives, molten metals and ani-
mal blood [2, 3]. Another example of non-Newtonian fluid is the fluid carrying
charged particles, which are subjected to electomagnetic field that causes the
particles to rotate relative to thier neighbours [4].

In this present studies, emphasis is laid on the flow of non-Newtonian couple
stress fluid, whose convective motion is influenced by a uniform transverse mag-
nectic field. In this direction, appreciable number of studies have been reported
in the literature over the years. For instance, Shercliff [5] investigated the steady
motion of an electrically conducting viscous fluid along channels in the presence
of an imposed transverse magnetic field when the walls do not conduct currents.
Adesanya and Makinde [6] studied the effect of radiative heat transfer to oscil-
latory hydromagnetic non-Newtonian couple stress fluid flow through a porous
channel with non-uniform wall temperature due to periodic heat input at the
heated wall. In a related work, Reza and Gupta [7] examined the flow of a com-
bination of incompressible viscous electrically conducting fluids in the presence
of a transverse uniform magnetic field. Das and Jana [8] presented the sec-
ond law analysis for magnetohydrodynamic incompressible fluid flow through
a porous channel by imposing Navier slip conditions at the walls. Adesanya
and Falade [9] analysed the inherent irreversibility in the flow of hydrodynamic
third grade fluid through a channel saturated with porous materials. Other
important studies in this direction include [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
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However, none of the references mentioned above on the analysis and en-
tropy generation of non-Newtonian couple stress magnetohydromagnetic fluid
flow has considered the analysis of entropy generation rate in magnetohydrody-
namic couple stress fluid flow in porous channel. In reality, non-Newtonian cou-
ple stress fluid are used as working fluids in many technological and industrial
processes, including polymer technology, petroleum industry [20]. Motivated
by studies in [6, 7, 8, 9, 21, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], the objective
of the present study is to examine the influence of magnetic field and Ohmic
heating of the couple stress fluid on the entropy production within the flow
channel, which has not been accounted for in the literature. The outcoming
results is expected to enhance many industrial and thermal engineering pro-
cesses whose working medium is non-Newtonian fluid, with a view to minimise
entropy generation which tends to deplete the amount of available energy for
work.

To achieve this objective, flow governing equations are formulated, non-
dimensionalised and approximate solution of the dimensionless coupled non-
linear boundary-value problem are obtained by using a semi-analytical Adomian
decomposition method [22, 23]. The choice of the method is due to the fact
that it does not require any linearisation, discretisation, use of initial guess or
pertubation. The flow profile, entropy generation rate and irreversibility ratio
are then computed.

In the following section, the problem is formulated and non-dimensional
analysis is also presented. The entropy generation is presented in Section 3.
Section 4 of the work contains the method of solution, results are presented
and discussed in Section 5, while Section 6 concludes the paper.

2. Mathematical Formulation

The unsteady laminar hydromagnetic non-Newtonian couple stress fluid flow
between two permeable and stationary infinite parallel plates is considered as
shown in Fig.1. We choose a 2-dimensional cartesian coordinate system with
x−axis along the flow direction and y−axis orthogonal to the planes of the
parallel plates, separated by width y = h. Fluid injection occurs at the lower
plate at a uniform rate v0, with a corresponding fluid suction at the upper
plate. A constant magnetic field of strength B0 is applied perpendicular to
the direction of fluid flow. The magnetic Reynolds number is assumed to be
small. We further assumed that no external voltage is applied to the flow
system, and the induced magnetic field and Hall effect are negligible. In this
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Figure 1: The geometry of the model.

model, we employ the Booussinesq approximation [24], where the gravitational
pull on the temperature dependent fluid density acts as a pump for the flow.
Using the Stoke’s constitutive model for the couple stresses, the momentum
balance equation, the energy balance equation, and the local volumetric entropy
generation rate (EG) are given as follows[25, 26]:

ρ

(

du′
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+ v0

du′

dy′

)
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with the initial boundary conditions

u′(0, y) = v0 sin(
π

h
y), (3)
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h
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+ T0, (4)

u′(0, t) = u′(1, t) = 0, (5)

T (t, 1) = T0, (6)

d2u′(0, t)

dy′2
=

d2u′(1, t)
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= 0, (7)

where u′ and P are the fluid velocity and pressure respectively, v0 is the injec-
tion/suction velocity at the channel walls, η is the coefficient of couple stress,
µ is the dynamic viscosity, ρ is the fluid density, σe is the fluid electrical con-
ductivity, κ is the coefficient of thermal conductivity, cP is the isobaric specific
heat, Tf and T0 are referenced fluid temperature, T is the fluid temperature.
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It is often suitable to express the model equations in dimensionless form,
which would allow for broad applicability of the equations without having to
address the incompatibility that could arise from different unit sys- tems. To
this end, we introduce the following dimensionless parameters and variables:

y =
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v0
, t =

v0t
′

h
, θ =
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Tf − T0
,
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µh2

η
,
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hρCpv0

κ
,H2
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σeh

2B2
0

µ
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2
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T 2
0 h

2EG
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we obtain the following initial boundary value problems
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with the corresponding dimensionless initial boundary conditions

u(0, y) = sin(πy), θ(0, y) = αy(1− y),

u(t, 0) = u(t, 1) = 0, θ(t, 0) = θ(t, 1) = 0,

∂2u(t, 0)

∂y2
=

∂2u(t, 1)

∂y2
= 0, (11)

where α = 1/(Tf − T0). In this present work, it is convenient to set α to unity.

3. Entropy Generation Analysis

In accordance with the second law of thermodynamics, a common problem in
dynamic energy systems such as this is to estimate or forcast the rate of entropy
generation as the fluid flows, with the view of eliminating possible degradation



316 S.O. Kareem, S.O. Adesanya, J.A. Falade, U.E. Vincent

of the system’s useful energy. Irreversibility exists in the flow system due to the
fluid motion and heat transfer in the system, which evolves in the interchange
of energy and momentum both within the fluid and at the boundaries [27]. For
a pseudo 1-D viscous fluid flow in a channel, the inherent flow irreversibility
may be analysed using the local volumetric rate of entropy generation, which
is given by [28, 29]:

EG =
κ

T 2
0

(
dT (t, y)

dy′
)2 +
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T0
(
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)2 +
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0u
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where σe = 0 for a non-conducting fluid. Note that the last term in Eq. (12)
is the irreversibility due to heating in the flow system [30]. Using Eqs. (8) and
(12), the dimensionless entropy generation function may be expressed as:
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The interest here is to obtain the irreversibility ratio to compare the differ-
ent contributions from the heat energy contributing forces in the fluid system.
Notice that the buoyancy force does not contribute any heating effect to the
flow. In this respect, we compare the irreversibility due to heat trasfer, N1 to
the irreversibility due to the combination of the effective viscous effect and the
Lorentz force effect, N2, where

N1 =
(∂θ
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)2
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(∂u
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so that the Bejan number (Be) is given as

Be =
N1

Ns
=

1

1 + Φ
, (15)

where Φ = N2

N1
is the irreversibility distribution ratio, a parameter that measures

the rate of destruction of available work in the flow system. For more detail on
the variation Be and the interpretation of ECIS kindly see Ref. [31].

4. Adomian Decomposition Method of Solution

To solve the model equations (9) and (10) using the semi-analytical Adomian de-
composition scheme, subject to the initial boundary conditions (11), we choose
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the invertible linear differential operator ∂
∂t

= Lt such that L−1
t (.) =

∫ t

0 (.)dt.
Following from this, Eqs (9) and (10) may be expressed as
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from which the recursive Adomian decomposition scheme may be written as
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Figure 2: Parameterised velocity profiles of the fluid flow: (a) at varying
Reynolds numberRe, with Pe = 0.71, Br = 5, Gr = 1, Ha = a = G = 1;
(b) at varying Grashoff number Gr, with Pe = 0.71, Br = 5, Re = 0.15,
Ha = a = G = 1; (c) at varying Hartmann’s number Ha, with Pe =
0.71, Br = 5, Gr = 1, a = G = 1, Re = 0.15; (d) at varying couple
stress inverse a, with Pe = 0.71, Br = 5, Gr = 1, Ha = G = 1
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...
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The Adomian decomposition method has been shown to be a rapidly con-
verging procedure in a number of applications (e.g. Refs. [32, 33]). As a result,
only few terms would be required to obtain the approximate solutions of the
problem. We set the number of iteration to m so that the approximate solutions
(20) may be written as the finite series as follows:

u(t, y) =

m
∑

0

un(t, y), θ(t, y) =

m
∑

0

θn(t, y). (24)

5. Results and Discussion

The dimensionless equations (9)-(13), with the initial and boundary conditions
(11) were obtained using the algorithm in Eq. (23) in the limit of Eq. (24), and
with codes implemented in MATHEMATICA symbolic package. The velocity,
temperature, entropy generation and irreversibility ratio were obtained and
displayed to illustrate our findings.

The variations of the dimensionless velocity with the width of the flow chan-
nel is presented in Fig.2, for different values of Reynolds parameter Re, Grashoff
number Gr, magnetic parameter (Hartmann’s number, H2), and couple stress
inverse parameter a2. In Fig.2a, the Reynolds number is directly proportional
to the velocity of the fluid body. It is well known that the dynamic viscosity
(µ) in a given flow may diminish with respect to the temperature of the fluid.
This could result in inreasing Reynolds number in the fluid motion, which in
turn reduces the viscous resistance to the motion. In water for instance, this
phenomenon could quickly result in the formation of eddies. In other words, in-
creasing the Reynolds number decreases the effective viscosity in the fluid flow.
This effect is similar to the effect of buoyancy on the fluid flow. It is clear from
Fig. 2b incresing the Grashof number corresponds to reduction in the viscous
forces in the fluid flow. The resultant translational motion of the fluid body
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Figure 3: Parametrised temperature profiles of the fluid flow: (a) at
varying values of Brinkman number Br, with Pe = 0.71, Re = 0.15,
Gr = 1, Ha = a = G = 1; (b) at varying values of Hartmann’s number
Ha, with Pe = 0.71, Br = 5, Gr = 1, a = G = 1; (c) at varying values
of couple stress inverse a, with Pe = 0.71, Br = 5, Gr = 1, Ha = G = 1

increases with the Grashof number. In Fig. 2c however, a different phenomenon
occurred. Increasing magnetic field, the flow velocity is inhibited. The Lorentz
force resulting from the transverse magnetic field constitutes resistance to the
momentum of fluid parcels in the adjacent fluid layers, whose presence in the
flow system constitutes resistance to the momentum. It is shown in Fig.2d that
increasing the couple stress inverse parameter results in increase in the flow
velocity. It is observed from the figure that increasing the couple stress inverse
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parameter also increases the resistance to the fluid motion. This friction arises
from the effect of particle additve, constituting size dependent effect on couple
stress fluids as well as the rotational field of the particles velocity, which is in-
herent in couple stress fluid. Invariably, an increse in couple stress corresponds
to decrease in the velocity profile of the fluid.

In Fig.3, the characteristics of the flow temperature is described with respect
to Brinkman number, the magnetic field parameter, and the couple stress pa-
rameter in the flow system. It is clear from Fig.3a that increasing the Brinkman
number, Br increases the temperature of the fluid. This can be explained by
the average decrease in the translational kinetic energy of the flow. The kinetic
energy E = 1

2mu2, in terms of the fluid particle’s mass m and velocity u. E

is comparable with Br =
1
2mv20 , where m = 2µ

κ(Tf−T0)
. In Fig.3b, it is observed

that increasing the magnetic field intensity results in a decrease in the channel
temperature, while Fig.3c shows that increasing couple stresses strenghtens the
the intermolecular cohesion in the fluid, which in turn decreases the tempera-
ture profile in the channel. This behaviour is expected, because couple stresses
cause rotational tendencies in the fluid, which predisposes the flow system to
resistance to shear stress.

Furthermore, we examine the effects of the Binkman number Br, magnetic
parameter, H2, couple stress parameter, a on the entropy generation of the flow
system, as shown in Fig.4. Fig.4(b) shows that the rate of entropy generation
increases with increase Brinkman number, while Fig.4(b) revealed that entropy
generation, Ns inecreases with increases in the magnetic parameter H2. It is
well known that viscosity increases as the intermolecular cohesion within the
fluid rises. Since the applied Lorentz force inhibits the motion in the fluid, the
intermolecular cohesion improves in the fluid resulting in inecrease in entropy
generation Ns within the channel. Moreover, it is clear from Fig.4(c) that the
rate of entropy generation decreases with increase in couple stress parameter.

In Fig.5, we examine the relative dominance of the two forms of irreversibil-
ities that exist in the flow system, which are the irreversibility due to fluid
viscosity and ohmic heating, and irreversibility due to heat transfer. We thus
found from Fig.5(a-c) that as the parameters (Br), Ha and a increase, the irre-
versibility due to fluid viscosity dominates the irreversibility distribution ratio.

6. Conclusion

Entropy generation rate in unsteady buoyancy-driven hydromagnetic couple
stress fluid flow through a porous channel has been investigated. The par-
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Figure 4: Entropy generation rate: (a) at varying values of Brinkman
number Br, with Pe = 0.71, Gr = 1, Ha = a = G = 1; (b) at varying
values of Hartmann’s number Ha, with Pe = 0.71, Br = 5, Gr = 1,
a = G = 1; (c) at varying values of the couple stress inverse a, with
Pe = 0.71, Br = 5, Gr = 1, HaHa = G = 1

tial differential equations are converted into their corresponding dimensionless
equivalence, including the prescribed initial boundary conditions. These equa-
tions were solved using the Adomian decomposition method and the behaviour
of some pertinent fluid variables, such as velocity, temperature, entropy genera-
tion rate and the irreversibility ratio were examined and discussed for different
parameters of interest, which include, the Grashof number, the Hartmann’s
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Figure 5: Irreversibility ratio: (a) at varying values of Brinkman number
Br, with Pe = 0.71, Gr = 1, Ha = a = G = 1; (b) at varying values of
Hartmann’s number Ha, with Pe = 0.71, Br = 5, Gr = 1, a = G = 1;
(c) at varying values of the couple stress inverse a, with Pe = 0.71,
Br = 5, Gr = 1, HaHa = G = 1

number, the Reynolds number, the Brinkman number and the couple stress
parameter.

It was found that the entropy generation rate in the fluid model that has
been studied largely depends on the internal forces between the fluid parcels.
For example, as the couple stress parameter increases from zero, the electrically
conducting fluid builds up more resistance against its flow rate. This has ac-
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counted for the observed increase in the entropy generation rate with respect to
the couple stress parameter. Other observed entropy generation trends found
their cause to the internal phenomenon in the fluid, though may be triggered
by other forces such as the buoyancy and the Lorentz forces. In addition, it was
observed that the presence of the Lorentz force in the fluid could be utilise to
implement a speed control mechanism in the studied fluid system since increaing
magnetic field in the fluid reduces velocity.
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