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Why Study Electromagnetism ?

� Four fundamental forces in nature:

– Gravity - matter always attracts 

– Electromagnetic - holds atoms together 

– Strong nuclear - binds atomic nucleus together 

– Weak nuclear - allows nuclear reactions 

Last two are very short-range (sub-atomic ~ 10-15 m)
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Maxwell’s Equations

The complete set of laws which govern electromagnetism

- relate electric and magnetic fields and flux

- explain the forces which act upon charges

- explain electromagnetic waves

Gauss’ law: 

– E field diverges and converge from charges 

Gauss’ law for magnetism: 

- B field does not diverge or converge from a point

Faraday’s law:

- E field lines encircle regions of changing B
Ampere’s law: 

- B field lines encircle regions in which current flows 

or E is changing
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The Electric Charge:
Can be Positive or Negative

� Charges exert a force proportional to separation 

� Like charges repel 

� Unlike charges attract 

� SI Unit of charge is the Coulomb

� Ratio charge/mass for electron much larger than 

that of smallest ion (mp/me = 1836) 
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Key concept: Coulombs Law

� Charles Augustin Coulomb (1736 - 1806) 

� Describes the electric force between two charged 

particles Q1 and Q2 a distance r12 apart: 

� ε0 is the permittivity of free space 

(8.85 ×10-12 C2 N-1 m-2) 

� Tipler uses k = [1/(4πε0)], the "Coulomb Constant“

� N.B. Force repulsive if charges of same sign
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Electric force

� The electric force is a central force:

- force directed along line between charges 

- magnitude depends only on distance r

� The Coulomb is the charge carried past a point in 

a circuit by 1 Amp flowing for 1 second 

� Electron only carries a charge of 1.6×10-19 C

� For two 1 C charges 1 m apart, force = 9×109 N !!
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Key concept: Electric field

� Field: a quantity that can be associated with a position

– Either vector field (e.g. electric) or scalar (e.g. temperature)

� The electric field E at point P due to a charge Q is the 

electric force exerted by that charge on a test particle 

divided by the (small) charge q0 on the test particle:

� For a distribution of charges Q1, Q2, ... Qi use the 

principle of superposition to get F and/or E
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Electric field

Use whatever coordinate system is convenient

E points away from/towards a positive/negative charge 



Drawing electric field lines

Use line 
spacing to 
indicate field 
strength

Field lines 
do not cross
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Move out a bit…
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In Practice, think in 3-D



Calculating the E field
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Key concept: Gauss’s Law

� The net electric flux (Φnet ) through any closed 

surface is equal to the net charge enclosed by the 

surface (Qinside) divided by ε0: 

� Thus the net flux is the dot product of E and the 

unit vector normal to the surface integrated over the 

surface (a “surface integral”)

� Dot product: A.B = AB cosø
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Gaussian surface

� A Gaussian surface is any closed surface over 

which the flux is evaluated (use whatever surface 

is easiest).

� This method to find E is only useful in practice for 

symmetrical surfaces (sphere, infinite plane…)



Example: Find E for a point charge
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Key concept: Electric potential 
energy

� The electric potential energy U(r) of test-charge q0 at 

distance r from a point charge is the work done 

against the electric force to move q0 from infinity to 

distance r from the point charge

� We define U(r) = 0 when r = ∞

� Electric force is a conservative force: the work 

done is independent of path chosen for line integral
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Key concept: Electric potential

� The electric potential V is the electric potential 

energy U of a test-particle at that point divided by 

its charge

� Unit: Volt (Count Alessandro Volt (1745-1827))

� Hence from definition of U and E,
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Equipotential surface

• V is constant on an equipotential surface
• E is normal to an equipotential surface – no 

work done moving charge around that surface
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Conductors in electrostatic 
equilibrium

� E is normal to the surface of a conductor and has 

magnitude, En = σ/ε0

� E is zero inside a conductor, i.e. the net charge 

density within a conductor is zero

� This is true unless an external energy source is 

applied to maintain a field (a conductor comes to 

equilibrium very quickly, e.g. nanoseconds for copper).
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Example of forces involved

Q) What is the force binding a crystal of Salt?

�Typical distance d between ions? 

– d is about 1Å (10-10 m) 
Thus force between postive/negative ion ≈ 2 ×10-8 N 

�How many bonds in one square meter? 

– About 1/d2 ≈ 1020 bonds 

�Force to break them? 

= 1020 × 2 ×10-8 = 2 ×1012 N 

Oversimplified, but clearly crystals are strong! 



Key concept: Electric field

� Field: a quantity that can be associated with a position

– Either vector field (e.g. electric) or scalar (e.g. temperature)

� The electric field E at point P due to a charge Q is the 

electric force exerted by that charge on a test particle 

divided by the (small) charge q0 on the test particle:

� For a distribution of charges Q1, Q2, ... Qi use the 

principle of superposition to get F and/or E
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Calculating the E field

� Coulomb’s law can be used to find E for a 

continuous charge distribution

� “Continuous” may, for example, mean a line (or 

ring), a surface or a volume. Charge is distributed: 

• Line or ring – use linear charge density, λ - unit C m-1

• Surface – use surface charge density, σ - unit C m-2

• Volume – use volume charge density, ρ - unit C m-3

� Always draw the charge distribution, including the 

point at which E is required

� Use Coulomb’s law for each element

� Sum using vectors or (more usually) integration
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Example problem

Q) Show that Ez at distance z along the z-axis from a 

long, straight, uniform line charge of length 2l centred 

at the origin and oriented along the z-axis is given by

where z > l

Clue: Question contains the word “line” and the 

answer contains λ (i.e., use linear charge density)
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Find Ez  at point P (z>l) 

Total length 2l, charge distributed as λ C m-1

Field due to element da is:

where r = z-a and dq = λda
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Key concept: Gauss’s Law

� The net electric flux (Φnet ) through any closed 

surface is equal to the net charge enclosed by the 

surface (Qinside) divided by ε0: 

� Thus the net flux is the dot product of E and the 

unit vector normal to the surface integrated over the 

surface (a “surface integral”)

� Dot product: A.B = AB cosø
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Gaussian surface

� A Gaussian surface is any closed surface over 

which the flux is evaluated (use whatever surface 

is easiest).

� This method to find E is only useful in practice for 

symmetrical surfaces (sphere, infinite plane…)
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Using Gauss's Law to find E

� Select the appropriate Gaussian Surface 

carefully (e.g. sphere, cylinder) – try to ensure 

E is normal to the surface used 

� Use the appropriate charge distribution (λ, σ, ρ) 

� Insert into the equation and solve the integral

� Always true, but only really useful in practice if 

you have a symmetrical situation (otherwise it 

can be hard to integrate)
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Classic example: charged spheres

Q1. Determine E inside and outside a thin, uniformly 

charged sphere of radius R and total charge Q 

Q2. Determine E inside and outside a uniform, 

spherical distribution of charge of radius R and total 

charge Q 

These are NOT the same – the sphere in Q2 is full 

of charge whereas the sphere in Q1 is empty, (i.e., 

all the charge is on the surface)



1) Determine E inside and outside a thin, uniformly charged 

sphere of radius R and total charge Q 

Field E is only radial to the surface 

(question says “uniformly charged”)

For r>R, Qinside= Q

Use a spherical gaussian surface
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Q2) Determine E inside and outside a uniform, spherical 

distribution of charge of radius R and total charge Q 
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Comparison of results

1) Thin shell 2) Solid charged sphere

E is discontinuous at the 
surface by σ/ε0 
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Key concept: Electric potential 
energy

� The electric potential energy U(r) of test-charge q0 at 

distance r from a point charge is the work done 

against the electric force to move q0 from infinity to 

distance r from the point charge

� We define U(r) = 0 when r = ∞

� Electric force is a conservative force: the work 

done is independent of path chosen for line integral
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Key concept: Electric potential

� The electric potential V is the electric potential 

energy U of a test-particle at that point divided by 

its charge

� Unit: Volt (Count Alessandro Volt (1745-1827))

� Hence from definition of U and E,
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Equipotential surface

• V is constant on an equipotential surface
• E is normal to an equipotential surface – no 

work done moving charge around that surface
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Conductors in electrostatic 
equilibrium

� E is normal to the surface of a conductor and has 

magnitude, En = σ/ε0

� E is zero inside a conductor, i.e. the net charge 

density within a conductor is zero

� This is true unless an external energy source is 

applied to maintain a field (a conductor comes to 

equilibrium very quickly, e.g. nanoseconds for copper).



Q) Determine the electric potential on the axis of a 

disk of radius R that carries a total charge Q 

distributed uniformly on its surface.

Align disk perpendicular to a 

coordinate axis (say, x).

Split disk into a set of rings, 

radius a, width da, area 

dA=2πada, charge dq=σdA.

Total charge Q=σπR2

From point P, ring is at 

distance 
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Sanity check…
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Coulomb’s Law and E Summary
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Calculating the E field

� Coulomb’s law can be used to find E for a 

continuous charge distribution

� “Continuous” may, for example, mean a line (or 

ring), a surface or a volume. Charge is distributed: 

• Line or ring – use linear charge density, λ - unit C m-1

• Surface – use surface charge density, σ - unit C m-2

• Volume – use volume charge density, ρ - unit C m-3

� Always draw the charge distribution, including the 

point at which E is required

� Use Coulomb’s law for each element

� Sum using vectors or (more usually) integration
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Workshop 1, Question 2

� A uniform line charge of linear charge density λ = 3.5 nC/m 

extends from x = 0 to x = 5 m.

� (a) What is the total charge? Find the electric field on the x 

axis at 

– (b) x = 6 m, 

– (c) x = 9 m, and 

– (d) x= 250 m.

� (e) Find the field at x = 250 m, using the approximation that 

the charge is a point charge at the origin, and compare 

your result with that for the exact calculation in Part (d).
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Workshop 1, Question 3

� A single point charge q = +2 µC is at the origin. A 

spherical surface of radius 3.0 m has its center on the 

x axis at x = 5 m. 

� (a) Sketch electric field lines for the point charge. Do 

any lines enter the spherical surface?

� (b) What is the net number of lines that cross the 

spherical surface, counting those that enter as 

negative? 

� (c) What is the net flux of the electric field due to the 

point charge through the spherical surface?
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Workshop 1, Question 4

� Two large parallel conducting plates separated by 10 cm carry equal 
and opposite surface charge densities so that the electric field between 
them is uniform. The difference in potential between the plates is 500 
V. An electron is released from rest at the negative plate. 

� (a) What is the magnitude of the electric field between the plates? Is 
the positive or negative plate at the higher potential? 

� (b) Find the work done by the electric field on the electron as the 
electron moves from the negative plate to the positive plate. Express 
your answer in both electron volts and joules. 

� (c) What is the change in potential energy of the electron when it 
moves from the negative plate to the positive plate?

� (d) What is its kinetic energy when it reaches the positive plate?
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Workshop: Problem 4

kV/m 5-  V/m 5000  a) =−=−=−=
x

V

dx

dV
Ex

eV 500 J 108  b) 17
=×==

−
qVW

Electric field is uniform in this case

eV500E eV; 500   c) kin =−=−= qVU

Higher potential at positive plate
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Electric dipole

� Consider two charges, +Q, -Q, distance L apart

� Placed in an E-field, the field will cause the dipole 

to rotate into the direction of the field

– E causes a torque τ = p x E, where p is the “dipole 

moment” (p = LQ in this case)

� The E-field created by an electric dipole falls off 

as r-3 (rather than as r-2 for a point charge)
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Q) Determine the electric potential V, a) inside and 

b) outside a uniform, spherical distribution of charge 

of radius R and total charge Q. 

Use
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Unit outline
Electrostatic potential energy 
Capacitance 
Capacitors

Potential energy stored in capacitors 
Dielectrics 
Capacitors in circuits 
Electric current 
Ohm’s Law

Energy in electric circuits 
Resistors 
Kirchoff’s Laws 
RC circuits

Lecture 1

Lecture 2

Lecture 3
Follow-up lecture
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Energy in electric circuits

�U = �Q(V2 � V1) = �QV

Over time Δt,

P =
�U

�t
=

�Q

�t
V = IV Eq 25-13

P = I2R =
V 2

R Eq 25-14

Power dissipated via 
Joule heating in 
resistive conductor

�U = �Q(V2 � V1) = �QV
�U = �Q(V2 � V1) = �QV
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Energy in electric circuits

Joule heating can be 
thought of as 
resulting from the 
friction imposed by 
the atoms in the 
conductor on the 
moving charges

A resistor is a passive element in which 
energy is dissipated, e.g. a lightbulb or 
an electrical heating element
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Energy in electric circuits

A battery does work on charges, 
raising them through the potential 
between its terminals 

The work done per unit charge is 
called the emf (electromotive 
force) ℇ 

It has units of V

P =
�QE
�t

= IE

Eq 25-15

Power supplied by 
ideal source of emf
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Energy in electric circuits

In a real battery, the internal 
resistance is not 0 Ω. Rather, it 
has a finite value r 

Therefore, if the current in the 
circuit is I, the real terminal 
voltage is 

Va � Vb = E � Ir
Eq 25-16

This means that the higher the current 
that flows in the circuit, the less 
voltage is delivered by the battery

R
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Energy in electric circuits

Va � Vb = E � Ir

V

I

ℇ

Ideal battery produces 
a terminal voltage of ℇ 
whatever the current

Real battery produces a 
terminal voltage that is 
reduced from ℇ by a value 
dependent on the current
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Energy in electric circuits

R

The current that flows in a circuit which also contains a resistor R:

IR = Va � Vb = E � Ir

The voltage between 
points a and b…

…is equal to the 
voltage that falls 
through this 
resistor R…

…and is equal to the 
emf raised, minus the 
voltage that falls 
owing to the battery’s 
internal resistance r
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Energy in electric circuits

R

The current that flows in a circuit which also contains a resistor R:

IR = Va � Vb = E � Ir

So E = I(R+ r)

Or
I =

E
R+ r

Eq 25-17
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Energy in electric circuits

R

Worked example: for a battery with emf ℇ and the internal 
resistance r, what value of resistance R maximises the power 
delivered?  What is the power?

P = I2R =
E2R

(R+ r)2

Use quotient rule:

⇣u
v

⌘0
=

u0v � uv0

v2

dP

dR
= 0

Finding max 
P w.r.t. R:
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Energy in electric circuits

R

Worked example: for a battery with emf ℇ and the internal 
resistance r, what value of resistance R maximises the power 
delivered?  What is the power?

P = I2R =
E2R

(R+ r)2

dP

dR
= 0

Finding max 
P w.r.t. R:

dP

dR
=

E2(R+ r)2 � 2E2R(R+ r)

(R+ r)4
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Energy in electric circuits

R

Worked example: for a battery with emf ℇ and the internal 
resistance r, what value of resistance R maximises the power 
delivered?  What is the power?

P = I2R =
E2R

(R+ r)2

dP

dR
= 0

Finding max 
P w.r.t. R:

dP

dR
=

E2(R+ r)� 2E2R

(R+ r)3
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Energy in electric circuits

R

Worked example: for a battery with emf ℇ and the internal 
resistance r, what value of resistance R maximises the power 
delivered?  What is the power?

P = I2R =
E2R

(R+ r)2

dP

dR
= 0

Finding max 
P w.r.t. R:

= 0 ⇒
dP

dR
=

E2(r �R)

(R+ r)3
r �R = 0



PA113: Electricity and magnetism: Unit 2 Dr Jonathan Nichols

14

Energy in electric circuits

R

Worked example: for a battery with emf ℇ and the internal 
resistance r, what value of resistance R maximises the power 
delivered?  What is the power?

P = I2R =
E2R

(R+ r)2

dP

dR
= 0

Finding max 
P w.r.t. R:

= 0 ⇒ r = R
dP

dR
=

E2(r �R)

(R+ r)3
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Energy in electric circuits

R

Worked example: for a battery with emf ℇ and the internal 
resistance r, what value of resistance R maximises the power 
delivered?  What is the power?

P = I2R =
E2R

(R+ r)2

P
max

=
E2r

(2r)2

P
max

=
E2

4r
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Energy in electric circuits

The stored energy in a battery Estored is equal to 
the total charge it can deliver over its lifetime Q 
multiplied by the emf ℇ:

E
stored

= QE Eq 25-18

This is the total work 
the battery can do
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Resistors in circuits… series
a b c a c

I I

R1 R2 Req

Voltage between a and c is the sum of 
the voltage drops over resistors 1 and 2

Req = R1 +R2
Eq 25-20

V = IR1 + IR2 V = I(R1 +R2)⇒
So the equivalent resistance is…
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a b ba

R1

R2

I I I
I1

I2

Resistors in circuits… parallel

The currents in both branches I2 and I1 add up to the current I 
flowing in and out of the junctions (we will look at this later…). 
The voltage drop V across both resistors is the same.

I = I1 + I2 ⇒

Req

V

Req
=

V

R1
+

V

R2
So…

1

Req
=

1

R1
+

1

R2

Eq 25-25
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Kirchoff’s Laws

1. The sum of the voltages 
around a closed loop is zero!I

c
E · dr = 0

ℇ1 ℇ2

R1

R2

V = 0

2. At a junction, total current 
in equals total current out!

I1 = I2 + I3

I1

I2

I3

Peloton

https://youtu.be/Immyux_P7hw


PA113: Electricity and magnetism: Unit 2 Dr Jonathan Nichols

20

Current loop solution strategy

1. Replace any series or parallel resistor combos by 1 equivalent 
resistor 

2. Assign positive current direction and draw arrows. Label 
currents in branches, and draw + and − signs for each emf. 

3. Apply Kirchhoff’s junction rule to all but 1 junction. 

4. Apply Kirchhoff’s voltage loop rule each time until the 
number of equations equals the number of unknowns. Voltage 
falls across a resistor (i.e. = −IR) and rises across a source of 
emf (i.e. = +Ir). 

5. Solve away!
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RC circuits
Discharging a capacitor:

C R

S
+Q0

−Q0

There is initially big voltage 
between the plates, hence a 
large current flows around the 
circuit due to a large force 
acting on the charges.  

As the charge gradually 
equalises, the voltage drops, and 
the force decreases.  Hence the 
current gradually decreases.  

The resulting current profile is 
an exponential decrease with 
time

V =
Q

C

−I

V =
dQ

dt
R
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RC circuits
Discharging a capacitor:

C R

S
+Q0

−Q0

Applying Kirchhoff’s Loop rule:

Solve by separating the variables

dQ

Q
= � 1

RC
dt

Q

C
+

dQ

dt
R = 0

dQ

dt
= � Q

RC
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RC circuits
Discharging a capacitor:

Integrating:

dQ

Q
= � 1

RC
dt

Z Q0

Q0

dQ

Q
= � 1

RC

Z t0

0
dt

ln
Q0

Q0
= � t0

RC

C R

S
+Q0

−Q0
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RC circuits
Discharging a capacitor:

R

S
+Q0

−Q0

Q(t) = �Q0 exp
� t

RC

⌧ = RC

Eq 25-35

Eq 25-36

ln
Q0

Q0
= � t0

RC

Q(t) = Q0 exp
� t

⌧
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RC circuits
Discharging a capacitor:

R

S
+Q0

−Q0

⌧ = RC

t

Q

Q0

τ = RC

I =
dQ

dt

Q(t) = Q0 exp
� t

⌧

=

Q0

RC
exp

� t
RC

I = I0 exp
� t

⌧

Eq 25-37
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RC circuits
Discharging a capacitor:

R

S
+Q0

−Q0

⌧ = RC

I =
dQ

dt

Q(t) = Q0 exp
� t

⌧

=

Q0

RC
exp

� t
RC

I = I0 exp
� t

⌧

Eq 25-37t

I

I0

τ = RC
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RC circuits
Charging a capacitor:

There is initially zero voltage 
between the plates, hence a 
large current flows around the 
circuit since there is no force 
opposing the emf of the battery.  

As the charge gradually builds 
up, the voltage increases, 
opposing the emf.  Hence the 
current gradually decreases.  

The resulting current profile is 
an exponential decrease with 
time. Again! (But in opp. dir.)

R

S

+Q−Q

ℇ
+

−

V = �Q

C

V = �dQ

dt
R

I
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RC circuits
Charging a capacitor:

R

S

+Q−Q

ℇ
+

−

Applying Kirchhoff’s Loop rule:

E � dQ

dt
R� Q

C
= 0

Q(t) = CE
⇣
1� exp

� t
⌧

⌘
Eq 25-40

Similar considerations as previously yield:
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RC circuits
Charging a capacitor:

R

S

+Q−Q

ℇ
+

−

Finding the current:

I =

E
R

exp

� t
RC

= I0 exp
� t

⌧

I =
dQ

dt
= CE

✓
1

RC
exp

� t
RC

◆

Q(t) = CE
⇣
1� exp

� t
⌧

⌘

Eq 25-41
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RC circuits
Charging a capacitor:

R

S

+Q−Q

ℇ
+

−

t

Q

Qf

τ = RC

t

I

I0

τ = RC

Qf = Cℇ
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Summary

Energy in electric circuits 

Resistors 

Kirchoff’s Laws 

RC circuits

P = I2R =
V 2

R
P =

�QE
�t

= IE

Va � Vb = E � Ir
I =

E
R+ r

E
stored

= QE

Req = R1 +R2 1

Req
=

1

R1
+

1

R2

I = I0 exp
� t

⌧

P = IV

⌧ = RC
Q(t) = Q0 exp

� t
⌧

Q(t) = CE
⇣
1� exp

� t
⌧

⌘
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Next up…

Follow-up lecture
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Capacitance

+

+

+

+

+

+

+

+

+

+

+

+

+

Its capacitance C is defined as:

C =
Q

V

This is constant for a given 
conductor’s geometry

If it’s loaded with charge Q, it acquires a uniform potential V

Eq 24-1
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Capacitance

+

+

+

+

+

+

+

+

+

+

+

+

+

Its capacitance C is defined as:

C =
Q

V

If it’s loaded with charge Q, it acquires a uniform potential V

Eq 24-1

Note that it is changed by both 
the charge and the potential; 
moving nearby charges 
changes the capacitance!
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Capacitance

+

+

+

+

+

+

+

+

+

+

+

+

+

Its capacitance C is defined as:

C =
Q

V

If it’s loaded with charge Q, it acquires a uniform potential V

Eq 24-1

Its unit is the Farad (F):  
1 Farad = 1 Coulomb per Volt 
(this is a large unit!)
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Capacitance
Let’s look at the capacitance of a spherical conductor of radius R

R

r

V
V =

kQ

R V =
kQ

r

C =
Q

V
=

QR

kQ
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Capacitance
Let’s look at the capacitance of a spherical conductor of radius R

R

r

V
V =

kQ

R V =
kQ

r

Eq 23-22

C =
R

k
= 4⇡✏0R

Eq 24.2
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Capacitance
Let’s look at the capacitance of a spherical conductor of radius R

R

r

V
V =

kQ

R V =
kQ

r

C = 4⇡ ⇥ 8.85⇥ 10�12 ⇥ 1m ' 10�10 F

C = 4⇡ ⇥ 8.85⇥ 10�12 ⇥ 1m ' 10�10 F
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Cylindrical capacitor

Before we begin: why would we care about the 
properties of a cylindrical capacitor?

(HINT: have you ever watched TV?)

Co-axial cable
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Cylindrical capacitor

What is the capacitance?

Approach:

• Use Gauss’ Law to find the electric field E 

• Calculate the potential difference V 

• Compute the capacitance from C=Q/V

r1

r2

+Q
-Q

L
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Cylindrical capacitor

r1

r2

+Q
-Q

L

What is the capacitance?

Use Gauss’ Law to find the 
electric field E

Integral of the electric 
field threading a suitably-
chosen Gaussian surface

�E =

I

S
En · dA =

Q

✏0

Eq 22-16
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Cylindrical capacitor

r1

r2

+Q
-Q

L

What is the capacitance?

Use Gauss’ Law to find the 
electric field E

Use a cylindrical Gaussian 
surface, as the geometry 
is cylindrical

�E =

I

S
En · dA =

Q

✏0

E 2⇡rL =
Q

✏0
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Cylindrical capacitor

r1

r2

+Q
-Q

L

What is the capacitance?

Use Gauss’ Law to find the 
electric field E

�E =

I

S
En · dA =

Q

✏0

E 2⇡rL =
Q

✏0
E =

Q

2⇡✏0L

1

r

So
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=
Q

2⇡✏0L
ln

✓
r2
r1

◆

34

Cylindrical capacitor

r1

r2

+Q
-Q

L

What is the capacitance?

Calculate the potential 
difference V

V =

Z r2

r1

E(r) dr

V =
Q

2⇡✏0L

Z r2

r1

1

r
dr

Eq 23-2
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Cylindrical capacitor

r1

r2

+Q
-Q

L

What is the capacitance?

Compute the capacitance 
from C=Q/V

C =
Q

V

C =
2⇡✏0L

ln
⇣

r2
r1

⌘
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Parallel plate capacitor

This is the ‘classic’ form of a 
capacitor. What is its 
capacitance?

-Q+Q

Approach:

• Use Gauss’ Law to find the electric field E 

• Calculate the potential difference V 

• Compute the capacitance from C=Q/V
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Parallel plate capacitor

This is the ‘classic’ form of a 
capacitor. The potential V is 
calculated using Gauss’ Law:

-Q+Q

Integral of the electric 
field threading a suitably-
chosen Gaussian surface

�E =

I

S
En · dA =

Q

✏0

Eq 22-16
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Parallel plate capacitor

This is the ‘classic’ form of a 
capacitor. The potential V is 
calculated using Gauss’ Law:

-Q+Q

�E =

I

S
En · dA =

Q

✏0

E =
Q

✏0A

so

Eq 22-21
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Parallel plate capacitor

This is the ‘classic’ form of a 
capacitor. The potential V is 
calculated using Gauss’ Law:

-Q+Q

V = Ed =
Qd

✏0A
Eq 23-2

C =
Q

V
=

✏0A

d
So its capacitance is

Eq 24-6
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Parallel plate capacitor

Calculating the capacitance

If we e.g. had a capacitor with two 2 x 2 m plates 1mm apart:

C = 8.85⇥ 10�12 4

0.001
' 3⇥ 10�8 F

-Q+Q
C =

✏0A

d
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Capacitance
Worked example:

-Q+Q

The charge on one plate of a 
capacitor is +30 µC and the charge 
on the other plate is −30 µC.  The 
potential difference between the 
plates is 400 V.  What is the 
capacitance of the capacitor?

C =
Q

V

C =
30⇥ 10�6

400
= 7.5⇥ 10�8 F = 75nF
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Capacitance
Worked example:

-Q
An electric field of 2⨉104 Vm-1 exists between 
the circular plates of a a parallel plate 
capacitor that has plate separation of 2 mm. 
(a) What is the potential difference across the 
capacitor plates? (b) What is the plate radius 
required if the positively charged plate is to 
have a charge of 10 µC. 

+Q

V = Ed =
Qd

✏0A
V = 2⇥ 104 ⇥ 2⇥ 10�3 = 40V
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Capacitance
Worked example:

-Q
An electric field of 2⨉104 Vm-1 exists between 
the circular plates of a a parallel plate 
capacitor that has plate separation of 2 mm. 
(a) What is the potential difference across the 
capacitor plates? (b) What is the plate radius 
required if the positively charged plate is to 
have a charge of 10 µC. 

+Q

V = Ed =
Qd

✏0A
A =

Qd

✏0V
⇒

r =

✓
Qd

⇡✏0V

◆ 1
2

=

✓
10⇥ 10�6 ⇥ 2⇥ 10�3

⇡✏0 ⇥ 40

◆ 1
2



PA113: Electricity and magnetism: Unit 2 Dr Jonathan Nichols

44

Capacitance
Worked example:

-Q
An electric field of 2⨉104 Vm-1 exists between 
the circular plates of a a parallel plate 
capacitor that has plate separation of 2 mm. 
(a) What is the potential difference across the 
capacitor plates? (b) What is the plate radius 
required if the positively charged plate is to 
have a charge of 10 µC. 

+Q

V = Ed =
Qd

✏0A
A =

Qd

✏0V
⇒

r =

✓
Qd

⇡✏0V

◆ 1
2

= 4.2m
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Summary

U =
1

2

nX

i=0

qiVi

U =
1

2
QV

C =
Q

V

• Electrostatic potential energy 

• Capacitance 

• Spherical capacitors 

• Cylindrical capacitors 

• Parallel plate capacitors

C =
R

k
= 4⇡✏0R

C =
Q

V
=

✏0A

d
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Some Qs
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Some Qs



PA113: Electricity and magnetism: Unit 2 Dr Jonathan Nichols

7

Some Qs
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Magnetic Flux

If the surface is bounded by a coil of N 
turns then

Units of f are Webers (Wb) or Tm2

Analogous to electric flux, magnetic flux is 
defined as

Fig 28-1

Fig 28-2

dABdAnB
s ns òò == ˆ.

!
f

Component of B
in direction of n̂

qf
q

cos
cos

BA
BBn

=
=

qf cosNBA=

where

Eq 28-1
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Direction of the Induced EMF

Faraday’s Law: 

Use the right-hand curl rule to 
determine the positive direction for the 
induced EMF (thumb points in the 
direction of n )

n can be chosen arbitrarily since the 
right answer will come out in the maths 
due to the B.n term in Eq 28-5

dt
ddAnB

dt
dldE

s
c

fe -=-== òò ˆ..
!!!

^

^

^
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Example: EMF Induced in a Circular Coil

An 80-turn coil of radius 5 cm and resistance 30W sits in a region 
with a uniform magnetic field normal to the plane of the coil. 

At what rate must the magnitude of the magnetic field change to 
produce a current of 4A in the coil?

Induced EMF in a Circular Coil
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Lenz’s Law
Defines the direction of the EMF induced in 
Faraday’s Law

The induced EMF is in a direction which will 
tend to oppose the change which is causing it

Moving bar magnet towards a conducting 
loop induces an EMF

The EMF in the loop has an associated 
magnetic field which is in the direction 
opposing the magnetic field change

When a magnetic flux through a surface 
changes, the magnetic field due to any 
induced current produces a flux of its own 
through the same surface and in opposition 
to the change
(Alternative form of Lenz’s Law)
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Motional EMF

v = dx/dt

L

B = Bvert

Typically, for this example, induced 
EMF would be ~0.5 V

When a conductor cuts through 
magnetic flux an EMF is induced 
across it

Eg. Between the wing-tips of a plane 
moving through the Earth’s magnetic 
field.

Faraday’s law can be used to show

So magnitude of e given by

BLv-=e

BLv=e
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• Spacecraft suspends a long 
conducting cable underneath it     
(L ~1 km)

• This cuts through magnetic flux in 
the Earth’s B field and generates 
an EMF providing power

BLv=e

Motional EMF: Electrodynamic Tethers in Space
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• Spacecraft suspends a long 
conducting cable underneath it 
(L ~1 km)

• This cuts through magnetic flux in 
the Earth’s B field and generates 
an EMF providing power

• What is the typical EMF induced 
for a spacecraft at 300 km? Use a 
realistic value for B at this height.

• First person to email the correct 
answer to Darren.Wright@le.ac.uk
wins a chocolate bar!

BLv=e

Motional EMF: Electrodynamic Tethers in Space
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Example: Magnetic Drag

A rod of mass m slides on frictionless conducting rails in a region of 
static uniform magnetic field B directed into the page. An external 
agent is pushing the rod, maintaining its motion to the right at 
constant speed v0. At time t=0 the force stops pushing and the rod 
continues forward, with an initial velocity v0, being slowed by the 
magnetic force. Find the speed v of the rod as a function of time.
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A

Motional EMF: The Electric Generator

tBNA wwe sin=
Hence

tBNABNAdAnB
s

wqf coscosˆ. === ò
!

tBNA
dt
d wwf sin-=

dt
dfe -=

If a conducting loop is rotated in a 
magnetic field then an alternating 
current is excited. This is the basic 
principle of an AC generator.

Magnetic flux through a loop with N turns

where q=wt; q is the angle between the 
magnetic field and the normal of the 
surface of the loop

Faraday’s Law:

Resulting EMF is oscillatory 
about 0 Volts with 
epeak=BNAw

[See also Ch 29]
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Magnetic Inductance
We know that a changing magnetic field through a conducting loop 
induces an EMF as defined by Faraday’s law

However, the current flowing in the loop leads to a magnetic field which 
opposes the external magnetic field (Lenz’s Law)

Changing the current in the circuit affects that circuit  and leads to a 
self-induced EMF

The magnetic flux through the loop is proportional to the current 
flowing in it

where L is a constant and a property of the circuit called the 
self-inductance

Iµf LI=for

dt
dIL

dt
LId

dt
d

-=-=-=
)(fe

Faraday’s Law:

Units of L: Webers Amp-1 or Henrys

Note: e is zero for a steady current. Large 
e at power on (back EMF)
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Self-Inductance in a Solenoid

For a tightly wound solenoid of length l, 
cross-sectional area A and N turns (or n
turns per unit length) carrying a current I

Thus the (self-) inductance of the solenoid is

Like capacitance, inductance is dependent 
only on the geometry of the coil and not the 
current which is flowing

Permeability of free space
µ0 = 4p x 10-7 H m-1

IAln
l
IAN 2

0

2
0 µµf ==

Aln
l
AN

I
L 2

0

2
0 µµf

===

Note: Real inductors have an 
internal resistance, r, such 
that the potential difference 
across the inductor is

Ir
dt
dILIrV ind --=-=D e
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Mutual Inductance

When inductive circuits are placed in 
close proximity, the magnetic flux 
through one circuit is now due to the 
currents flowing through itself AND 
those in the other circuits

We now consider the mutual inductance, 
M, rather than self-inductance, L

The magnetic flux of circuit 1 through 
circuit 2 is given by

And the total flux through circuit 2 is

11,21,2 IM=f

1,22,22 fff +=
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Mutual Inductance

Consider Fig 28-28. The inner coil carries 
a current I1 and within that solenoid the 
magnetic field magnitude is given by

The flux of B1 through the second (outer) 
solenoid 

(Note that here A=A1=pr1
2 since B1 is zero 

outside the inner coil)

1101101 )/( InIlNB µµ ==

1
2
1120

2
112121,2 )(. IrlnnrBNABN pµpf ===

2
1120

1

1,2
1,2 rlnn

I
M pµ

f
==
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Mutual Inductance

If the geometry of the two circuits is not 
changing then it can be shown that

Thus

But if the geometry of the system is 
changing ie. M=M(t) then

MMM == 1,22,1

dt
dMI

dt
dIM 1
1

2 --=e

dt
dIM 1

2 -=e
dt
dIM 2

1 -=eand
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Magnetic Energy in an Inductor

Consider the potential differences across 
each component using Kirchoff’s loop rule

Multiply by I to derive power

0=--
dt
dILIRe

02 =--
dt
dILIRIIe

Power from
battery

Power 
Dissipated
in resistor

Power
delivered

to inductor

2

0 2
1

f

I

mm LILIdIdt
dt
dILItPU

f

==== òò

Thus, energy stored in the inductor

2

2
1 LIUm =

General case: energy stored by 
an inductor carrying a current I
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Magnetic Energy in an Inductor

AlB
n
BAlnLIUm .

2
)(

2
1

2
1

0

22

0

2
0

2

µµ
µ =÷÷

ø

ö
çç
è

æ
==

In the case of a solenoid we know that

Thus

Hence magnetic energy density can be 
written as

0

2

2µ
B

Al
U

Volume
Uu mm

m ===

AlnL 2
0µ=nIB 0µ= and

0

2

2µ
Bum =

This is one example proving the 
general result
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Transformers

Transformers are devices of great 
practical importance

- industrial applications

Uses the magnetic linkage (flux) 
between two mutually inductive 
circuits to transform voltages

Has the advantage that little power 
is lost (typically 90-95% efficient)

Circuit 1: Primary
Circuit 2: Secondary

Iron core increases the magnetic 
field for a given current and guides 
all the flux created in the primary 
coil through the secondary

Have to use an alternating current
- generates a solenoidal field in 
the primary

- time varying field induces an EMF 
in the secondary

Like us, there’s 
more to them 

than meets the 
eye
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Transformers

In circuit 1:

In circuit 2:

Where fturn is the flux though each
turn of the coils

Since fturn is the same through both 
circuits then

If N2 > N1 then V2>V1
- step-up transformer

If N2 < N1 then V2<V1
- step-down transformer

dt
dNV turnf

11 =

dt
dNV turnf

22 =

1
1

2
2 V

N
NV = Like us, there’s 

more to them 
than meets the 

eye
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Displacement Current

( )dc
IIldB +=ò 0. µ

!!

Ampère’s law is defined as

Maxwell realised that this breaks down 
where the current becomes discontinuous
as is the case for a capacitor

S1 and S2 are both surfaces bounded by 
the curve C. Yet current I crosses S1 but 
NOT S2. 

S2 appeared to be a surface which did 
not obey Ampère’s law

Maxwell rewrote Ampère’s law in a more 
generalised form:

IldB
c 0. µ=ò
!! For any area S bounded 

by curve C

dt
dI e

d
fe 0=

Id is Maxwell’s displacement current, 
given by

Fig 30-1
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